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ABSTRACT

Space- and time-dependent acoustic wave propagation
naturally occurs in unbounded regions with discontinuous
velocity fields. These unbounded regions typically consist
of free space (which has a constant propagation speed)
and a penetrable bounded medium, where the propaga-
tion speed differs from that of the surrounding unbounded
environment. Standard approaches for simulating the
time-domain model of penetrable media include: (i) trun-
cating the unbounded region with an artificial boundary
condition; or (ii) ignoring the penetrable properties of
the bounded medium. The first approach usually em-
ploys the finite element method (FEM) in space, com-
bined with time-stepping discretization. In contrast, the
second approach leverages the analytical representation
of the Green’s function of the time-domain model in free
space. This allows the boundary element method (BEM)
in space, along with convolution quadrature (CQ), to effi-
ciently simulate the exterior model.
Building on our recent work involving a high-order BEM-
CQ model for the time-domain free-space model and an
overlapped frequency-domain FEM-BEM framework, in
this article we propose and demonstrate an efficient sim-
ulation framework for time-domain acoustic wave propa-
gation in unbounded and penetrable media.
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1. INTRODUCTION

Simulating the time-dependent scattered and absorbed
waves in unbounded free space and within a bounded pen-
etrable medium is fundamental to numerous applications,
as indicated in the literature [1–4]. This simulation ad-
dresses the waves resulting from an incident wave that
strikes the boundary of the penetrable domain.

To efficiently simulate the scattered and absorbed
fields, it is crucial to accurately retain two key physical
properties of the time-domain model: the existence of the
unbounded region and the penetrable medium. Although
there is substantial literature on simulating the penetrable
time-domain model using the FEM [3], this approach of-
ten neglects the propagation of scattered waves through-
out the entire free space. Alternatively, the BEM and CQ
can be employed to accommodate unbounded domains;
however, these methods typically overlook the penetrable
nature of the bounded medium [2].

For discretization in the time variable, CQ meth-
ods were introduced by C. Lubich in his seminal pa-
per [5], which focused on convolution equations related to
parabolic problems. Since then, CQ methods have proven
to be a powerful tool for simulating transient wave prob-
lems (see [2] for a comprehensive introduction). Essen-
tially, CQ methods utilize ordinary differential equation
(ODE) solvers directly in the Laplace domain to achieve
stable time discretization of the problem.

In comparison to the time-stepping discretization
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used with FEM sparse matrices for the truncated domain
model, the CQ-BEM results in complex dense matrices
and necessitates the discretization of a large number of
associated frequency-domain (FD) Helmholtz elliptic par-
tial differential equations (PDEs) [2], which proves to be
prohibitively expensive when utilizing low-order BEM. In
a recent study [6], the authors developed a practical CQ-
BEM model for the impenetrable unbounded media time-
domain model by employing their spectrally accurate dis-
cretization of the FD-PDE in conjunction with high-order
CQ.

In this article, we extend this approach to a piecewise-
constant penetrable media time-dependent model, demon-
strating high-order accuracy and efficiency. Generally,
the penetrable media encompasses continuously spatially
varying heterogeneity. Following our FD Helmholtz over-
lapped FEM-BEM framework [7, 8], we plan to develop
and analyze a TD-FEM-BEM-CQ framework in future
work. In this article, we also provide preliminary numeri-
cal results from this framework and compare these results
with the spectral CQ-BEM for the restricted piecewise-
constant media model. For numerical experiments, we
adopt a parallel implementation of CQ that avoids the
explicit computation of the weights characterizing the
method.

2. ACOUSTIC WAVE PROPAGATION PROBLEM

In this article, we consider the solution to the following
transient wave transmission problem in Rd where d = 2
or 3. Let c : Rd → R+ denote a discontinuous function
representing a known velocity field. Let Ω ⊂ Rd be a
bounded, wave-penetrable domain, such that its comple-
ment Ωc = Rd \ Ω represents the free space where the
wave speed is constant, denoted as c0. Specifically, we
have c(x) = c0 for all x ∈ Ωc, and c is at least discontin-
uous along the boundary ∂Ω of the penetrable region Ω.
In this article, we allow for c(x) ̸= c0 for all x ∈ Ω.

The propagation of waves in Rd is induced by a time-
dependent incident wave uinc(t,x) originating from the
free space and not yet impacting Ω at t = 0. In particu-
lar the input incident field satisfies the homogeneous wave
equation in homogeneous media:

üinc = c20∆u
inc, uinc(0, ·) = u̇inc(0, ·) = 0 in Rd.

The resulting time-domain wave propagation model
for the total field utot = uinc + u satisfies the classical
wave equation, with the unknown field u(t,x) defined for

uinc

Ω

Figure 1. Transient acoustic wave problem

all x ∈ Rd. In particular, u satisfies the inhomogeneous
wave equation for t ∈ (0, T ]:

1

c2
ü(t) = ∆u(t)+f(t), u(0, ·) = 0, u̇(0, ·) = 0 in Rd,

where

f = −c−2üinc +∆uinc =

(
1− c20

c2

)
∆uinc.

We note that f(t,x) = 0 for all x ∈ Ωc and t ∈ [0, T ],
a property that will be essential in formulating our TD-
FEM-BEM-CQ method for a general heterogeneous ve-
locity field c. For the specific case of a piecewise-constant
velocity field, the above PDE transmission wave propa-
gation model can be reformulated as a coupled system of
boundary integral equations (BIE).

3. COUPLED BIE REFORMULATION

In this section, we assume that the sound speed c takes
different positive constant values inside and outside the
domain Ω, defined as follows:

c(x) =

{
c0 if x ∈ Ωc,

c1 if x ∈ Ω.
(1)

In this case, the total field utot satisfies two constant
coefficient homogeneous wave equations, one in Ω and
another in Ωc. Although the coupled BIE reformulation
in this section can be extended to accommodate multiple
piecewise-constant speeds of propagation within Ω, it is
not practical, for computational purposes, to simulate a
larger version of the coupled BIE system presented in this
section.

The BIE reformulation requires solving only for un-
knowns in the boundary region ∂Ω. However, for a gen-
eral heterogeneous medium Ω, it is efficient to develop an
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overlapped decomposition framework that facilitates ap-
plication of both the FEM and BEM discretization, in con-
junction with the Laplace transform (LT)-based CQ ap-
proach. In this article, we also demonstrate such an over-
lapped framework, and compare with the BIE approach
for the limited special case (1).

For any constant real value k > 0, let

G(k, t, z) =


1

4π∥z∥
δ

(
t− ∥z∥

k

)
, in 3D,

H(t− k−1∥z∥)
2π
√
t2 − k−2∥z∥2

in 2D,
(2)

be the fundamental solution of the time-domain wave
equation with a constant speed of propagation, say k, in
a (bounded or unbounded) region Ω̃. Here δ and H de-
note the Dirac delta and Heaviside functions, respectively.
In our case, Ω̃ = Ω or Ω̃ = Ωc. We also denote the outer
unit normal vector to ∂Ω by ν. In this article, we utilize
the LT for high-order time discretization that also facil-
itates transformed parallel-in-time implementation. The
coupled BIE reformulation depends on several operators
that we will first define below.

For a given density φ and t > 0, x ∈ Ω ∪ Ωc, the
time-dependent retarded single layer potential operator is
defined as

Skφ(t,x)

=

∫ t

0

[∫
∂Ω

G(k, t− τ,x− y)φ(τ,y)dσ(y)

]
dτ.

The retarded double layer potential operator is defined, for
a given density ψ and t > 0, x ∈ Ω ∪ Ωc, as

Dkψ(t,x)

=

∫ t

0

[∫
∂Ω

∂G

∂ν(y)
(k, t− τ,x− y)ψ(τ,y)dσ(y)

]
dτ.

Notice that, in the 3D case, the surface integral on ∂Ω
must be understood in a suitable sense due to the presence
of the Dirac delta in the kernel G(k, t, z).

Taking the exterior and interior Dirichlet and Neu-
mann boundary traces of the potential operators lead to
the following trace results connection with boundary inte-
gral operators (BIOs), at x ∈ ∂Ω:

lim
ϱ→0+

(Skφ)(t,x± ϱν(x)) = Skφ(t,x)

lim
ϱ→0+

(Dkψ)(t,x± ϱν(x)) = (± 1
2 I +Dk)ψ(t,x),

lim
ϱ→0+

∂
∂ν (Skφ)(t,x± ϱν(x)) = (∓ 1

2 I +D′
k)φ(t,x),

lim
ϱ→0+

∂
∂ν (Dkψ)(t,x± ϱν(x)) = Nkψ(t,x),

where the single-, double-, adjoint-double-, and
hypersingular-layer BIOs are, respectively, defined for
t > 0, x ∈ ∂Ω, as

Skφ(t,x) =∫ t

0

[∫
∂Ω

G(k, t− τ,x− y)φ(τ,y)dσ(y)

]
dτ,

Dkψ(t,x) =∫ t

0

[∫
∂Ω

∂G

∂ν(y)
(k, t− τ,x− y)ψ(τ,y)dσ(y)

]
dτ,

D′
kφ(t,x) =∫ t

0

[∫
∂Ω

∂G

∂ν(x)
(k, t− τ,x− y)φ(τ,y)dσ(y)

]
dτ,

Nkψ(t,x) =∫ t

0

[∫
∂Ω

∂2G

∂ν(x)∂ν(y)
(k, t− τ,x− y)ψ(τ,y)dσ(y)

]
dτ.

For the special case of the velocity field given by (1),
we represent the total field utot, which is a solution of the
wave equation in the exterior and interior regions, using
the single- and double-layer retarded potential operators.
This representation involves unknowns defined only on
the boundary ∂Ω. For any t ≥ 0, we have:

(utot − uinc)
∣∣
Ωc = Dc0u

tot
∣∣
∂Ω

− Sc0

(
∂utot

∂ν

) ∣∣
∂Ω
, (3a)

utot
∣∣
Ω

= Sc1

(
∂utot

∂ν

) ∣∣
∂Ω

−Dc1u
tot
∣∣
∂Ω
. (3b)

We recall that in the interior, utot
∣∣
Ω

= u, and in the
exterior, u =

(
utot − uinc

) ∣∣
Ωc . The representation above

for the TD model with (1) is inspired by a similar direct
method representation for the FD Helmholtz transmission
problem with a radiation condition, as investigated in [9,
Section 4.2].

By subtracting the exterior traces from (3a) and the
interior traces from (3b), we obtain the following system
of BIEs for the coupled unknown densities defined on the
boundary φ = utot

∣∣
∂Ω

and ψ =
(

∂utot

∂ν

) ∣∣
∂Ω

:

uinc
∣∣
∂Ω

=
(
I +Dc1 −Dc0

)
φ+

(
Sc0 − Sc1

)
ψ,(

∂uinc

∂ν

) ∣∣
∂Ω

= (Nc1 −Nc0)φ+
(
I +D′

c0 −D′
c1

)
ψ.

(4)
Throughout this article, we employ the Laplace

Transform (LT)-based convolution quadrature (CQ)
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method for time discretization, which we outline below
using a frequency-domain (FD) operator theoretic ap-
proach. To this end, it is convenient to consider the fol-
lowing FD operator. For any known function F : Rd → C
with support in Ω, and z ∈ C+, we define the solution op-
erator K(s)U as follows:

K(z)F = U, with
∣∣∣∣ (z/c)2U(z)−∆u = F,
+Radiation condition. (5)

The above solution operator K(z) definition naturally
extends to the case if the scalar z is replaced by a
vector/matrix-valued function of z. In the latter case, the
Helmholtz PDE needs to be solved for each z-dependent
scalar component in the vector/matrix-valued counterpart.
Such an extension is necessary for CQ methods based on
A-stable Runge-Kutta (RK) ODE solvers.

For the special case of c as given in (1), the numeri-
cal counterpart of the LT-based FD operatorK(s) requires
only the discretization of the LT counterparts of the BIOs
mentioned above. In particular, we need to define the fol-
lowing FD BIOs using the fundamental solution Ĝ(κ, z)
of the Helmholtz equation, namely,

Ĝ(κ, z) =


1

4π∥z∥
exp(iκ∥z∥), in 3D,

i

4
H

(1)
0 (κ∥z∥), in 2D,

where H(1)
0 (z) ) denotes the Hankel function of the first

kind and zero order. Then, for x ∈ ∂Ω we have

L (Sk) φ̂(s,x) =

∫
∂Ω

Ĝ

(
is

k
,x− y

)
φ̂(y)dσ(y),

L (Dk) ψ̂(s,x) =

∫
∂Ω

∂Ĝ

∂ν(y)

(
is

k
,x− y

)
ψ̂(y)dσ(y),

L (D′
k) φ̂(s,x) =

∫
∂Ω

∂Ĝ

∂ν(x)

(
is

k
,x− y

)
φ̂(y)dσ(y),

L (Nk) ψ̂(s,x)

=

∫
∂Ω

∂2Ĝ

∂ν(x)∂ν(y)

(
is

k
,x− y

)
ψ̂(y)dσ(y).

The above hypersingular operator can be simplified using
an integration by parts-type formula.

4. CONVOLUTION QUADRATURE METHOD

Denoting û as the Laplace transform of u, we can express
u(t) using the Bromwich integral identity for the inverse
Laplace transform:

u(t) =
1

2πi

∫
σ+iR

û(t)est ds

=
1

2πi

∫
σ+iR

K(s)y(t; s) ds, t ∈ [0, T ],

where K is the FD solution operator defined in (5), and
σ > 0 is chosen appropriately. Here,

y(t; s) =

∫ t

0

f(τ)es(t−τ) dτ (6)

solves the differential equation

x′(t)− sx(t) = f(t), x(0) = 0, t ∈ (0, T ].

This approach forms the key idea behind the CQ
method: it introduces an ODE solver to approximate
y(t; s) and reinterprets the Bromwich integral using com-
plex integration techniques for analytic functions under
suitable conditions. Hence, we have:

u(t) ≈ 1

2πi

∫
σ+iR

estK

(
δ̃(e−κs)

κ

)
F (s) ds,

where δ̃(ζ) is the so-called approximate differentiation
symbol of the ODE solver, and κ > 0 is the uniform time
step. For example, in the simplest backward Euler ODE
solver case, δ̃(z) = 1− z, where z is a scalar. In the next
section, for the case of RK ODE solver, we will precisely
define a function δ̃(ζ) that we used in our implementation.

Expanding in a Taylor series for a suitable 0 < r < 1:

K

(
δ̃(ζ)

κ

)
=

∞∑
j=0

wκ
j ζ

j ,

where

wκ
j =

1

2πi

∫
|ζ|=r

ζ−j−1K

(
δ̃(ζ)

κ

)
dζ

we derive the representation:

u(nκ) ≈
∞∑
j=0

wκ
j

∫
σ+iR

es(nκ−j)F (s) ds

=

∞∑
j=0

wκ
j f((n− j)κ).
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Since f(t) = 0 for t ≤ 0, the sum above is finite. If
the weights wκ

j are available or approximated, we observe
that the method does not require the LT of f .

5. CQ-BEM AND CQ-FEM-BEM

5.1 RKCQ discretization in time

The applicability of the convolution quadrature (CQ)
method, in conjunction with A-stable ODE solvers such
as a special class of RK methods, hinges on the computa-
tion of the weights:

wκ
j =

1

2πi

∫
|ζ|=r

ζ−j−1K

(
δ̃(ζ)

κ

)
dζ

≈ r−j

N + 1

N∑
ℓ=0

e−
2πjiℓ
N+1 K(zκℓ,n),

where we have used the rectangle rule to approximate the
contour integral. This rule exhibits optimal convergence
properties for such integrals. Here,

zκℓ,N =
1

κ
δ̃
(
re

2πiℓ
N+1

)
. (7)

We note that N is chosen based on the final time T of
the time-domain wave model, in combination with the
uniform time-step parameter κ. More precisely, we have
T = (N + 1)κ.

Thus, we obtain the following continuous in space
and discrete in time method:

uκ,N (nκ) =

N∑
j=0

rj−n

N + 1

[ N∑
ℓ=0

e
2π(n−j)iℓ

N+1 K(zκℓ,N )f(jκ)

]

= r−n
N∑
ℓ=0

e
2πniℓ
N+1 K(zκℓ,N )

[ N∑
j=0

rj

N + 1
e−

2πjiℓ
N+1 f(jκ)

]
.

In this all-time-steps-at-once implementation of the
CQ method, computing the solution at N + 1 discrete
times

(
uκ,N (nκ)

)N
n=0

involves solving N + 1 (vectorial)
FD Helmholtz problems defined in (5), which facilitates
natural parallelization. For the CQ-BEM case implemen-
tation, solving the FD problems corresponds to high-order
discretizations of the associated BIOs defined in Section 3.

As previously mentioned, for time-discretization im-
plementation, it is crucial to choose a precise formula to
define the symbol δ̃ in (7) that corresponds to a numerical

ODE solver capable of efficiently approximating the solu-
tion in (6). To this end, in this article, we choose an m-
stage Radau II-A method, given by the Butcher tableau:

c A

bT ,

where b and c are m × 1 column vectors, and A is an
m ×m matrix. Radau II-A methods are special cases of
stiffly accurate A-stable and L-stable RK methods of order
2m− 1, with the constraint that the vector c = (cl)1≤l≤m

consists of the zeros (in ascending order) of the Radau
polynomial. The entries of the matrix and vectors also
satisfy two additional conditions, see for example [6, Sec-
tion 3.1]. In this case, with |ζ| < 1, we obtain

δ̃(ζ) =

(
A+

ζ

1− ζ
1bT

)−1

. (8)

5.2 Spectral BEM and FEM-BEM discretization

First, we consider the piecewise-constant case in conjunc-
tion with the equivalent BIE system in (4). As described
in [6], applying the RKCQ method to the time-domain
BIE leads to a discrete system that possesses a lower tri-
angular Toeplitz structure, which can be solved efficiently
using a recursive scheme. Furthermore, the storage re-
quirement can be reduced by leveraging the property that
δ̃(ζ) is diagonalizable for almost every |ζ| < 1.

For the spatial discretization of the Laplace trans-
formed boundary integral operators, denoted as L(M)
(with M = Sk, Dk, D

′
k, Nk), we utilize a spectrally accu-

rate Kress-Nystrom method [10] specifically for the two-
dimensional (2D) case. In this short article, we restrict our
focus to the 2D scenario. (For the 3D case, we employ
the spectrally accurate discretization approach presented
in [11].)

For the general case involving heterogeneous media,
we develop an overlapped time-domain CQ-FEM-BEM
framework that facilitates the application of high-order
FEM for bounded heterogeneous media and spectrally ac-
curate BEM for unbounded free space. In the FD case,
a similar FEM-BEM framework was developed and an-
alyzed by the authors in [7, 8], introducing two artificial
boundaries: one smooth boundary (suitable for spectral
BEM) and another polygonal boundary (suitable for high-
order FEM), as illustrated in Figure 2, which is exterior to
an example bean-shaped domain Ω.
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6. NUMERICAL EXPERIMENTS

In this section, we present numerical results to illustrate
our CQ-BEM and CQ-FEM-BEM algorithms, which sim-
ulate time-domain wave propagation induced by a time-
dependent incident wave given by

uinc(t,x) = cos(π[t− d̂ · x− 2]2)

× exp

(
−
[
t− d̂ · x− 2

0.4

]2)
,

impinging upon the penetrable bean-shaped domain Ω
from the incident direction d̂, where

d̂ =
d

∥d∥
, with d = (1,−0.2).

We consider the time-domain model with T = 8. In
the above example of the chosen incident wave, uinc(0, ·)
does not strictly vanish in the bean-shaped domain Ω, as
illustrated in Figure 2, and therefore does not exactly sat-
isfy the conditions outlined in (2). However, since the val-
ues are are exponentially small in Ω, these can be treated
as zero for computational purposes within this domain.

In addition to the domain Ω, Figure 2 illustrates our
FEM-BEM framework: a coarse mesh for the rectangular
region and a smooth simple curve Γ chosen to ensure that
the unbounded region exterior to Γ represents a free-space
with a constant speed of wave propagation (c0 = 1). The
rectangular region defined by [−3, 3]×[−2, 2] ensures that
all heterogeneity is contained within the bounded region.
The overlapped region, located between the blue curve Γ
and the boundary of the rectangle (i.e., within the FEM
domain but outside Γ), facilitates the coupling between the
FEM solution in the interior and the BEM solution in the
unbounded exterior. Such an overlapped coupling is cru-
cial to efficiently solve first for unknowns on the two ar-
tificial boundaries, and then compute the CQ-FEM-BEM
solution.

For comparison with the CQ-BEM approach, which
ensures high-order accuracy, we consider the velocity field
to be of the form given in (1) with c1 = 3.4. Our CQ-
BEM spectral algorithm does not require a mesh for the
domain; instead, the spectral numerical solution is ap-
proximated using the Nyström quadrature rule [10, Eq.
(3.94)] with 2nper uniform knots on ∂Ω. The refinement
of the CQ-BEM time step κ necessitates boundary mesh
refinement such that (κnper) ≈ 6. However, our CQ-
FEM-BEM framework does not impose such spatial and
time discretization constraints. Let nCQ = N + 1, so that

Figure 2. Bean-shaped penetrable domain Ω, with
the overlapped region between ∂Ω, an artificial
smooth boundary Γ (in blue), and a coarse FEM
method for the rectangular domain [−3, 3]× [−2, 2].
The CQ-BEM approach formulates the integral equa-
tions on the true boundary ∂Ω, while the CQ FEM-
BEM method applies the FEM part of the algorithm
on the rectangle and the BEM part on the (exterior
of the) artificial boundary Γ, which are considerably
simpler in nature.

T = (nCQ)×κ. Therefore, in our numerical experiments,
we set κ = nCQ

8 for both the CQ-BEM and CQ-FEM-BEM
algorithms, and we present our numerical results using the
CQ parameter nCQ. For our simulations, we employ the
m = 3-stage RKCQ scheme for time discretization, with
an expected order of convergence (EOC) of approximately
5.

For the CQ-BEM solution, once the BIE system in
(4) is solved, we retrieve the total field solution to the
wave equation in R2\∂Ω by again applying the acceler-
ated RKCQ scheme to (3). The Frobenius-type norm er-
rors errFrob [6] between the CQ-BEM total field solu-
tion uκnum and a reference solution u∗num are evaluated at
p = 100 equi-spaced knots (xi)1≤i≤p on two curves: one
circle of radius 1.5 centered at the origin (located outside
the domain Ω), and another circle of radius 0.5 centered at
(0.5, 0) (located inside the domain Ω). The visual repre-
sentation of these two circles (shown in dots) is provided
in Figure 3. The reference solution u∗num is computed with
N = 768. In Table 1, we demonstrate the accuracy and
the EOC of our CQ-BEM algorithm.
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u total  at t = 3

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1

-0.5

0

0.5

1

Figure 3. Numerical total field solution at t = 3
inside and exterior to the bean curve ∂Ω. Interior
and exterior numerical solution errors are evaluated
at points, respectively, in the interior circle (in blue)
inside Ω and the exterior circle (in red) exterior to Ω.

Table 1. Frobenius-type norm errors for the CQ-
BEM total field solution uκnum w.r.t. to time step
κ = 8/N refinement on interval [0, 8].

Exterior circle Interior circle
N errFrob EOC errFrob EOC
24 7.21E− 2 – 1.23E− 1 –
48 5.43E− 3 3.73 7.83E− 3 3.91
96 2.06E− 4 4.71 2.97E− 4 4.71

192 7.49E− 6 4.78 1.97E− 5 4.69

Having established the high-order accuracy of the
CQ-BEM solution, we now demonstrate the high-order
accuracy of the numerical solutions obtained using our
new CQ-FEM-BEM framework, as illustrated in Figure 4.

In addition to the advantages presented by the CQ-
FEM-BEM framework compared to the CQ-BEM ap-
proach (which is restricted to piecewise-constant velocity
fields), our new framework facilitates the inclusion of a
general heterogeneous medium Ω, with a complex struc-
ture. Furthermore, our CQ-FEM-BEM framework bene-
fits from employing high-order BEM for unbounded re-
gions with an exterior artificial smooth and simple bound-
ary—such as the blue curve shown in Figure 2, instead
of using BEM on the boundary of the penetrable object,
which can be considerably complex in practice. Based
on extensive experiments, it has been determined that
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Figure 4. Error between the CQ-BEM (pure BEM)
reference solution and CQ-FEM-BEM (FEM-BEM)
solutions at t = 3 with varying CQ parameter nCQ =
N + 1 on the interior and exterior circles shown in
Figure 3. The CQ-FEM-BEM solutions are com-
puted on a fine FE mesh (the third refinement of
the coarse mesh in Figure 2, comprising 58,348 el-
ements) with quadratic (P2) splines.

our method does not require any spatial or temporal dis-
cretization constraints, unlike the CQ-BEM method. In
future work, we will present our complete CQ-FEM-BEM
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algorithm along with numerical analysis and comprehen-
sive sets of experiments, which will include industry data-
driven velocity field cases, such as the Marmousi velocity
field.
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