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ABSTRACT

In forest ecosystems, detecting birdcalls is hindered by
high environmental noise and multiple sound sources,
complicating species identification. Beamforming tech-
niques can enhance signal-to-noise ratio (SNR) by focus-
ing on specific directions but face challenges with numer-
ous, unpredictably located sources. This study proposes
a novel methodology integrating multidirectional beam-
forming with automated source selection to address these
issues. Our approach sequentially scans multiple direc-
tions and employs BirdNET (a machine learning-based
platform for bird recognition) confidence scores to iden-
tify optimal detection sectors, improving accuracy. Us-
ing a Multichannel Acoustic Autonomous Recording Unit
(MAARU), experiments were conducted in a controlled
virtual sound environment with simulated Eurasian Blue
Tit calls under varying SNR conditions (+30dB to -30dB).
Results demonstrate a significant enhancement in species
detection accuracy compared to single-channel record-
ings, especially at low signal-to-noise ratio, with beam-
forming achieving up to 588% improvement in detection
counts at -20 dB (p < 0.0001) and consistently higher con-
fidence scores (p < 0.05). The findings highlight the po-
tential of combining multidirectional beamforming with
AI-based detection for biodiversity monitoring in chal-
lenging acoustic environments. Future work will extend
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these methods to field deployments to validate their effec-
tiveness in real-world conditions.
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1. INTRODUCTION

Passive Acoustic Monitoring (PAM) offers promising ca-
pabilities for biodiversity assessment through IoT sensors
and AI analysis [1]. However, practical implementation
faces challenges from overlapping sound sources and en-
vironmental noise [2, 3].

While autonomous recording units are increasingly
used for monitoring bird occurrences in remote areas,
multi-channel sensor devices remain uncommon due to
data size constraints and their relative novelty in eco-
logical applications [4]. Traditional single-channel sys-
tems struggle in low signal-to-noise ratio (SNR) environ-
ments, where target bird vocalisations are often obscured
by background noise, making species identification diffi-
cult without spatial information [4, 5].

Multi-channel recording systems with beamforming
techniques present an effective solution by enabling fo-
cused listening in specific directions. These techniques
can be implemented through either dynamic steering,
which continuously adjusts to sound source movements,
or static steering, which maintains fixed directional focus
points [6].

This research integrates multidirectional static steer-
ing beamforming with BirdNET, an AI-based detection
system, aiming to enhance biodiversity monitoring accu-
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racy in challenging acoustic environments with overlap-
ping sound sources and significant background noise.

2. MATERIALS AND METHODS

Figure 1. Circular microphone array configuration
with six microphones (Mic 1-6) positioned at the ver-
tices. Each microphone is positioned at an equal dis-
tance of 46.3 mm from the centre point of the array.

We used the Multichannel Acoustic Autonomous
Recording Unit (MAARU) [4,7], which integrates a Rasp-
berry Pi 3 Model B+ with a ReSpeaker 6-microphone
circular array containing omnidirectional MEMS micro-
phones (see Fig. 1) [8]. Complete instructions are avail-
able on GitHub [9]. The MAARU sampled audio at
16kHz during all experiments [10, 11].

Testing employed a Virtual Sound Environment
(VSE) with third-order Ambisonics recordings repro-
duced through a 31-loudspeaker system [12]. Our ex-
perimental scenario combined an 8-minute background
soundscape with Eurasian Blue Tit (EBT) calls (Cyanistes
caeruleus) reproduced sequentially from 31 different po-
sitions at progressively decreasing sound pressure levels
(70dB to 10dB in -10dB steps). The EBT call was se-
lected for its frequency range (3-8kHz) which aligns with
common bird vocalisations (see Fig. 2) [10].

For beamforming implementation, we measured 3D
impulse responses using time-stretched pulse signals gen-
erated from 31 spatial positions at a fixed distance of 1.5
meters. These measurements incorporated azimuth angles

Figure 2. Spectrogram of a Eurasian Blue Tit
(Cyanistes caeruleus, XC28208) call showing its dis-
tinctive frequency pattern. The characteristic high-
frequency modulations (3-8kHz) are visible between
0.5-2.5 seconds.

from 0° to 360° (40° increments) and elevations of -45°,
0°, 45°, and 90°.

Our processing pipeline employed a Butterworth
high-pass filter (500Hz cutoff) followed by an Impulse
Response-based Filter-and-Sum beamformer, using mea-
sured impulse responses as steering vectors rather than an-
alytical models. This data-driven approach captures com-
plex acoustic environment characteristics including room
reflections and array imperfections.

For automated source selection, we processed 3-
second segments independently through beamforming,
birdnetlib [13], and BirdNET-Analyzer model
v2.4 [14]. For determining successful detections, we ap-
plied a confidence score threshold of 0.4, which represents
a balance between detection sensitivity and false positive
reduction as recommended in previous ecological moni-
toring studies [15, 16]. All detection events that exceeded
this threshold were counted in our analysis of detection
performance across varying SNR conditions. Our sys-
tem automatically selects the direction yielding the high-
est BirdNET confidence score for each time segment, cre-
ating a comprehensive spatial acoustic map. For baseline
comparison, we extracted single-channel audio from the
same recordings and processed it directly with BirdNET
without beamforming.
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Figure 3. Performance comparison between mono channel recording and multidirectional beamforming for
Eurasian Blue Tit detection across decreasing SNR levels. Panel (a) shows BirdNET confidence scores (0-1
scale), while panel (b) displays the number of successful detections (out of 124 possible events). Percentage
values indicate the relative improvement of beamforming over mono channel recording. Error bars represent
standard deviation.

3. RESULTS AND DISCUSSIONS

3.1 Detection Performance Comparison

Results demonstrate a clear superiority of multidirectional
beamforming over conventional mono-channel recordings
for birdcall detection. Higher BirdNET confidence scores
were consistently achieved with the beamforming ap-
proach across various SNR levels (Fig. 3). Paired T-tests
revealed significant differences in confidence scores at all
SNR levels tested (p < 0.05), with Beamformed outper-
forming Mono Channel by 20-39% (Fig. 3). For instance,
at +30dB, Beamformed achieved a mean confidence score
of 0.9882 compared to 0.7392 for Mono Channel (t =
17.0666, p < 0.0001, ***; Fig. 3), with a large effect size
(Cohen’s d = 2.6246). This trend persisted even at lower
SNRs, such as -20dB, where Beamformed maintained a
confidence score of 0.8466 compared to 0.6107 for Mono

Channel (t = 4.3936, p = 0.0022, **; Cohen’s d = 2.0474).
It is important to note that confidence scores are not di-
rect probabilities and remain specific to the experimental
setting and Eurasian Blue Tit species [16].

Both recording approaches showed declining con-
fidence scores at extreme low SNR levels (-20dB and
-30dB), with no detections recorded at -30dB where the
birdcalls became virtually inaudible, aligning with our ex-
perimental design expectations.

3.2 Species Detection Accuracy at Varying SNR
Levels

The experimental design incorporated 124 distinct bird-
call events. At favourable SNR conditions (+30dB to
-30dB), the beamforming approach detected up to 119
calls while mono-channel recordings detected a maximum
of 109 calls (Fig. 3). Chi-square tests confirmed signifi-
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cant differences in detection rates at several SNR levels.
For example, at +30dB, Beamformed detected 119 calls
compared to 93 by Mono Channel (χ2 = 20.3092, p <
0.0001, ***; Cramer’s V = 0.2862), indicating a moderate
effect size.

A pronounced performance gap emerged at lower
SNRs. At -10dB, mono-channel detection dropped to
74 calls while beamforming maintained 111 detections
(χ2 = 27.5768, p < 0.0001, ***; Cramer’s V = 0.3335).
This disparity widened dramatically at -20dB, with beam-
forming detecting 55 calls compared to only 8 with the
mono-channel approach (χ2 = 45.0251, p < 0.0001, ***;
Cramer’s V = 0.4261), corresponding to a 588% improve-
ment in detection counts (Fig. 3). At -30dB, neither
method detected any calls, causing statistical analysis in-
feasible at this level.

These findings, supported by significance stars in Fig.
3, demonstrate the beamforming technique’s capacity to
maintain reliable detection in challenging acoustic envi-
ronments, simulating scenarios where birds are at consid-
erable distances from recording equipment.

3.3 Key Performance Trends

Analysis of the performance data reveals several impor-
tant patterns that highlight the practical advantages of
beamforming:

Increasing advantage at lower SNR levels: The
most striking trend is how the performance gap between
beamforming and mono-channel recording widens dra-
matically as SNR decreases. While beamforming shows
modest improvements (7-28%) at high SNR (+30dB to
0dB), where differences in detection counts were some-
times not statistically significant (e.g., at +20dB, χ2 =
3.3296, p = 0.0680), this advantage increases exponen-
tially at challenging SNR levels. At -10dB, beamform-
ing achieved 50% improvement in detection counts, which
surged to a remarkable 588% improvement at -20dB,
supported by a highly significant Chi-square test (χ2 =
45.0251, p < 0.0001, ***; Fig. 3).

Robustness across varying SNR conditions: Beam-
forming maintains consistently high performance (confi-
dence scores >0.94 and detection counts >110) across the
+30dB to -10dB range, while mono-channel performance
fluctuates more dramatically even at favourable SNR lev-
els. For instance,, at 0dB, Beamformed detected 117 calls
compared to 100 by Mono Channel (χ2 = 9.4378, p =
0.0021, **; Cramer’s V = 0.1951), highlighting greater
stability and reliability regardless of source distance.

Extended detection threshold: The beamforming
approach extends the practical detection threshold by ap-
proximately 10dB, maintaining useful detection capabili-
ties (55 detections) at -20dB where mono-channel record-
ing nearly fails completely (8 detections). This effectively
increases the functional detection range of the record-
ing system, as evidenced by the significant difference at
-20dB (p < 0.0001, ***).

These trends suggest beamforming’s greatest value
lies in extending reliable detection to challenging acous-
tic environments, effectively increasing monitoring range
and providing more consistent data quality regardless of
source distance in field deployments.

3.4 Limitations and Practical Considerations

The multidirectional beamforming approach faces three
primary challenges:

Computational requirements: Processing an 8-
minute recording required approximately 14 minutes (2
minutes for beamforming across 31 directions plus 12
minutes for BirdNET classification), potentially limiting
large-scale deployments.

Storage demands: The process generates 31 WAV
beamforming files (15MB each) plus a mono file (3MB)
from a single 45MB FLAC file, necessitating substantial
storage capacity for extensive field deployments.

Complex Impulse Response Characterisation Re-
quirements: An additional significant limitation is the
complexity involved in measuring impulse responses for
multichannel devices. This process requires specialised
equipment (such as precision turntables and calibrated
loudspeaker arrays), anechoic or controlled acoustic en-
vironments, and considerable technical expertise. The
full characterisation of 3D impulse responses across mul-
tiple azimuth and elevation angles is time-consuming and
must be repeated for each new recording device configura-
tion. This represents a substantial barrier to implementa-
tion compared to single-microphone deployments, which
require no such calibration procedures.

4. CONCLUSION

This study demonstrates that integrating multidirectional
beamforming with AI-based species detection signif-
icantly enhances birdcall identification in challenging
acoustic environments. Statistical analysis confirmed that
Beamformed outperformed Mono Channel across all SNR
levels, with highly significant differences in both confi-
dence scores (p < 0.05) and detection counts (p < 0.1
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at significant levels), as indicated by significance stars in
Fig. 3. Our approach maintained high detection accuracy
at SNRs as low as -20dB, far outperforming traditional
mono-channel recordings.

The methodology offers a promising framework for
developing more sophisticated PAM systems capable of
providing valuable behavioral and ecological insights
across various species. While focused on birds, the ap-
proach could be adapted for other species with vocalisa-
tion frequencies below 8kHz.

This initial study demonstrates promising results, but
several important areas require further investigation. Field
testing in real-life environments with unknown sound
source positions is essential to validate performance under
natural reverberation conditions and diverse forest sound-
scapes. A more comprehensive analysis examining how
beamforming affects other ecological metrics beyond sim-
ple detection is also needed. Additionally, deeper analy-
sis of how detection performance varies with source loca-
tion could provide valuable insights for optimizing array
designs. Parallel to these ecological validations, optimis-
ing the computational efficiency of the BirdNET classifi-
cation process would enhance the practical applicability
of this method for large-scale monitoring. These exten-
sions would strengthen the ecological applications of the
multidirectional beamforming approach and better quan-
tify its advantages over conventional recording methods
across diverse monitoring scenarios.
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Z. Buřivalová, “Global analysis of acoustic frequency
characteristics in birds,” Proc. of the Royal Society
B: Biological Sciences, vol. 291, p. 20241908, Nov.
2024.

201



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

[11] N. P. Le Penru, B. E. Heath, J. Dunning, L. Picinali,
R. M. Ewers, and S. S. Sethi, “Towards using virtual
acoustics for evaluating spatial ecoacoustic monitor-
ing technologies,” Methods in Ecology and Evolution,
vol. 16, no. 1, pp. 108–125, 2025.

[12] D. G. Malham and A. Myatt, “3-D Sound Spatializa-
tion using Ambisonic Techniques,” Computer Music
Journal, vol. 19, no. 4, pp. 58–70, 1995.

[13] J. Weiss, “Birdnetlib v0.18.0 documentation.”
https://joeweiss.github.io/birdnetlib/, 2025.

[14] S. Kahl, C. M. Wood, M. Eibl, and H. Klinck,
“BirdNET: A deep learning solution for avian di-
versity monitoring,” Ecological Informatics, vol. 61,
p. 101236, Mar. 2021.

[15] D. Funosas, L. Barbaro, L. Schillé, A. Elger,
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