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ABSTRACT

Long-term noise monitoring is essential to ensure compli-
ance with regulations. This process requires the removal
of spurious sounds unrelated to the target source or to the
typical soundscape of the monitored area. Traditionally,
such tasks relied on manual labelling by operators, but
recent advancements in data-driven methodologies high-
light that it is time to automate the process using cutting-
edge machine learning techniques. Pre-trained models,
widely available in literature, are trained on extensive
datasets covering numerous classes and serve as a foun-
dation for developing specialized machine learning mod-
els fine-tuned for specific tasks or subsets of classes. This
study presents a Transfer Learning approach to leverage
the knowledge of the Contrastive Language-Audio Pre-
training (CLAP) model for a classification task focused
on a subset of its original classes. Although the CLAP
model has demonstrated adaptability across a broad range
of classes with good results, the findings of this study sug-
gest that the application of Transfer Learning can enhance
classification accuracy for the selected subset of environ-
mental sound classes.
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1. INTRODUCTION

The evaluation of noise sources is essential for monitor-
ing and mitigation of environmental noise levels in or-
der to protect public health [1]. The primary contrib-
utors to environmental noise typically include road traf-
fic [2–4], railways [5,6], airports [7], and industrial activi-
ties [8]. In real monitoring scenarios, however, in addition
to the noise originating from the target source, a substan-
tial number of unintended or anomalous events, referred
to as spurious sounds, is also collected. In this context,
accurately attributing the correct amount of responsibility
to each source is crucial. Consequently, the identification
and subsequent exclusion of spurious events from mea-
surements becomes a key task. At present, this process
is generally performed by acoustic experts through visual
inspection of time histories and spectral representations.
While effective in some cases, this method is highly time-
consuming and susceptible to human error. These limita-
tions are particularly evident in the case of wind turbine
noise, where long-term measurements are necessary. To
address these challenges, it can be useful to adopt new
data-driven methodologies, capable of efficiently process-
ing large volumes of data. In this regard, machine learn-
ing and deep learning offer promising potential to enhance
and accelerate the detection of spurious events. The spe-
cific name of the task just described is Sound Event De-
tection (SED), which aims not only to identify the class of
the event but also to determine its onset and offset within
a longer audio recording. In this article, we address a pre-
liminary step to this task, commonly referred to as Sound
Event Classification (SEC), where audio segments are pre-
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trimmed to contain only the sound event to be classified.
This classification step serves as a foundation for building
a model capable of accurately recognizing sound classes,
which can then be integrated into a more complex pipeline
to perform event detection.

One of the main difficulties related to this task lies
in the highly heterogeneous nature of these anomalous
occurrences, which makes their identification very com-
plex. The principal categories of identifiable sources in-
clude anthropogenic sounds, transportation infrastructure
noise, natural and animal-generated sounds, agricultural
machinery, and industrial operations. Nevertheless, even
this macro-level classification does not fully capture the
variability found within individual categories, highlight-
ing the need for adaptable classification approaches. The
traditional strategy for addressing these tasks involves de-
signing a neural network architecture and training it from
scratch to differentiate among a fixed set of predefined
target classes. While this method is effective in scenar-
ios with a limited scope, it lacks generalization capabil-
ity. Specifically, if the initial set of target classes were
to be extended, the model would require complete re-
training to accommodate the new classes. Moreover, in
order to achieve good classification performance, espe-
cially on heterogeneous and complex datasets such as in
this case, it is necessary to train the neural network on
a very large amount of data. This ensures that the model
can learn a comprehensive representation of the wide vari-
ability in data and scenarios it will be required to recog-
nize. To address the need for a solution that is both adapt-
able to diverse contexts and trained on sufficiently varied
data, the use of pre-trained models has recently become
widespread. Pre-trained models already possess knowl-
edge of the general features typical of the task they were
designed for, such as image recognition, natural language
processing, or audio classification. They can be used ei-
ther directly or as a starting point to develop specialized
models tailored to a specific set of classes or more tar-
geted tasks. In this context, the Contrastive Language-
Audio Pretraining (CLAP) [9, 10] model has been devel-
oped. It is a deep learning model designed to learn joint
representations of audio and text. In order to achieve
this, CLAP transforms both an audio measurements and
its corresponding textual description into vectors of the
same dimension, called embeddings. During training,
the model pulls the embeddings of matching audio-text
pairs closer together, while pushing apart those of unre-
lated pairs. This contrastive learning enables the model
to capture semantic relationships, organizing the embed-

ding space so that similar sounds and descriptions are near
each other. To reinforce the selection of this model, it is
worth mentioning that in [11] it has been demonstrated
that, on a subset of five classes extracted from the ESC-50
dataset [12], the performances achieved using embeddings
extracted by CLAP overcome the performances obtained
using the classic features Mel-Frequency Cepstral Coef-
ficients and Gammatone Frequency Cepstral Coefficients,
both in clustering and classification task.

A more detailed description of the CLAP model will
be provided in Section 2, along with an explanation of the
transfer learning approach adopted in this study. Subse-
quently, in Section 3 the preliminary outcomes obtained
with the fine-tuned model will be presented and compared
with the results of the original CLAP model on the same
dataset. Finally, Section 4 will briefly analyze these re-
sults and outline the main conclusions.

2. METHODOLOGY

2.1 CLAP model

The CLAP model consists of an audio encoder and a text
encoder, designed to extract two embeddings of equal di-
mensionality d from the audio measurement and its corre-
sponding textual description, respectively. The audio en-
coder is based on a Transformer architecture named Hier-
archical Token-Semantic Audio Transformer (HTS-AT),
introduced in [13]. The goal of CLAP is to compare these
embeddings and optimize the representation space such
that audio and text embeddings with similar semantic con-
tent are pulled closer together, while those with differing
semantics are pushed farther apart. Analyzing the struc-
ture of the model in detail, the input of the audio encoder
is the Mel-Spectrogram of the audio, that is the spectro-
gram computed using the Mel scale, designed to mimic
human auditory perception, which is nonlinear. This scale
converts frequencies so that equal distances on the scale
correspond to equally perceived differences in sound, with
greater sensitivity to lower frequencies and less to higher
ones. The structure of CLAP model is depicted in Figures
1 and 2.

The Mel-Spectrogram of dimensions (T, F ), where
T is the temporal dimension and F is the number of
frequency bins, is cut into different patches of dimen-
sions (P × P ), as it can be seen in Figure 1. Each el-
ement of the sequence is then passed to a module com-
posed by a Convolutional Neural Network (CNN), to be
transformed transformed in a so-called token of dimen-
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Figure 1. Mel-spectrogram encoding as input for
HTS-AT. Architecture and Figure have been pre-
sented in [13].

Figure 2. Sequence of SWIN Transformers and
Patch-Merge in HTS-AT. Architecture and Figure
have been presented in [13].

sions (1, D). Then, all the tokens are arranged in a sin-
gle structure of dimensions

(
T
P × F

P , D
)

where T
P × F

P is
the number of tokens. The tokens are then fed into a se-
quence of transformer-encoder groups, as shown in Fig-
ure 2. The transformer architecture differs from previous
models used in sequence analysis, like recurrent neural
networks (RNNs) and long short-term memory networks
(LSTMs), as it doesn’t rely on recurrent structures. In-
stead, it uses a self-attention mechanism to dynamically
adjust the relevance of different tokens based on their con-
textual dependencies, allowing the model to focus on the
most relevant parts of the sequence and capture complex
relationships within the data. After the Transformer, the
patch-merge module is applied to decrease the number of
patches and increase the dimension in the latent space,

combining adjacent patches. This procedure is repeated
sequentially for other groups of transformer-merger, un-
til the ith audio is transformed into the embedding Ei

a of
dimension d = 1024. By means of an encoder also every
textual descriptions is transformed into a d-dimensional
embedding Ei

t . Assuming to have N pairs of audio and
text, it is possible to arrange the embeddings into two
matrices Ea and Et ∈ RN×d. The audio and text em-
beddings obtained through this procedure are then used to
compute a similarity measurement, namely a scalar prod-
uct between the vectors as an estimate of their distance in
the hyperspace created by the model. The similarity ma-
trix is equal to

SIM = τ(Et · E⊤
a ) , (1)

where τ is a scaling factor. The matrix contains the
similarity between N matching pairs in the diagonal and
between N2 − N non-matching pairs off-diagonal. The
goal of the training stage is to bring closer matching pairs
and separate non-matching ones. The loss function is
therefore designed so that, by minimizing it, the similar-
ity between matching pairs (i.e., along the diagonal) is in-
creased, while the similarity between non-matching pairs
(i.e., off-diagonal elements) is decreased. The two loss
functions ℓtext and ℓaudio are equal to

ℓ = − 1

N

N∑
i=0

log diag(softmax(SIM)) . (2)

The terms of the matrix softmax(SIM) can be inter-
preted as the probability of matching between the corre-
sponding audio-text pairs. The total loss is equal to:

L = 0.5(ℓtext + ℓaudio) . (3)

In the latent hyperspace of the model, minimizing this
loss function results in bringing closer audio and text em-
beddings concerning the same semantic area.

2.2 Transfer learning

The CLAP model, once trained, generates a latent space
where elements are arranged based on their semantic rela-
tionships. This structure allows the model to be used for
classification tasks without additional training. To clas-
sify a new sound using the original model, a set of candi-
date class labels must be provided. Since the pre-training

2291



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

objective was to align audio and text embeddings that re-
fer to the same concept, the model performs classifica-
tion by evaluating the similarity between these embed-
dings. Specifically, it computes the similarity score be-
tween the audio embedding and each of the class label
embeddings, selecting the class with the highest score as
the predicted output. Directly employing the pre-trained
model for classification offers clear advantages, including
its ability to recognize a vast range of classes. However,
performance on an arbitrary set of classes is not guaran-
teed to be optimal. Since the goal of this work is not to
ensure applicability to an unlimited set of categories, but
rather to achieve high performance on a well-defined sub-
set, a transfer learning strategy was adopted. The idea is to
leverage the robust foundational knowledge of the CLAP
model and fine-tune it to specialize in the selected sub-
set of classes. The goal is to enhance accuracy within a
limited set of sound classes, compared to the broader but
less specialized performance of the original model. To
achieve this, only the initial portion of the CLAP architec-
ture, specifically the component responsible for embed-
ding extraction, was retained. A new linear layer was then
trained to project the resulting embeddings of dimension
d = 1024 into a lower-dimensional space corresponding
to the number of target classes of dimension nclasses = 21.
Each output value from this layer represents the predicted
likelihood that the input sound belongs to one of the pre-
defined categories. The linear transformation applied by
the layer to map the input x into the output y is equal to:

y = xW⊤ + b , (4)

where W and b are the learnable weights and bias of
the layer, of dimension (nclasses, d) and (nclasses) respec-
tively.

2.3 Dataset

The dataset was constructed using both measurements col-
lected online, primarily from the website freesound.org
[14], and those recorded by the authors. The classes
were selected based on the authors’ experience with mon-
itoring measurements, primarily conducted in non-urban
or sparsely populated areas with some human presence.
The classes belong to five main categories: anthropogenic
sounds, transportation infrastructure noise, natural and
animal-generated sounds, agricultural machinery, and in-
dustrial operations. The chosen classes are 21, and they
are reported in Table 1. It has been observed that vary-
ing the segment lengths within the same dataset during

classification can result in different accuracy outcomes.
Consequently, multiple versions of the dataset were cre-
ated, with measurements segmented into durations rang-
ing from 1 to 10 seconds in 1-second increments. For
each dataset version, four distinct sets were constructed:
the training set, the validation set, the early stopping set,
and the test set. The early stopping set is essential to pre-
vent overfitting, as training is stopped when the accuracy
on the early stopping set does not improve for 10 consec-
utive epochs. Each dataset version consisted of 500, 100,
100, and 100 measurements for the training, validation,
early stopping, and test sets, respectively. In cases where
the total duration of the dataset for a given segment length
was insufficient to meet these numbers, data augmentation
was applied through the addition of gaussian noise.

Table 1. Classes of sounds chosen for the dataset.
Classes of Sounds

Airplane Bells
Birds Cats
Chicken coop Cicadas and crickets
Clacson Crows and seagulls
Dogs Glass breaking
Helicopter Lawn mower and

brush cutter
Music Sirens and alarms
Thunder, fireworks
and gunshot

Train

Vacuum cleaner, fan
and hairdryer

Vehicle idling

Vehicle pass-by Voices
Workshop

3. RESULTS

In this Section the results obtained using directly the pre-
trained model are compared with the results obtained with
the fine-tuned model. The length of the measurement in
seconds plays a crucial role in classification performance.
It has been observed that varying the lengths of the seg-
ments from the same dataset during classification can lead
to different accuracy results. This variation is likely due
to the structural differences in the spectrograms. To accu-
rately capture recurring patterns in a sound’s spectrogram,
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a minimum duration may be required. Hyperparameters
were tested with lengths ranging from 1 to 10 seconds, in
1-second increments. Table 2 shows the accuracy and loss
of the original pre-trained model on the validation set, de-
pending on the length of the input audio. Various exper-
iments were then conducted using the fine-tuned model,
with different hyperparameters adjusted during training.
The best result is reported in Table 3.

Table 2. Accuracy and Loss results of the original
CLAP model on the validation set at varying of the
audio length hyperparameter.

Audio length Accuracy Loss
4 s 72.93 % 2.83
7 s 72.89 % 2.82
8 s 70.55 % 2.83
3 s 70.23 % 2.82
9 s 69.49 % 2.83
10 s 69.35 % 2.83
5 s 68.32 % 2.83
6 s 66.81 % 2.83
2 s 64.02 % 2.84
1 s 60.42 % 2.86

Table 3. Accuracy and Loss result of the fine-tuned
model.

Audio length Accuracy Loss
4 s 91.83 % 0.28

4. DISCUSSION AND CONCLUSIONS

This study presents the Contrastive Language-Audio Pre-
training (CLAP) model, which integrates inputs from dif-
ferent domains into a shared space where their vector
representations can be compared and manipulated. The
model was fine-tuned using a Transfer Learning approach
to perform Sound Event Classification (SEC) on a specific
dataset, focusing on key environmental sources relevant to
noise monitoring. A linear layer was applied to the sound

embeddings generated by the original model to adapt it for
the classification task. The results demonstrate a signifi-
cant improvement in accuracy, increasing from 72.93 %
(the best performance achieved by the original model) to
91.83 % (the best performance achieved by the fine-tuned
model) on the validation set. These findings highlight
the effectiveness of the fine-tuned model in the classifi-
cation task, showing a substantial performance gain over
the original model. Further analysis and exploration of
additional fine-tuning strategies are warranted to continue
improving these results. The next step in this research
will involve incorporating the fine-tuned model into a de-
tection pipeline for Sound Event Detection (SED), which
is the ultimate objective in real-world scenarios.
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