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ABSTRACT

In acoustic imaging, the need for a high spatial resolu-
tion requires the deployment of arrays comprising a sub-
stantial number of microphones. The topographical re-
port of each sensor constitutes a laborious process prone
to imprecisions. Over the past two decades, there has
been a surge of interest in geometrical calibration meth-
ods based on the estimation of acoustic time-of-flights
(TOF). In 2019, Vanwynsberghe et al. presented nu-
merical and experimental tests demonstrating the higher
precision of their Robust MultiDimensional Unfolding
(RMDU) algorithm compared to the state-of-the-art meth-
ods. However, they report experimental root-mean-square
errors (RMSE) of 2 cm, which limits the usable band of
microphone arrays to frequencies below a few thousand
Hertz. The present study shows that locally oversampling
the cross-correlation functions significantly enhances the
TOF estimation. The framework is tested on a surround-
ing 3.6 m-diameter quasi-spherical array of 960 micro-
phones installed in an anechoical room. The comparison
of a subset of estimated positions with high-precision op-
tical reference measurements results in a RMSE of 0.75
cm. Numerical simulations in similar experimental con-
ditions yield a maximum RMSE of 0.2 cm. This differ-
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ence is partly explained by the discrepancy between the
reported position of the microphones and the position of
their acoustic center.
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1. INTRODUCTION

In more and more microphone array applications, the need
for a high spatial sampling resolution can demand the de-
ployment of hundreds, of microphones. If not unfeasible,
the report by hand of the microphone position is cumber-
some and subject to imprecisions. Since twenty years and
the pionneering work from Birchfield [1], a handful of
methods have been proposed to estimate the location of
microphones based on acoustic measurements. The sig-
nal processing framework that allows to retrieve positions
from audio recordings can be divided into two steps.

First, Propagation Delays (PDs) are estimated from
measured acoustic signals. The PD estimation step of a
geometric calibration experiment is usually done by com-
puting a correlation function between source and micro-
phones or between pairs of microphones, and by find-
ing the peaks of this correlation function. Depending
on the involved geometric calibration method, the delays
of interest can be Time Of Flights (TOF) between the
sources at different positions and array sensors, or Time
Differences Of Arrival (TDOA) between the sensors that
constitute the array. In a TOF-based calibration frame-
works, NsrcNmic source-microphone PDs have to be es-
timated (where Nsrc and Nmic are respectively the num-
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ber of sources and microphones), while a TDOA-based
framework demands the computation of N2

mic PDs. To
the knowledge of the authors, most experimental stud-
ies in the literature make use of less than 30 sources.
The present work focuses on the geometrical calibration
of arrays of several hundreds of microphones. In order
to lighten the PD computation step case, the choice of a
TOF-framework is therefore made.

The second step of the geometrical calibration frame-
works consists in mapping source-microphone TOFs into
source and microphone positions. This is generally done
by minimizing the difference between the reconstructed
source and microphone positions (xsrc

s )s∈[0,...,Nsrc] ∈
(R3)Nsrc and (xmic

s )m∈[0,...,Nmic] ∈ (R3)Nmic and the dis-
tances (δsm)(s,m)∈[0,...,Nsrc]×[0,...,Nmic] inferred from the
estimated TOFs (τsm)(s,m)∈[0,...,Nsrc]×[0,...,Nmic] (δsm =
c0τsm with c0 the speed of sound)

LMDU(X
mic,Xsrc) =

Nsrc∑
s=1

Nmic∑
m=1

(
δsm − ||xmic

m − xsrc
s ||2

)2
.

(1)
Minimizing the cost function in Eq. (1) is referred in the
literature as Multi Dimensional Unfolding [2, 3]. Several
methods have been proposed for solving the MDU prob-
lem, either by use of an iterative algorithm (e.g. the FrSM
method from Ref. [4]), or of a closed-form solution (C-
CF and L-CF in respectively Refs. [5] and [6]). A pos-
sible drawback of a nonlinear least-squares cost function
such as the one in Eq. (1) is its sensitivity to outliers. In
fact, the TOFs computed in the first step of the geometrical
calibration experiment correspond to source-microphone
distances only if the corresponding peak identified in the
GCC function corresponds to the incident propagation
path. In the case where unwanted reflections happened
during the acquisition of acoustic signals, the TOF estima-
tion is subject to lead to TOF outliers. To cope with this
issue, Vanwynsberghe et al. [7] propose the Robust Multi
Dimensional Unfolding (RMDU) algorithm. In RMDU,
potential outliers are identified together with the source
and microphone positions. Ref. [7] compares the perfor-
mance of the RMDU algorithm with state-of-the-art meth-
ods in numerical simulations. RMDU is shown to lead
to the best performance with a RMS positioning error of
about 2mm when 1% of outliers contaminate the TOF
population. Nevertheless, a real-life experiment presented
in Ref. [7] evidences an error positioning an order of mag-
nitude (2 cm) above the one obtained in numerical simu-
lations. For comparison, Ref. [8] has shown that a RMS
uncertainty of 5mm in sensor positioning significantly re-

duces the usable frequency band of the microphone array
when reconstructing the directivity of a sound source.

In the present study, an effort is made to reduce the ef-
fect of different sources of TOF bias on the performance
of the RMDU algorithm. Sec. 2 shows that oversam-
pling the GCC function can improve the TOF estimation
in cases where the measurement noise level is reasonably
low, and that the outlier-rejecting property of the RMDU
algorithm should enable to handle the TOF outliers ob-
tained in case of higher noise levels. Sec. 3 presents
the results of the geometrical calibration of a surround-
ing 3.6m-diameter quasi-spherical array of 960 MEMS
microphones. Finally, Sec. 4 concludes this study.

2. GEOMETRICAL CALIBRATION METHOD

2.1 TOF estimation

2.1.1 The generalized cross-correlation function

The estimation of source-microphone TOFs demands the
prior computation of a correlation function between the
signal sent to source and the signal recorded by micro-
phone. The Generalized Cross-Correlation (GCC) func-
tion between two time signals x and y writes [9]

rxy(τ) =

∫
R
Ψ(f)Sxy(f)e

jπfτdf , (2)

where Sxy is the cross-spectrum between x and y, and Ψ
is an appropriately chosen frequency weight function. In
this work, and as in numerous study on the geometric cal-
ibration of microphones (see, e.g., Refs. [4, 7]) the choice
of the so-called PHAse Transform (PHAT) weight func-

tion Ψ(f) =
1

|Sxy(f)|
is made. In the case where x and y

are signals observed at two different positions due to the
propagation of a wave in space, rxy should present a peak
at the delay corresponding to the propagation distance be-
tween the two corresponding points in space.

2.1.2 Estimating propagation delays from the GCC

Ref. [7] emphasizes that acoustic propagation paths be-
tween a sound source and a microphone can be such that
the incident wave can appear as a weaker peak than the
one associated to a reflected wave in the GCC function.
Figure 1 shows an example of GCC function where the
contributions from different reflected paths arrive in phase
on the sensor of interest, leading to a higher peak than the
peak associated to the incident path. This example shows
that, in presence of reflections, identifying the delay where
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the GCC function is maximal can lead to a wrong TOF
estimate. However, the contribution that propagates via
the incident path will always appear prior to the contri-
bution that arises from reflections. Based on this obser-
vation, the approach depicted in Fig. 1 is proposed and
used in the remaining of this chapter. Firstly, The maxi-
mum value of the GCC function is identified (peak arising
at 0.5m and corresponding to contributions from the re-
flected path in Fig. 1). The peaks of the GCC functions
are sought for in a time window centered on the maximal
peak of the GCC function. This window has a duration
equivalent to an equivalent maximal difference in propa-
gation distance Lmax (Lmax =0.5m in Fig. 1). A threshold
value η (η = 0.5 in the remaining of this study) is de-
fined, and a peak in the GCC is defined as a sample whose
value is higher than a fraction η of the GCC’s maximal
value (dashed green horizontal line), and whose two near-
est samples present lower values than the present sample.
In Fig. 1, only two peaks are identified : the contribution
of the incident path at 0.4m, and the contribution of the
reflected paths at 0.5m. From the identified peaks in the
GCC, the earliest one is deemed to be the incident peak.
The corresponding TOF is identified.

0.0 0.2 0.4 0.6 0.8 1.0
c0τ (m)

0.0

0.2

0.4

0.6

0.8
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Figure 1: Shape of the GCC function (blue curve)
between a source signal and a microphone signal
when contributions coming from several reflected
paths arrive in phase. In the case presented here,
the contribution from reflected paths is higher than
the incident contribution. To overcome this issue,
the first GCC peak whose amplitude is higher than
a fraction η = 0.5 of the maximum GCC peak is
sought for.

2.1.3 Oversampling the GCC function

The temporal resolution 1/Fs (where Fs is the sampling
frequency) of the signals used to compute the GCC func-
tion introduces a stochastic bias that follows a uniform
distribution on the interval [−Fs/2, Fs/2] in the TOF es-
timation process. To reduce the impact of this bias, we
propose to locally over-sample the GCC function in the
time interval where the TOF is sought for.

In the particular case shown in Fig. 2 (a), the theoreti-
cal peak of the GCC should be observed at c0(τ − τref) =
0. The maximal sample of the observed raw GCC func-
tion - whose abscissa is indicated as a solid blue line - is
located at an equivalent distance of about 2.5mm from the
theoretical peak. The oversampled GCC (dashed line and
circles) presents a maximum at an abscissa (light green
dashed vertical line) less than approximately 1mm close
to the theoretical peak. In this case, oversampling the
GCC by a factor 2 therefore allows to divide the error on
estimated TOF by more than 2.

The approach described in the last paragraphs
presents limitations in presence of sensor noise. Fig-
ure 2 (b) shows a particular case where the sensor noise
level is acceptable, and where the overall shape of the
GCC function is preserved. Even in cases where the sen-
sor’s SNR is reasonable, noise can accentuate some side
lobes of the GCC function. In Fig. 2 (b), the side lobe
appearing prior to the main GCC lobe at an equivalent
propagation distance of 4 cm has an amplitude higher than
the peak detecion threshold η = 0.5 that was defined in
Sec. 2.1.2 to enhance the robustness of the peak detection
method to reflections. This phenomenon leads to TOF es-
timation errors of the same order as the extent of the time-
window in which the incident peak is sought for. Fig-
ure 2 (c) shows another example, where the noise level at
a particular sensor is extreme. In this case, the incident
peak of the GCC is drown into noise, and the maximum
peak can appear randomly over the whole extent of the
GCC function. In the case depicted in Fig. 2 (c), an equiv-
alent distance error of a few tens of centimeters is made
in the TOF estimation. In the cases depicted in Figs. 2 (b)
and (c), oversampling the GCC does not improve the TOF
estimation.

2.2 Reconstructing microphone positions

2.2.1 The RMDU algorithm

In their work, Vanwynsberghe et al. [7] propose the Ro-
bust Multi Dimensional Unfolding (RMDU) algorithm.
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Figure 2: (a) : illustration of the potential benefits
of the GCC oversampling approach. (b) and (c) :
Cases where measurement noise comes to bias the
GCC function, and where oversampling does not im-
prove the TOF estimation.

Their approach consists in finding matrices of source and
microphone positions Xmic = [xmic

m ] ∈ R3×Nmic and
Xsrc = [xsrc

m ] ∈ R3×Nsrc , and of outlier errors O =
[osm](s,m)∈[0,Nsrc−1]×[0,Nsrc−1] that minimize the following
cost function

LRMDU(O,Xmic,Xsrc) =

Nsrc∑
s=1

Nmic∑
m=1

(
δsm − ||xmic

m − xsrc
s ||2 − osm

)2
+ λ||O||1.

(3)

The terms osm model large errors due to TOA outliers.
The ℓ1 regularization term in Eq. 3 ensures sparsity in the
matrix of outlier errors.

The cost function in Eq. (3) is minimized in terms of
its parameters using an iterative framework. Each iteration
n of RMDU implies a soft-thresholding step (sgn is the
sign operator)

o(n+1)
sm = Sλ(δsm − ||xmic,(n)

m − xsrc,(n)
s ||2), where (4)

Sλ(u) = sgn(u)(|u| − λ/2) if |u| > λ/2, else 0. (5)

The soft-thresholding operator Sλ in Eq. (4) shrinks the
absolute values of distance errors larger than a threshold
λ/2, and vanishes for errors lower than λ/2. λ/2 is thus
to be understood as the minimal error for which a TOA
will be deemed outlier.

2.2.2 Performance of the MDU and RMDU frameworks

In Ref. [4] (resp. [10]), Khanal et al. (resp. Le et al.) re-
port on experimental Root-Mean-Square (RMS) position-
ing errors of 1 cm for the FrSM algorithm (resp. 4 cm to
5 cm for C-CF and L-CF). In Ref. [7], the performance
of the RMDU algorithm is compared with the one of
the FrSM method in numerical simulations. RMDU is
shown to outperform FrSM with a RMS positioning er-
ror of about 2mm when 1% of outliers contaminate the
TOF population (RMS error of 6 cm for FrSM). A real-life
experiment presented in Ref. [7] yields an RMS error of
2 cm. The mismatch of an order of magnitude between the
simulated and experimental performances of RMDU evi-
dences that some sources of uncertainty lack in the sim-
ulations from Ref. [7]. Moreover, the advertised experi-
mental error is comparable to the acoustic wavelength in
audible applications, which limitates the bandwidth of the
calibrated array.

2.2.3 Proposed use of the algorithm

Sec. 2.1.3 has shown that, in noisy environments, the inci-
dent peak of the GCC function can be drown into noisy
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components. In such case, the TOF estimation can be
significantly impacted, leading to outliers in the source-
microphone TOF matrix. Originally designed for the ge-
ometric calibration of microphone arrays in mismatched
free-field, the RMDU algorithm can in fact detect out-
liers of any nature in the TOF matrix. The parameter λ
in the RMDU algorithm controls the level of TOF error
from which a source-microphone pair is considered to be
an outlier. For a high value of λ, no outlier will be sought
for, and the RMDU problem reduces to classical MDU. In
this particular case, the outlier term in the cost function
of the RMDU algorithm Eq. (3) is forced to vanish, and
the RMDU algorithm reduces to a differentiable simple
least-squares problem. For lower values of λ, RMDU al-
low more outliers to exist in the solution. In this case, the
outlier term in the cost function is not null anymore, and
the optimization problem behind RMDU is not differen-
tiable. To be able to detect outliers, our use of the RMDU
algorithm is the following

1. Initialize the microphone positions randomly on a
sphere of same radius as the array to be calibrated,
and the source positions at the positions where they
are expected to be.

2. Use the RMDU algorithm with a parameter λ
larger than the duration of the GCC function. In
these conditions, and at each iteration, the soft-
thresholding step of the RMDU algorithm (Eq. (4))
detects no outlier in the solution. The RMDU cost
function in Eq. (3) converges more easily to a min-
imum, even with a coarse initialization. At this
stage, most microphone positions are correctly es-
timated, but the RMDU algorithm is not able to de-
tect the TOF outliers. The corresponding estimated
microphone positions highly deviate from their true
values.

3. Use the result of the first RMDU trial to initialize
a second RMDU trial, using a lower value of λ. In
these conditions, the optimization problem is not
differentiable and will converge less quickly. How-
ever, if the solution of the first trial is close enough
to the true solution for most sources and micro-
phones, the second RMDU trial can be expected
to lead to a consistent solution.

Figure 2 (a) highlights the fact that the maximal error
made in the TOF estimation under ideal conditions is the
half-distance 1/(2Fs) between two time samples. In the
RMDU algorithm, a source-microphone pair is deemed

outlier if the estimated distance TOF for this pair deviates
more than λ/2 from the estimated sensor and microphone
positions at iteration n. An adequate parameter λ for the
second RMDU run should thus be of the order of magni-
tude of the sound propagation distance equivalent to the
distance between two time samples

λ ≈ c0
Fs

. (6)

3. EXPERIMENTAL VALIDATION

3.1 Setup

3.1.1 Disposition of microphones and sources

Figure 3 depicts the setup used in the experiment. The
array consists in 960 MEMS microphones placed on a
spheroidal structure of radius 1.8m and is located in an
anechoical room. Nine sources are disposed around and
inside the array. One of the sources is approximately
placed at the center of the array. The remaining eight
sources are distributed at a diversity of positions outside
the array. The temperature of the room was reported to
TC =22.9 ◦C during the experiment, which gives a speed

of sound c0 =

√
γRTK

M
= 345m/s,.

Figure 3: Picture of the experimental setup for the
geometric calibration of a microphone array.

3.1.2 Reference geometric measurements

Prior to the geometric calibration experiment, a total sta-
tion shown in Fig. 4 was used. This optical device allows
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Figure 4: Picture of the total station in front of the
array to be calibrated.

to manually report the relative positions of points in space
by sequentially targetting these points with the help of an
optical viewfinder. Due to the cumbersomeness of the to-
tal station report, only 25 MEMS microphone positions
were measured. Moreover, two of the reported positions
deviate by more than a meter from their expected posi-
tions. These points are eliminated from the report.

3.2 Signal recording and processing

3.2.1 Acquisition system

The 9 sound sources shown in Fig. 3 sequentially played
a calibration signal. Both the signal sent to each source
and the signals of the 960 MEMS microphones compos-
ing the array were recorded using the Megamicros ac-
quisition system [7]. A sampling frequency of 50 kHz
was used. A preliminar acoustic calibration of the micro-
phone array brought to light a source-microphone delay of
Ndelay =8 samples in the acquisition system. Numerical
simulations that are not presented here for the sake of con-
cision showed that introducing such a delay in the RMDU
algorithm can lead to RMS positioning errors of several
centimeters. This delay was thus compensated for in the
acquired signals before the GCC computation.

3.2.2 Signal synthesis and processing

The calibration signal sent to the source was a Synchro-
nized Swept-Sine signal [11] of duration 30 s, sampled
at 50 kHz and spanning the frequency range 100Hz to
10 000Hz. First, transfer functions between the theoret-
ical expression of the calibration signal and the source

and microphone recorded signals are computed using the
method described in [11]. This allows to get rid of
the non-linear contributions introduced by the calibration
sources. The linear transfer functions between the theo-
retical swept-sine signal and the source and microphone
recordings are used to compute the GCC (Eq. (2)).

3.2.3 Parameter of the TOF estimation and position
reconstruction

The GCC is locally oversampled at a virtual sampling fre-
quency of 500 kHz. The first trial of the RMDU algo-
rithm is performed with an outlier threshold λ = 50m. In
this trial, the RMDU algorithm is initialized using approx-
imate positions of the microphone bars on the spheroidal
structure. The parameter λ used in the second RMDU trial
is fixed to λ =5mm, according to Eq. (6).

3.3 Results

3.3.1 Estimated source and microphone positions

Fig. 5 (a) shows the source and microphone positions es-
timated with the proposed geometric calibration strategy.
The 9 estimated source positions are depicted as big dark
blue dots. One of them is approximately located at the
center of the array. Four of them are retrieved around the
array at the floor level. The remaining four are retrieved
around the array at the equator level. This qualitatively
corresponds to the true source positions seen on the pic-
ture of the experimental setup shown in Fig. 3. As in the
true disposition of sensors in Fig. 3, the 960 estimated mi-
crophone positions are qualitatively aligned by groups of
eight. The average distance between the estimated micro-
phone position and the centroı̈d of the set of positions is
of 1.72m. The true radius of the outer spheroidal surface
in the experimental setup shown in Fig. 3 is 1.8m. In
practice, the microphones are placed inside this stucture,
which explains the 8 cm lower average distance to center.

3.3.2 Cumulative density histogram

Figure 5 (b) shows the cumulative density histogram of
the error between the 23 valid total station measurements
and the corresponding positions estimated with the pro-
posed geometric calibration strategy. More than 80% (19
microphones) of the errors are smaller than 9mm, and the
remaining microphones (4microphones) present errors in
the range 1 cm to 1.5 cm.
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3.3.3 RMS and standard deviation of the estimation
error

Figure 5 (b) indicates the RMS and standard deviation
of the distances between the positions of the microphone
measured with the total station and the ones reconstructed
with the geometric calibration strategy. The RMS error
is of 7.6mm. The RMS ± one standard deviation of this
error is represented as dashed green vertical lines. The
standard deviation of the error population is of 3.4mm.

3.3.4 Bias in the microphone position estimation

According to the bias-variance decomposition of the RMS
error [12], the bias between the total station measurements
and the positions reconstructed with RMDU is

bias(ϵmic
X ) =

√
RMS(ϵmic

m )2 − std(ϵmic
m )2 = 6.8mm.

(7)
The RMS deviation between the estimated microphone
positions and the ones measured using the total station is
therefore dominated by its bias contribution. In fact, the
microphone positions estimated with T(D)OA-based ge-
ometric calibration methods correspond to the positions
of their equivalent acoustic centers (commonly defined
[13] as ’the point from which spherical wavefronts ap-
pear to diverge’ if these microphones were used as sound
sources). At low frequencies where the acoustic wave-
length is higher than the characteristic dimension of the
sensor of interest, this acoustic center is expected to be lo-
cated in front of the sensor’s baffle [13]. As an example,
the low-frequency acoustic center of a point source on a
spherical baffle of radius a is located about a/2 in front
of the baffle. The MEMS microphones that were used to
build the array calibrated in this section are baffled by a
rectangular plate of about 5× 10 mm. Their acoustic cen-
ter can thus be expected to be located a few millimeters
in front of the MEMS microphone’s port that was targeted
in the total station measurements. This partly explains the
high bias observed between the total station measurements
and the estimated microphone positions.

3.3.5 Note on the position alignement

Comparing the total station measurements with the esti-
mated microphone positions demands a prior alignment
step, which was done using Procrustes analysis [14]. The
last paragraph showed that there is an instrisic bias be-
tween the geometric measurements and the microphone
positions retrieved with a T(D)OA-based geometric cal-
ibration method. Trying to align these positions can in-

troduce additional bias and variance contributions in the
RMS error between the estimated microphone positions
and the total station measurements.

4. CONCLUSION

This work illustrated the effect of the temporal resolution
and of measurement noise on the geometrical calibration
of microphone arrays. It was shown that oversampling the
correlation function prior to searching its peaks can im-
prove the TOF estimation, and that the RMDU algorithm
proposed in Ref. [7] enables to reject the TOF outliers in-
troduced by measurement noise.

The geometrical calibration of a 3.6m-diameter
quasi-spherical array of 960 microphones was performed.
A lower experimental RMS positioning error of 7.5mm
than the one of 2 cm reported in Ref. [7] was obtained.
Finally, the mismatch between optically reported micro-
phone positions and the positions of the microphones’
acoustic centers reconstructed with RMDU explained the
discrepancy of about 5mm between the simulated RMS
error obtained in Ref. [7] and the experimental RMS error
of the present study.
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