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ABSTRACT

When calculating the acoustic radiation from vibrating
planar structures, engineers are most often obliged to use
computationally heavy approaches, like BEM or FEM.
These are, however, largely unfit for parametric studies,
optimizations, or real-time sound synthesis. The approach
proposed here aims to approximate the acoustic fields
produced by a vibrating plate via minimal sets of
elementary sources. Based around a modal description of
the plate vibration, each lobe region in a mode shape is to
be represented by an equivalent punctual source. Aside
from its evident computationally efficiency, the proposed
approach is versatile since baffled and unbaffled cases can
be treated using monopole and dipole arrays, respectively,
and complex-shaped plates can be dealt with via automatic
image segmentation techniques. Additionally, it enables the
calculation of both modal radiation curves as well as forced
multi-modal scenarios and transient responses. Because it is
set in a modal framework, it can easily be combined with
typical structural vibration models. The benefits of this
reduced multipole approach are demonstrated through a
series of illustrative examples, where approximate solutions
are compared to reference results from either analytical or
large-scale FEM models.
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1. INTRODUCTION

Whether driven by the need of understanding or of
predicting sound radiation for control requirements, the
radiation from plates has long been a topic of considerable
relevance in engineering acoustics. The problem consists in
predicting the sound field radiated by a planar structure of
arbitrary shape, surrounded by a fluid and vibrating with a
given surface velocity distribution. To provide useful
insights, the analysis commonly proceeds on two
approaches, addressing (1) the sound radiation from a
specific mode, the so-called modal radiation, and/or (2) the
overall radiation caused by unevenly forced excitation (e.g.
point excitations), where many modes contribute to the
vibrational response, the so-called multi-mode radiation.

Early works were mainly concerned modal radiation from
simple analytical configurations and well-known results
include asymptotic formulae and closed forms solutions for
simply supported rectangular plates [1] [2] [3] [4]. One fact
to emphasize is the difficulty of producing predictions for
the unbaffled configuration, which  considerably
complicates the mathematical modelling and might lead to
instabilities in the numerical implementations [5] [6]. In
general, the radiation from more realistic complex-shaped
plates typically requires the use of numerical approaches to
solve the integral equations, for which finite element and/or
boundary element methods are probably the most use
techniques. Although precise solutions can usually be
achieved by these techniques it is well known that the
computation costs still represent a significant limitation
particularly when dealing with optimization problems,
parametric studies or real-time sound-synthesis.

Recently, a form of lumped model approach has been
presented by Garcia et al. [7] by using combination of
circular pistons that replicate modal radiation. In this model,
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each lobe of a mode shape is viewed as a baffle piston that
radiates the same amount of energy and with characteristics
including size, amplitude, phase, and position, determined
by the mode shape geometry. This concept, essentially a
reduced form of the equivalent source method [8], is surely
a powerful one, leading to very low computational cost and
easily combined with modal-based structural vibration
models. The authors have however dealt only with limited
scenarios, namely, modal radiation in baffled
configurations. It remains unclear how this could be
extended to the unbaffled cases as well as the estimation of
radiation patterns from unevenly excited plates (multi-
modal).

In generic terms, the present formulation is a variant of the
method proposed by Garcia et al. [7] as we use a spatial
distribution of punctual sources to represent each lobe of a
mode shape function. One major difference resides in
considering monopoles and dipoles as the elementary
radiators, which presents practical and conceptual
advantages to deal with the problem. Monopole and dipole
are the simplest acoustic sources and hence, are easy to
model. Also, physically, it is well known that at low
frequency, radiation from baffled plates can be represented
by sets of monopoles and, similarly, unbaffled plates can be
represented by sets of dipoles. In practice, the geometry of
the mode shape directly determines the number of
equivalent sources and the velocity distribution within each
modal region defines the source strength and location of the
equivalent point-source. Global measures of the pressure
far-field, including total power and radiation efficiency, are
then estimated using general analytical expressions derived
for planar arrays of monopoles or dipoles. It is obvious that
our formulation directly produces predictions for modal
radiation but one practical advantage of the formalism is to
deal easily with the forced multi-modal problem when one
adopts a modal description for the plate dynamics. By doing
so, the multi-modal problem is a natural extension of the
modal case and hence can be addressed using the same
expressions. This type of approach is obviously well
adapted to programming and offers the possibility of
efficient computations through solely one simple generic
code for both baffled and unbaffled configurations. Other
important feature of our work is the ability to deal with
plates of arbitrary shape addressed by optimal and
automatic positioning of the point sources achieved through
techniques of image segmentation. Finally, note that by
deriving the radiation model from the mode shape
geometry, our formulation is readily well-suitable for
integrating typical structural vibration models and could

2740

provide intuitive physical understanding and interpretation
of the solutions.

2. MODAL RADIATION DESCRIBED BY A SET OF
POINT SOURCES

The case of modal radiation is concerned with the vibration
of a flexible plate animated by a simple harmonic motion in
one of its natural modes. The velocity distribution of its
surface is then written as

uz,y) = v,0,(7,y) @

where ¢, and v, are the mode shape and modal velocity
of mode m , respectively. The mode shape contains several
local maxima/minima and its overall distribution can be
then divided into a set of J convex regions containing one
single minima or maxima (lobe). As illustrated in Figure 1,
within the area of each region S, the location of an
equivalent point source (z,y,) will be defined by the
weighted centroid of the mode shape, given by

j; z(z, y)dzdy B fé / yHz, y)dzdy
fs A, y)dady

= 2
’ ﬁ Nz, y)dzdy @

Beam mode shape Multipole representation

&

Figure 1. Illustration of the multipole method applied to a free-free
beam mode.

s

2.1 Baffled case and monopoles

Assuming simple harmonic motion with frequency w, the
pressure field from a monopole may be expressed as

47y ®)

where k = w / ¢ is the wavenumber, i is the imaginary
unit and quantities with a hat are complex amplitude
containing phase information. The source strength
Q = iwpU represents the injection/suction of fluid into the
region (a volume velocity). A generic representation of the
source strength for plane radiators with continuous convex

velocity distribution v(z, y, t) V(x, y)et is given by

Q = iwp f V(a:, y)dxdy

)
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The extension to account for N simple harmonic
monopoles of complex source strength @, = iwpU,, results
from a direct application of the principle of linear
superposition in acoustics. For such arrangement, the
complex pressure at point r in the far-field is given by

N

e—ikR,
Q.

p— dr
where R, = |r — rn| is the distance from the n-th source.
Using Eq. (5), it can be shown that the acoustic power
radiated by the set of monopoles is given by the sound
intensity generated by

®)

pr)

N

pck?
nm=— E
8t |5

where [,, are the distance between source n and m.
Eq.(6) states that the total acoustic power is determined by
the power radiated by all individual sources when acting in
isolation, and their mutual acoustic interaction, which is one
of the most important mechanisms governing the
effectiveness of sound radiation by vibrating surfaces [9] . It
can also be written in the following compact matrix form

II = uWu @)

where the superscript H is the complex conjugate
transpose, u is the vector of the complex source volume

velocities U, and W is a matrix whose element (m,n) is

sin ki,
ki

'mn

n=1 m>n

U,

U,

U,

©)

_ pck? sinkl,,
mn kl

8 o

In this equivalent representation of modal radiation, the
diagonal terms in W produce the “self” power radiated by
the individual lobes whereas the off-diagonal terms, that
clearly are symmetric, are associated to the “mutual”
radiated power, i.e. the interference of the sound field
radiated by the different lobes.

A useful measure of the effectiveness of sound radiation by
vibrating surface, originally defined by Wallace [2], is the
radiation efficiency, which is a normalized form of the
radiated power. It is defined as

®

PR L
pes ([ula,y)))

where <|v(1', y)|) is the spatial and temporal average of the
squared velocity distribution, which is defined by

(o)) = 2 f |¢(ay)|* dady

©)

(10)
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Finally, note that all the previous derivations have been
presented assuming monopole sources, hence radiating
energy in free space. Adaptation to the baffle configuration
implies to account for the fluid loading effects on a single
side of the plate, so that expressions for the acoustic power
must be multiplied by a factor of two.

2.2 Unbaffled case and dipoles

A dipole is typically an oscillating point source that can be
conceptually modeled by two close monopoles of identical
strength @ but opposite phase, and separated by a distance

d . The pressure radiated by a dipole is given by

—ikr
p(r,0) = —k2pc [1 + .1 e
i

AR

T nr

] cos (12)

where the dependence on the elevation angle 6 evidences
the directional character of the pressure field. Similarly with
monopole source, a dipole source strength can be defined as

F = iwplUd 12)

where it is important to underline that here the source
strength F' has the units of a force. Contrary to generating a
(unsteady) net volume outflow as in monopoles, a dipole
source then exerts a force on the surrounding fluid and this
renders their behavior physically and qualitatively different.
If the establishment of a low-frequency equivalence
between baffled plane radiators and monopoles is relatively
straightforward by considering equivalent volume
velocities, it becomes difficult to apply an equivalence
between unbaffled plane radiators and dipoles. A simple
example is that of a piston of area S and arbitrary shape,
vibrating harmonically. If the piston is baffled, its volume
velocity is independent of the piston shape. However, if the
piston is unbaffled, difficulties arise because the same
independence on the piston shape does not hold. That is,
pistons with the same surface area but different shapes will
not radiate the same amount of acoustic power, even at low
frequencies. This is a consequence of localized inertial
flows along the piston edges, which present large tangential
velocities and significantly alter the force applied on the
fluid by the vibrating piston. Analytical solutions for the
low-frequency radiation of unbaffled circular [4] or
elliptical [10] pistons are known, but deriving a generic
expression for an arbitrary shaped piston is a more difficult
task. However, in a recent work by the authors [11], a
relatively generic approximation was proposed based on the
piston compactness (ratio of area to perimeter). When
looking at Eq.(12), the physical role of the equivalent
distance d can be viewed as a correction factor (d < 1) on
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the volume velocity U, encapsulating the “edge effects”,
such that the equivalent force can be written as in (12). In
the case of a circular disk for example, the equivalent
distance is d = (8 / 3m)a . From a broad set of numerical
results from a finite element model, the authors have
proposed the following approximation for the equivalent
distance, based on the piston compactness ratio

d:2[i §%1.7§

37T]P P

where P and S are the perimeter and area of the piston
respectively. This expression is anchored on the known
result for a circular disk, but also provides an excellent
approximation for pistons of arbitrary shape. In our
representation by means of equivalent modal radiators,
Eq.(13) is used to estimate the equivalent dipole source
strength  F, for each modal region j, using
d; =1.7 S;/ P, while the local volume velocity U; is
calculated as before (see Eq.(4)). Then, the pressure
radiated in the far-field ((kr > 1) by a set of N dipoles
located arbitrary within a plane surface at position defined
by vector r, and pointed along the z-axis , is given by

N —ikR, .
pr) = k2> F, T

p—, dr  r

13)

(14)

where d, is the vector distance between the two dipoles.
The total acoustic power radiated by the dipoles array is
given by

II = fuDf (15)
where f is a vector containing the dipole source
strengths and the elements in the radiation matrix D are

| |

ILLUSTRATIVE RESULTS
2.3 Modal radiation of a baffled and unbaffled plate

cos kl

'mn

sin kl

'mn

(kl’ﬂ n ) 3

_ pck!
8m

) (19)

mn

The surface velocity of a rectangular baffled plate with
dimensions L and w, with simply supported boundaries,
vibrating at one of its natural modes is given by

U2, Y, 1) = VD, Y)e™
with ¢,,.(z,y) = sin [%] sin[

nwy

] 17

w

In this simple case, each mode (m,n) is divided into
J = m xn regions with the same area
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Lw vj
mn
The source strength of each equivalent monopole is the

same for all sources

S.:

J

(18)

Q; = £2ikpc [L—w]iv,,m Vg (19)
mn | w2

where a factor of two is present to account for the baffle.

Note however that the sign of @), alternates between

adjacent lobes. The weighted centroid of each modal

region (monopole location) is located at the center of the

lobe, define in a regular grid as

_Lp-1)

om i for

o
2n {q

from which the inter-monopoles distance matrix /,,, can
easily be obtained (as in Eq.(6)).

To illustrate the capability of the proposed method, Figure 2
shows the modal radiation efficiency of various modes of a
simply supported square baffled plate calculated with the
multipole approximation compared to the analytical
solutions presented by Wallace [2]. The three plots shown
pertain to the different modal families indexed: odd-odd,
odd-even and even-even. The radiative behavior of these
three modal families is characterized by their low-frequency
behavior, which equates to a monopolar, dipolar or
quadrupolar radiation efficiency, i.e. with o, proportional
to (kL)2, (kL)*, (kL)¢, respectively. This simple example
serves to underline the importance of symmetry in the
radiation efficiency of vibrating structures. Here, much of
the radiation from lobes of opposite phases, separated by a
symmetry line, will cancel each other and severely reduce
the amount of radiated power at low-frequencies. We also
note, as expected, that the multipole formulation does not
provide accurate results at high-frequencies. Since point
sources have no characteristic dimension, a finite set of
monopoles will not be able to reproduce the radiation of a
physical structure when wavelengths A exceed a critical
length ), related to the distance between the point sources
(internodal distances).

Similarly, we illustrate the capacity of the dipole
approximation considering modal radiation efficiency of a
simply supported square unbaffled plate. Here, the dipolar
equivalent distance can be easily calculated from Eq.(13)

Slopg 2w
P Ln + wm

1,2..n (20)

J - _

d, = 1.7[ v 1)
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odd-odd modes
Analytical (Wallace, 1970)
Monopole array approx.
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monopole

102 107! 10" 10! 102 1072 107!
kL

~ odd-even modes
§‘—:»\nal_vtica.l (Wallace, 1970)
«Monopole array approx.

even-even modes
{[— Analytical (Wallace, 1970)
Flenan Monopole array approx.

o (kL)°

quadrupole
e

10! 102 1072 107!

10" 10 10%
kL

Figure 2. Modal radiation efficiency of square baffled plate with simply supported boundary conditions for odd-odd, odd-even and
even-even modes as a function of the dimensionless frequency. The monopole approximations (red dotted lines) are compared to the

analytical results (black lines) given by Wallace [2].

In this case, reference results were calculated using the
method proposed by Laulagnet [5]. Figure 3 shows the
modal radiation efficiency of some modes of an
unbaffled plate from the three modal families. It shows
that, at least for the case of a simply supported plate, the
proposed formulation provides very reasonable
approximations, almost as good as for the baffled case.
We note however some minor quantitative differences,
likely related to the wvalidity of the approximate
expression for the equivalent distance.

2.4 Watershed transform and automatic mode shape
segmentation

The illustrative results shown in the previous section are
simple to obtain since this case is simplified by the fact that

odd-odd modes

— Analytical (Laulagnet, 1998)
o foeeee Dipole array approx.

10°°

1010

o (kL)'
dipole

10-% L - .
1072 10! 10° 10! 100 107 107!

odd-even modes

—— Analytical (Laulagnet, 1998)
»»»»»» Dipole array approx

o (kL)

quadrupole

all mode shapes have well-defined lobe regions, separated
by the nodal lines of the mode shape. Hence, there is no
ambiguity on the number and location of point sources to
consider. However, this is not the general case and,
particularly in complex-shaped plates, mode shapes often
contain multiple local minima (representing multiple lobes)
whose basins are not separated by nodal lines. Consider for
example the well-known Matlab’s “peaks” function (Figure
4). We note that this function contains three local minima
and three local maxima. Hence, the proposed method
would, in principle, require a minimal set of six-point
sources to provide an approximation of its modal radiation
efficiency. The three local minima (in blue) are indeed
contained in regions bounded by nodal lines as opposed to
the three local maxima (red/orange), which are in a single

even-even modes

—— Analytical (Laulagnet, 1998)
------ Dipole array approx

e

octupole

10! 10? 102 107! 10° 10! 10°
kL

Figure 3. Modal radiation efficiency of square unbaffled plate with simply supported boundary conditions for odd-odd, odd-even
and even-even modes as a function of the dimensionless frequency. The dipole approximations (red dotted lines) are compared to

the analytical results (black lines) given by Laulagnet [5].
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“connected” region. We are then tasked to find lines that
enable the segmentation of the three local maxima into
different regions. This can be achieved in an automatic
fashion using a variety of tailored algorithms. Here we

Figure 4. Illustration of the process of mode shape segmentation
using the watershed transform on the “peaks” function, as well
as the resulting point source representation.

suggest the use of the watershed transform [12] a widely
used algorithm for image segmentation, which is simple,
computationally efficient and perfectly fits the intended
purpose. For brevity, we restrain from showing the details
of the procedure here, but it essentially consists in
performing the watershed transform on the modulus of the
mode shape function | filz, y)| . Figure 4 illustrates watershed
transform on the peaks function and as well as the resulting
multipole representation.

3. RADIATION DUE TO FORCED RESPONSE

3.1 Formulation for multi-modal scenarios

The natural extension of the previous formulation dealing
with the sound power radiated by individual modes is to
address the acoustic radiation from unevenly excited plates
(e.g. from point force excitation), where many modes
contribute to the vibratory and radiative responses. The
difficulty in the multi-modal case stems from the fact that,
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although mode shapes are orthogonal from a vibratory point
of view, the associated modal radiation fields are not.
Hence, the total sound power is not equal to the sum of the
sound powers generated by each mode separately but must
also include the sound power produced by the radiative
interaction between all modes [13]. Following our
multipole representation of sound radiation, the total power
radiated by a forced plate described by a set of vV structural
modes can be formulated by considering a large vector Q
built by stacking a set of vectors q,, , containing the source
strengths of the point sources associated to each mode.
Essentially, we aim to consider the interaction between all
point sources in all modal sets. In view of such a structure,
the radiation matrix W for a multimodal baffled plate is
now a block matrix, in which the diagonal elements are
square submatrices of modal radiation (as in Eq.(8)) and the
off-diagonal blocks are submatrices of radiation stemming
from inter-modal coupling, thus describing the production
of acoustic power due to the interaction between all
elementary sources pertaining to the different modes
involved in the vibration. Knowing the modal response of
the structure in terms of modal velocities u, , the total
acoustic power radiated for multimodal plates can thus be
calculated from

H

qi at
: W, Wy :
@ @
=1 : (22
Ui Ui
' Wu Wiy '
" "
where W, are full matrices whose elements w,, ., are
given by
W, = pck? sin(kl,,..) (29)

&

in which we denote p,q = 12... N the modal index and
r,s the index of elementary sources in each set, whose
upper limit depends on the mode shape. For brevity, we
present only the baffled case but the unbaffled case can
similarly be formulated using an analogous procedure based
on Egs.(15)-(16) instead.

The local volume velocities ¢ in Eq.(22) are calculated
from the complex modal velocities v, that can be
calculated, when considering a point excitation at

Iy = (%a yo) as

Kl

PgTs
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1wk ¢,(r,
fU" _ 0 ¢ ( ()) (24)

where F; is the amplitude of the point force and m,, w,
and ¢, are the modal mass, angular frequency and damping
ratio of mode n , respectively.

3.2 llustrative example on a rectangular plate

For illustrative purposes, we now consider a baffled simply
supported rectangular plate with length L = 0.6 m , width
w=0.5m and thickness » = 2mm, centered at (0,0),
such that it is defined in 2 =[-0.3 0.3] and
y =[—0.25, 0.25]. Its natural frequencies and modal
masses are given by

3] <[z

, | B
wmn =TT p h
)

_ pLwh

mn

(25)

;o m,

where B is the bending stiffness and p, is density. Modal
damping was fixed uniformly at ¢, = 0.01 Vn .

For simplicity, we consider a unit force amplitude F, =1
different

and two locations for the excitation:

0

S e
——FEM ‘

e Analytic (modal)

10°% L ra— "
10" - ;

[ |=——FEM

[ |- Monapole array

|
-t 10° 10*
kL

Figure 5. Magnitude of co-located mobility (top), total radiated
power (center) and radiation efficiency (bottom) of the baffled
rectangular plate excited at r, = (0.19, 0.11) as a function of the
dimensionless frequency kL . Here, 100 modes were considered.
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r, =(0.19, 0.11) and r, = (0.24, 0). Reference results
were calculated using an FEM model composed of a plate
with prescribed velocity profile, surrounded by a
hemisphere with non-reflecting boundaries (PMLs).

Figure 5 shows the vibratory response (collocated
mobility), radiated power and radiation efficiency for
excitation points r,, where results from the multipole
method were calculated using N = 100 modes.

The results in Figures 5 show how the reduced set of point
sources is clearly able to reproduce radiative properties of
the plate in forced, multi-modal scenarios. At relatively low
frequencies (kL < ), the estimated radiated power and
radiation efficiency are indistinguishable from the reference
FEM results. Above kL <7, we note a drift of the
estimated values, with the multipole method slightly
overestimating radiated energy. Nevertheless,
approximations are still reasonable even at these high
frequencies. This is explained by the fact that the frequency
limit of each modal approximation is related to the average
distance between monopoles in each modal set, as seen in
Figures 2 and 3. Hence, this frequency limit increases with

1"

—FEM

Analytic (modal)

|¥ ()|

[—FEM
. woeeee Monopole array |

10*

10°*
10!

107 -

10!

o(w)

10°*

10

1074

0! 10" 10!
kL

Figure 6. Magnitude of co-located mobility (top), total radiated
power (center) and radiation efficiency (bottom) of the baffled
rectangular plate excited at r, = (0.24, 0) as a function of the
dimensionless frequency kL . Here 20 modes were considered.
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modal order, as do the natural frequencies of the modes (!).

Figure 6 shows the analogous results for excitation point
r,, and here, only N =20 modes were used for the
multipole method estimations. The responses in Figure 6
present less peaks since the excitation point is located on
one of the symmetry lines and hence, some modes of the
plate are not excited (those of even order in g -direction).
Again, we clearly see a good approximation only limited in
this case by the number of modes considered.

Finally, and most importantly, is it worth underlining that
while the FEM model required approximately 1 to 5
seconds of computation time, per frequency bin, on a
desktop computer, the reduced multipole model, with
N =100 (i.e. ~2500 sources) took approximately 30-
40ms per frequency bin. Furthermore, when N =20 (i.e.
~125 sources) it took about 0.3-0.4ms. Still, this
computational time could be further reduced if one
considers a threshold on the modal vibratory response. That
is, for each frequency bin, considering only a limited set of
modes whose vibratory response is dominant.

4. CONCLUSIONS

This paper shows how a method based on the distribution of
point sources is able to recreate the radiation properties
from vibrating plates, both from single mode excitation as
well as multi-modal (unevenly forced) cases. Despite its
simplicity, results show a relatively wide range of validity
(not necessarily limited to low frequencies). Aside from the
commonly treated baffled problem, we demonstrate how
this approach can be generalized to unbaffled scenarios by
using dipoles instead of monopoles. Also, to deal with
complex-shaped plates, we propose an automatic mode-
shape segmentation procedure that identifies the spatial
distribution of the sources, based on the watershed
transform. Illustrative results for the multi-modal case
highlight the computational efficiency of the approach
reaching acceptable approximations to reference results at
computational costs that are several orders of magnitude
below the analogous FE model.

An important feature of the formulation is the fact that it is
built on a modal description of the plate vibration, which
makes it readily integrable in standard structural models.
This allows parametric studies and optimization strategies
to be carried out for improving sound radiation of structural
components, and gives the possibility to simulate very
realistic sounds of bars and plates, even in real time.
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