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ABSTRACT* 

When calculating the acoustic radiation from vibrating 

planar structures, engineers are most often obliged to use 

computationally heavy approaches, like BEM or FEM. 

These are, however, largely unfit for parametric studies, 

optimizations, or real-time sound synthesis. The approach 

proposed here aims to approximate the acoustic fields 

produced by a vibrating plate via minimal sets of 

elementary sources. Based around a modal description of 

the plate vibration, each lobe region in a mode shape is to 

be represented by an equivalent punctual source. Aside 

from its evident computationally efficiency, the proposed 

approach is versatile since baffled and unbaffled cases can 

be treated using monopole and dipole arrays, respectively, 

and complex-shaped plates can be dealt with via automatic 

image segmentation techniques. Additionally, it enables the 

calculation of both modal radiation curves as well as forced 

multi-modal scenarios and transient responses. Because it is 

set in a modal framework, it can easily be combined with 

typical structural vibration models. The benefits of this 

reduced multipole approach are demonstrated through a 

series of illustrative examples, where approximate solutions 

are compared to reference results from either analytical or 

large-scale FEM models. 
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sources, multi-modal radiation, monopoles and dipoles. 
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1. INTRODUCTION 

Whether driven by the need of understanding or of 

predicting sound radiation for control requirements, the 

radiation from plates has long been a topic of considerable 

relevance in engineering acoustics. The problem consists in 

predicting the sound field radiated by a planar structure of 

arbitrary shape, surrounded by a fluid and vibrating with a 

given surface velocity distribution. To provide useful 

insights, the analysis commonly proceeds on two 

approaches, addressing (1) the sound radiation from a 

specific mode, the so-called modal radiation, and/or (2) the 

overall radiation caused by unevenly forced excitation (e.g. 

point excitations), where many modes contribute to the 

vibrational response, the so-called multi-mode radiation.  

Early works were mainly concerned modal radiation from 

simple analytical configurations and well-known results 

include asymptotic formulae and closed forms solutions for 

simply supported rectangular plates [1] [2] [3] [4]. One fact 

to emphasize is the difficulty of producing predictions for 

the unbaffled configuration, which considerably 

complicates the mathematical modelling and might lead to 

instabilities in the numerical implementations [5] [6]. In 

general, the radiation from more realistic complex-shaped 

plates typically requires the use of numerical approaches to 

solve the integral equations, for which finite element and/or 

boundary element methods are probably the most use 

techniques. Although precise solutions can usually be 

achieved by these techniques it is well known that the 

computation costs still represent a significant limitation 

particularly when dealing with optimization problems, 

parametric studies or real-time sound-synthesis. 

Recently, a form of lumped model approach has been 

presented by Garcia et al. [7] by using combination of 

circular pistons that replicate modal radiation. In this model, 
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each lobe of a mode shape is viewed as a baffle piston that 

radiates the same amount of energy and with characteristics 

including size, amplitude, phase, and position, determined 

by the mode shape geometry. This concept, essentially a 

reduced form of the equivalent source method [8], is surely 

a powerful one, leading to very low computational cost and 

easily combined with modal-based structural vibration 

models. The authors have however dealt only with limited 

scenarios, namely, modal radiation in baffled 

configurations. It remains unclear how this could be 

extended to the unbaffled cases as well as the estimation of 

radiation patterns from unevenly excited plates (multi-

modal).  

In generic terms, the present formulation is a variant of the 

method proposed by Garcia et al. [7] as we use a spatial 

distribution of punctual sources to represent each lobe of a 

mode shape function. One major difference resides in 

considering monopoles and dipoles as the elementary 

radiators, which presents practical and conceptual 

advantages to deal with the problem. Monopole and dipole 

are the simplest acoustic sources and hence, are easy to 

model. Also, physically, it is well known that at low 

frequency, radiation from baffled plates can be represented 

by sets of monopoles and, similarly, unbaffled plates can be 

represented by sets of dipoles. In practice, the geometry of 

the mode shape directly determines the number of 

equivalent sources and the velocity distribution within each 

modal region defines the source strength and location of the 

equivalent point-source. Global measures of the pressure 

far-field, including total power and radiation efficiency, are 

then estimated using general analytical expressions derived 

for planar arrays of monopoles or dipoles. It is obvious that 

our formulation directly produces predictions for modal 

radiation but one practical advantage of the formalism is to 

deal easily with the forced multi-modal problem when one 

adopts a modal description for the plate dynamics. By doing 

so, the multi-modal problem is a natural extension of the 

modal case and hence can be addressed using the same 

expressions. This type of approach is obviously well 

adapted to programming and offers the possibility of 

efficient computations through solely one simple generic 

code for both baffled and unbaffled configurations. Other 

important feature of our work is the ability to deal with 

plates of arbitrary shape addressed by optimal and 

automatic positioning of the point sources achieved through 

techniques of image segmentation. Finally, note that by 

deriving the radiation model from the mode shape 

geometry, our formulation is readily well-suitable for 

integrating typical structural vibration models and could 

provide intuitive physical understanding and interpretation 

of the solutions.  

2. MODAL RADIATION DESCRIBED BY A SET OF 

POINT SOURCES 

The case of modal radiation is concerned with the vibration 

of a flexible plate animated by a simple harmonic motion in 

one of its natural modes. The velocity distribution of its 

surface is then written as 

 ( , ) , )m mv x y v x y  (1) 

where m  and mv  are the mode shape and modal velocity 

of mode m , respectively. The mode shape contains several 

local maxima/minima and its overall distribution can be 

then divided into a set of J  convex regions containing one 

single minima or maxima (lobe). As illustrated in Figure 1, 

within the area of each region jS , the location of an 

equivalent point source ( , )j jx y  will be defined by the 

weighted centroid of the mode shape, given by 

 

, ) , )
;

, ) , )
j j

j j

S S
j j

S S

x x y dxdy y x y dxdy
x y

x y dxdy x y dxdy
 (2) 

 
Figure 1. Illustration of the multipole method applied to a free-free 

beam mode. 

2.1 Baffled case and monopoles 

Assuming simple harmonic motion with frequency , the 

pressure field from a monopole may be expressed as 

 ˆ ˆ(̂ )
4 4

ikr ikre e
p r i U Q

r r
 (3) 

where k c  is the wavenumber, i  is the imaginary 

unit and quantities with a hat are complex amplitude 

containing phase information. The source strength 
ˆ ˆQ i U  represents the injection/suction of fluid into the 

region (a volume velocity). A generic representation of the 

source strength for plane radiators with continuous convex 

velocity distribution ˆ( , , ) ( , ) i tv x y t V x y e  is given by 

 ˆ (̂ , )Q i V x y dxdy  (4) 
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The extension to account for N  simple harmonic 

monopoles of complex source strength n nQ i U  results 

from a direct application of the principle of linear 

superposition in acoustics. For such arrangement, the 

complex pressure at point r  in the far-field is given by 

 
1

( )
4

n
N ikR

n
n

e
p Q

r
r  (5) 

where n nR r r  is the distance from the -thn source. 

Using Eq. (5), it can be shown that the acoustic power 

radiated by the set of monopoles is given by the sound 

intensity generated by 

 
2 2

1 1

sin
2

8

N N N
mn

n n n
n n m n mn

ck kl
U U U

kl
 (6) 

where mnl  are the distance between source n  and m . 

Eq.(6) states that the total acoustic power is determined by 

the power radiated by all individual sources when acting in 

isolation, and their mutual acoustic interaction, which is one 

of the most important mechanisms governing the 

effectiveness of sound radiation by vibrating surfaces [9] . It 

can also be written in the following compact matrix form 

 Hu Wu  (7) 

where the superscript H  is the complex conjugate 

transpose, u  is the vector of the complex source volume 

velocities nU  and W  is a matrix whose element ( , )m n is 

 
2 sin

8
mn

mn
mn

ck kl
W

kl
 (8) 

In this equivalent representation of modal radiation, the 

diagonal terms in W  produce the “self” power radiated by 

the individual lobes whereas the off-diagonal terms, that 

clearly are symmetric, are associated to the “mutual” 

radiated power, i.e. the interference of the sound field 

radiated by the different lobes.  

A useful measure of the effectiveness of sound radiation by 

vibrating surface, originally defined by Wallace [2], is the 

radiation efficiency, which is a normalized form of the 

radiated power. It is defined as 

 
( , )cS v x y

 (9) 

where ( , )v x y  is the spatial and temporal average of the 

squared velocity distribution, which is defined by 

 
2

( , ) , )
2
n

S

v
v x y x y dxdy

S
 (10) 

Finally, note that all the previous derivations have been 

presented assuming monopole sources, hence radiating 

energy in free space. Adaptation to the baffle configuration 

implies to account for the fluid loading effects on a single 

side of the plate, so that expressions for the acoustic power 

must be multiplied by a factor of two. 

2.2 Unbaffled case and dipoles 

A dipole is typically an oscillating point source that can be 

conceptually modeled by two close monopoles of identical 

strength Q  but opposite phase, and separated by a distance 

d . The pressure radiated by a dipole is given by 

 2
1

( , ) 1 cos
4

ikre
p r k c Ud

ikr r
 (11) 

where the dependence on the elevation angle  evidences 

the directional character of the pressure field. Similarly with 

monopole source, a dipole source strength can be defined as 

 F i Ud  (12) 

where it is important to underline that here the source 

strength F  has the units of a force. Contrary to generating a 

(unsteady) net volume outflow as in monopoles, a dipole 

source then exerts a force on the surrounding fluid and this 

renders their behavior physically and qualitatively different. 

If the establishment of a low-frequency equivalence 

between baffled plane radiators and monopoles is relatively 

straightforward by considering equivalent volume 

velocities, it becomes difficult to apply an equivalence 

between unbaffled plane radiators and dipoles. A simple 

example is that of a piston of area S  and arbitrary shape, 

vibrating harmonically. If the piston is baffled, its volume 

velocity is independent of the piston shape. However, if the 

piston is unbaffled, difficulties arise because the same 

independence on the piston shape does not hold. That is, 

pistons with the same surface area but different shapes will 

not radiate the same amount of acoustic power, even at low 

frequencies. This is a consequence of localized inertial 

flows along the piston edges, which present large tangential 

velocities and significantly alter the force applied on the 

fluid by the vibrating piston. Analytical solutions for the 

low-frequency radiation of unbaffled circular [4] or 

elliptical [10] pistons are known, but deriving a generic 

expression for an arbitrary shaped piston is a more difficult 

task. However, in a recent work by the authors [11], a 

relatively generic approximation was proposed based on the 

piston compactness (ratio of area to perimeter). When 

looking at Eq.(12), the physical role of the equivalent 

distance d  can be viewed as a correction factor ( 1)d   on 
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the volume velocity U , encapsulating the “edge effects”, 

such that the equivalent force can be written as in (12). In 

the case of a circular disk for example, the equivalent 

distance is (8 / 3 )d a . From a broad set of numerical 

results from a finite element model, the authors have 

proposed the following approximation for the equivalent 

distance, based on the piston compactness ratio 

 
8

2 1.7
3

S S
d

P P
 (13) 

where P  and S  are the perimeter and area of the piston 

respectively. This expression is anchored on the known 

result for a circular disk, but also provides an excellent 

approximation for pistons of arbitrary shape. In our 

representation by means of equivalent modal radiators, 

Eq.(13) is used to estimate the equivalent dipole source 

strength jF  for each modal region j , using 

1.7 /j j jd S P  while the local volume velocity jU  is 

calculated as before (see Eq.(4)). Then, the pressure 

radiated in the far-field (( 1)kr  by a set of N  dipoles 

located arbitrary within a plane surface at position defined 

by vector nr  and pointed along the -axisz , is given by  

 2

1

( )
4

n
N ikR

n n
n

n

e
p k c F

r r

r d
r  (14) 

where nd  is the vector distance between the two dipoles. 

The total acoustic power radiated by the dipoles array is 

given by 

 Hf Df  (15) 

where f  is a vector containing the dipole source 

strengths and the elements in the radiation matrix D  are 

 
4

3 2

sin cos

8 ( ) ( )
mn mn

mn
mn mn

ck kl kl
D

kl kl
 (16) 

ILLUSTRATIVE RESULTS 

2.3 Modal radiation of a baffled and unbaffled plate 

The surface velocity of a rectangular baffled plate with 

dimensions L  and w , with simply supported boundaries, 

vibrating at one of its natural modes is given by  

 

( , , ) ( , )

with , ) sin sin

i t
mn mn

mn

v x y t v x y e

m x n y
x y

L w

 (17) 

In this simple case, each mode ( , )m n  is divided into 

J m n  regions with the same area 

 j

Lw
S j

mn
 (18) 

The source strength of each equivalent monopole is the 

same for all sources 

 
2

4
2j mn

Lw
Q ik c v j

mn
 (19) 

where a factor of two is present to account for the baffle. 

Note however that the sign of jQ  alternates between 

adjacent lobes. The weighted centroid of each modal 

region (monopole location) is located at the center of the 

lobe, define in a regular grid as 

   
1,2...( 1) ( 1)

; for
1,2...2 2

j j

p mL p w q
q nm n

x y  (20) 

from which the inter-monopoles distance matrix mnl  can 

easily be obtained (as in Eq.(6)).  

To illustrate the capability of the proposed method, Figure 2 

shows the modal radiation efficiency of various modes of a 

simply supported square baffled plate calculated with the 

multipole approximation compared to the analytical 

solutions presented by Wallace [2]. The three plots shown 

pertain to the different modal families indexed: odd-odd, 

odd-even and even-even. The radiative behavior of these 

three modal families is characterized by their low-frequency 

behavior, which equates to a monopolar, dipolar or 

quadrupolar radiation efficiency, i.e. with m  proportional 

to 2( )kL , 4( )kL , 6( )kL , respectively. This simple example 

serves to underline the importance of symmetry in the 

radiation efficiency of vibrating structures. Here, much of 

the radiation from lobes of opposite phases, separated by a 

symmetry line, will cancel each other and severely reduce 

the amount of radiated power at low-frequencies. We also 

note, as expected, that the multipole formulation does not 

provide accurate results at high-frequencies. Since point 

sources have no characteristic dimension, a finite set of 

monopoles will not be able to reproduce the radiation of a 

physical structure when wavelengths λ exceed a critical 

length c , related to the distance between the point sources 

(internodal distances).  

Similarly, we illustrate the capacity of the dipole 

approximation considering modal radiation efficiency of a 

simply supported square unbaffled plate. Here, the dipolar 

equivalent distance can be easily calculated from Eq.(13) 

 
2

1.7 1.7j

S Lw
d j

P Ln wm
 (21) 
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In this case, reference results were calculated using the 

method proposed by Laulagnet [5]. Figure 3 shows the 

modal radiation efficiency of some modes of an 

unbaffled plate from the three modal families. It shows 

that, at least for the case of a simply supported plate, the 

proposed formulation provides very reasonable 

approximations, almost as good as for the baffled case. 

We note however some minor quantitative differences, 

likely related to the validity of the approximate 

expression for the equivalent distance. 

2.4 Watershed transform and automatic mode shape 

segmentation 

The illustrative results shown in the previous section are 

simple to obtain since this case is simplified by the fact that 

all mode shapes have well-defined lobe regions, separated 

by the nodal lines of the mode shape. Hence, there is no 

ambiguity on the number and location of point sources to 

consider. However, this is not the general case and, 

particularly in complex-shaped plates, mode shapes often 

contain multiple local minima (representing multiple lobes) 

whose basins are not separated by nodal lines. Consider for 

example the well-known Matlab’s “peaks” function (Figure 

4). We note that this function contains three local minima 

and three local maxima. Hence, the proposed method 

would, in principle, require a minimal set of six-point 

sources to provide an approximation of its modal radiation 

efficiency. The three local minima (in blue) are indeed 

contained in regions bounded by nodal lines as opposed to 

the three local maxima (red/orange), which are in a single 

Figure 2. Modal radiation efficiency of square baffled plate with simply supported boundary conditions for odd-odd, odd-even and 

even-even modes as a function of the dimensionless frequency. The monopole approximations (red dotted lines) are compared to the 

analytical results (black lines) given by Wallace [2]. 

Figure 3. Modal radiation efficiency of square unbaffled plate with simply supported boundary conditions for odd-odd, odd-even 

and even-even modes as a function of the dimensionless frequency. The dipole approximations (red dotted lines) are compared to 

the analytical results (black lines) given by Laulagnet [5]. 
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“connected” region. We are then tasked to find lines that 

enable the segmentation of the three local maxima into 

different regions. This can be achieved in an automatic 

fashion using a variety of tailored algorithms. Here we 

suggest the use of the watershed transform [12] a widely 

used algorithm for image segmentation, which is simple, 

computationally efficient and perfectly fits the intended 

purpose. For brevity, we restrain from showing the details 

of the procedure here, but it essentially consists in 

performing the watershed transform on the modulus of the 

mode shape function 1( , )f x y . Figure 4 illustrates watershed 

transform on the peaks function and as well as the resulting 

multipole representation. 

3. RADIATION DUE TO FORCED RESPONSE  

3.1 Formulation for multi-modal scenarios 

The natural extension of the previous formulation dealing 

with the sound power radiated by individual modes is to 

address the acoustic radiation from unevenly excited plates 

(e.g. from point force excitation), where many modes 

contribute to the vibratory and radiative responses. The 

difficulty in the multi-modal case stems from the fact that, 

although mode shapes are orthogonal from a vibratory point 

of view, the associated modal radiation fields are not. 

Hence, the total sound power is not equal to the sum of the 

sound powers generated by each mode separately but must 

also include the sound power produced by the radiative 

interaction between all modes [13]. Following our 

multipole representation of sound radiation, the total power 

radiated by a forced plate described by a set of N  structural 

modes can be formulated by considering a large vector Q  

built by stacking a set of vectors nq , containing the source 

strengths of the point sources associated to each mode. 

Essentially, we aim to consider the interaction between all 

point sources in all modal sets. In view of such a structure, 

the radiation matrix W  for a multimodal baffled plate is 

now a block matrix, in which the diagonal elements are 

square submatrices of modal radiation (as in Eq.(8)) and the 

off-diagonal blocks are submatrices of radiation stemming 

from inter-modal coupling, thus describing the production 

of acoustic power due to the interaction between all 

elementary sources pertaining to the different modes 

involved in the vibration. Knowing the modal response of 

the structure in terms of modal velocities nu , the total 

acoustic power radiated for multimodal plates can thus be 

calculated from 

  

H
1 1
1 1

11 1

1 1

1 1

11

n n

n n

N

M M

N N

NN

M M
N N

q q

q q

q q

q q

W W

W W

 (22) 

where pqW are full matrices whose elements ,wpq rs  are 

given by 

 
2

,
,

,

sin( )
w

8
pq rs

pq rs
pq rs

ck kl

kl
 (23) 

in which we denote , 1,2...p q N  the modal index and 

,r s  the index of elementary sources in each set, whose 

upper limit depends on the mode shape. For brevity, we 

present only the baffled case but the unbaffled case can 

similarly be formulated using an analogous procedure based 

on Eqs.(15)-(16) instead. 

The local volume velocities m
nq  in Eq.(22) are calculated 

from the complex modal velocities nv  that can be 

calculated, when considering a point excitation at 

0 0 0( , )x yr  as 

Figure 4. Illustration of the process of mode shape segmentation 

using the watershed transform on the “peaks” function, as well 

as the resulting point source representation.  
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0 0

2

( )

( )

n

n
n n n n

i F
v

m i

r
 (24) 

where 0F  is the amplitude of the point force and nm , n  

and n  are the modal mass, angular frequency and damping 

ratio of mode n , respectively.  

3.2 Illustrative example on a rectangular plate 

For illustrative purposes, we now consider a baffled simply 

supported rectangular plate with length 0.6mL , width 

0.5mw  and thickness 2mmh , centered at (0, 0) , 

such that it is defined in [ 0.3, 0.3]x  and 

[ 0.25, 0.25]y . Its natural frequencies and modal 

masses are given by 

     

2 2

2 ;
4
s

mn mn
s

B m n Lwh
m

h L w
 (25) 

where B  is the bending stiffness and s  is density. Modal 

damping was fixed uniformly at 0.01n n .  

For simplicity, we consider a unit force amplitude 0 1F  

and two different locations for the excitation: 

1 (0.19, 0.11)r  and 2 (0.24, 0)r . Reference results 

were calculated using an FEM model composed of a plate 

with prescribed velocity profile, surrounded by a 

hemisphere with non-reflecting boundaries (PMLs).  

Figure 5 shows the vibratory response (collocated 

mobility), radiated power and radiation efficiency for 

excitation points 1r , where results from the multipole 

method were calculated using 100N  modes. 

The results in Figures 5 show how the reduced set of point 

sources is clearly able to reproduce radiative properties of 

the plate in forced, multi-modal scenarios. At relatively low 

frequencies ( )kL , the estimated radiated power and 

radiation efficiency are indistinguishable from the reference 

FEM results. Above kL ,  we note a drift of the 

estimated values, with the multipole method slightly 

overestimating radiated energy. Nevertheless, 

approximations are still reasonable even at these high 

frequencies. This is explained by the fact that the frequency 

limit of each modal approximation is related to the average 

distance between monopoles in each modal set, as seen in 

Figures 2 and 3. Hence, this frequency limit increases with 

Figure 6. Magnitude of co-located mobility (top), total radiated 

power (center) and radiation efficiency (bottom) of the baffled 

rectangular plate excited at 2 (0.24, 0)r  as a function of the 

dimensionless frequency kL . Here 20 modes were considered. 

Figure 5. Magnitude of co-located mobility (top), total radiated 

power (center) and radiation efficiency (bottom) of the baffled 

rectangular plate excited at 1 (0.19, 0.11)r  as a function of the 

dimensionless frequency kL . Here, 100 modes were considered.  
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modal order, as do the natural frequencies of the modes (!). 

Figure 6 shows the analogous results for excitation point 

2r , and here, only 20N  modes were used for the 

multipole method estimations. The responses in Figure 6 

present less peaks since the excitation point is located on 

one of the symmetry lines and hence, some modes of the 

plate are not excited (those of even order in y -direction). 

Again, we clearly see a good approximation only limited in 

this case by the number of modes considered.   

Finally, and most importantly, is it worth underlining that 

while the FEM model required approximately 1 to 5 

seconds of computation time, per frequency bin, on a 

desktop computer, the reduced multipole model, with 

100N  (i.e. ~2500 sources) took approximately 30-

40ms per frequency bin. Furthermore, when 20N  (i.e. 

~125 sources) it took about 0.3-0.4ms. Still, this 

computational time could be further reduced if one 

considers a threshold on the modal vibratory response. That 

is, for each frequency bin, considering only a limited set of 

modes whose vibratory response is dominant.  

4. CONCLUSIONS 

This paper shows how a method based on the distribution of 

point sources is able to recreate the radiation properties 

from vibrating plates, both from single mode excitation as 

well as multi-modal (unevenly forced) cases. Despite its 

simplicity, results show a relatively wide range of validity 

(not necessarily limited to low frequencies). Aside from the 

commonly treated baffled problem, we demonstrate how 

this approach can be generalized to unbaffled scenarios by 

using dipoles instead of monopoles. Also, to deal with 

complex-shaped plates, we propose an automatic mode-

shape segmentation procedure that identifies the spatial 

distribution of the sources, based on the watershed 

transform. Illustrative results for the multi-modal case 

highlight the computational efficiency of the approach 

reaching acceptable approximations to reference results at 

computational costs that are several orders of magnitude 

below the analogous FE model.  

An important feature of the formulation is the fact that it is 

built on a modal description of the plate vibration, which 

makes it readily integrable in standard structural models. 

This allows parametric studies and optimization strategies 

to be carried out for improving sound radiation of structural 

components, and gives the possibility to simulate very 

realistic sounds of bars and plates, even in real time.  
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