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ABSTRACT

Sound Quality Metrics are widely used to evaluate the
sounds of machines, environments, and essentially any-
thing audible to people. Typically, combinations of
(psycho-) acoustic parameters are used to establish such
metrics by mapping the perceptive evaluation of sound
and quantifying the perceived sound quality. These met-
rics can replace costly jury testing activities, which need
to be conducted once to determine the metrics them-
selves. To employ them in product optimization tasks,
engineers and designers must understand which proper-
ties of a sound must be modified to improve the metric
results and hence, the perceived sound quality of the prod-
uct. Thus, the metrics need to be interpretable, which
may limit their accuracy and expressive power. Recently,
Kolmogorov—Arnold Networks (KANs) were introduced,
which can estimate analytical expressions of complex
learned relationships, thereby providing an effective way
to learn non-linear metrics with a differential formula-
tion. This stands in contrast to classical symbolic regres-
sion methods, which must be learned in a discrete man-
ner. This work investigates how well KANs can be used to
learn non-linear relationships for Sound Quality Metrics,
and compares the results both to fully interpretable lin-
ear equations and established black-box machine learning
methods, such as Support Vector Machines and Gaussian
Processes.
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1. INTRODUCTION

Sound quality metrics are essential tools for evaluating
and optimizing auditory experiences across various do-
mains, from automotive [1] to consumer electronics [2].
The standard approach is to estimate linear relationships
based on psychoacoustic parameters [1,3,4]. While there
are approaches that explore the use of black-box mod-
els [4, 5], the interpretability of the results remains a cru-
cial factor when deciding which model to use. Recent ad-
vancements in machine learning, particularly the advent
of Kolmogorov—Arnold Networks (KANs) [6], offer op-
portunities to examine complex non-linear dependencies
while retaining interpretability.

This work begins by defining sound quality metrics
in more detail, then provides the background on KANs
and explains why they can maintain interpretability. Af-
terwards, we discuss the methodology used to evaluate the
methods and present the results. One of our main con-
tributions is to show that using linear models based on
relevant analyses generates interpretable results compara-
ble to (or occasionally even better than) some black-box
models. Another is to demonstrate that KANs can pro-
vide a modest boost in quality without sacrificing inter-
pretability, especially when a sufficient number of sam-
ples is available.

2. SOUND QUALITY METRICS

Models of sound quality metrics can be generally repre-
sented as follows:
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fX) =y ey
In this formulation, f(-) is a transformation, X are
the predictors (often psychoacoustic metrics) of a set of
sounds, and y represents aggregate statistics of listening
test results, such as the average or median rating. Both
annoyance and sound quality can be surveyed in such a
listening test to obtain y. Although f(-) can theoretically
be any function, interpretability is highly advantageous: it
allows users to directly identify which predictors are re-
sponsible for poor evaluations, thus enabling targeted and
efficient troubleshooting.
The simplest approach to maintaining interpretability
is to apply a linear model on the predictors, so that:

Xa+b=y. @

The coefficients in the vector a can be readily inter-
preted, and if a standardization is performed on X before-
hand, they can be reasonably compared to each other. The
main advantage of such a method is that a user can easily
identify why a sound was evaluated badly, and therefore
how it should modify it to achieve a desired metric tar-
get. For some cases, however, this linear relation may be
too simple to capture the full complexity of the relation-
ship, so using general black-box models may be advanta-
geous [4]. Nevertheless, interpretable non-linear models
do exist, and one modern alternative to obtain them is the
KAN architecture [6], which is introduced in the follow-
ing section.

3. KOLMOGOROV-ARNOLD NETWORKS
(KANS)

KANs are a modern type of neural network architecture.
Unlike conventional multi-layer perceptrons, they learn
the activation function through spline interpolations while
retaining the same node weightings (a sum operator) [6].
KANS can be described by the equation:

2n+1

f(x) = Z o, (Z ¢q7p(xp)> )
q=1 p=1

where x,, represents the predictors and ®, and ¢, are
univariate activation functions, parameterized as splines.
If one replaces those spline with a symbolic formula,
one can derive a complete analytical equivalent of the
KAN network, making it interpretable. Even if no ex-
act symbolic match is found, a “’best-analytical-(greedy)-
approximation” can often provide sufficient accuracy

3)
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while retaining a certain level of interpretability.

This process allows one to find complex analytical non-
linear relations without pre-knowledge of their form.
What this means is that if, let’s say, there is a quadratic
relation between one of the variables and the response, a
KAN model may be able to find this quadratic relation by
itself, so that the user does not need to actively identify
those relations.

The complexity of the analytical formula in KANSs is
bounded by the number of nodes and layers. If this value
is excessively large, then even an analytical formula may
become intractable, diminishing interpretability. As an
example, suppose an architecture with layer sizes {2, 1} is
defined. KANs could generate a simple non-linear func-
tion involving only two inputs such as:

y = tanh(x? + cos(x2)) 4)

whereas an architecture with {2,128,64,32,16,1}
layers can become virtually as opaque as a black-box
model. In this study, we restrict the network to a max-
imum of three layers and five nodes per layer, allowing
for reasonably complex yet still interpretable non-linear
behavior. We emphasize again that those functional re-
lations are found by the model, so the only prior a user
should give is the atomic elements allowed to fit the acti-
vation functions (ex: 2% , \/z , cos(z), etc.).

4. METHODOLOGY

To evaluate the effectiveness of KANs for sound quality
tasks and compare them to established models, we curated
a benchmark from internal listening tests on sound qual-
ity ratings from diverse technical sounds. These included
electric vehicles, hair trimmers, refrigerators, coffee ma-
chines, motors, and other technical devices. Overall, 19
different listening tests are available, each containing be-
tween 15 and 85 samples, providing a representative set
of practical sound quality applications.

All tests used the SAE subjective rating scale for noise
evaluation [7] which ranges from 1 (lowest sound quality)
to 10 (highest sound quality). For the error evaluation,
we considered the mean absolute error (MAE) between
the predicted score and the participants’ average rating for
each sound. The predictors were selected based on expert
assessments of causal relationships between sound quality
and specific sound types and were confined to the analyses
implemented in the software ArtemiS from HEAD acous-
tics [8]. Most predictors were standardized aggregations
of psychoacoustic analyses, such as those defined in the
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ECMA 418-2 standard [9], for example Sottek tonality.
We also used special analyses within ArtemiS, such as the
Relative Approach [10], and classical acoustic standards
like ISO 532-1 [11], ISO 532-3 [12], and DIN 45692 [13].

For each test, we evaluated the following models: a
fully interpretable linear regression, classical black-box
models (Support Vector Regression (SVR), Gaussian Pro-
cess, and boosted trees), and two variants of KANs-one
without symbolic constraints and another with symbolic
constraints (making it interpretable). To obtain unbiased
error estimations, we used a nested cross-validation ap-
proach, illustrated in Figure 1. For N folds, each iteration
employed one fold as the test set, and the remaining N —1
folds as the training set. Within each training set, an inter-
nal cross-validation procedure was used to optimize the
hyperparameters, and then the final model was retrained
on the entire training set. This process yielded an un-
biased performance estimate. The KAN implementation
was obtained from the Pykan repository [6], boosted trees
were implemented via XGBoost [14], and the other black-
box models were implemented with Scikit-learn [15]. The
linear regression variant used was Elastic Net, also from
Scikit-learn, which optimizes both L1 and L2 penalty
losses. The hyperparameters for each model in each inter-
nal CV step were optimized with the Optuna library [16]
using a budget of 300 iterations.

Additionally, we considered two extra reference sce-
narios: a “best” case, selecting the best model for each
test (regardless of interpretability), and a “best interp.”
case, selecting the best interpretable model (either linear
and KAN) for each test.

‘ Train ‘ Train ‘ Train ‘ Train Test

Outer CV

‘ ‘ ‘ ‘ ‘ L Used for
unbiased error

evaluation

Inner CV

Used to tune
hyperparameters

L 1 [ ]

Figure 1. Outer cross-validation (CV) scheme used
to evaluate each model and to choose the hyperpa-
rameters for each test fold.

5. RESULTS
5.1 Model evaluation

The results of the nested cross-validation evaluation for all
models at the 19 listening test results are shown in Figure
2. The error is averaged for all sounds in each listening
test.
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Figure 2. Outer CV MAE of each model over all
listening tests.

All models achieve very low errors, with the best av-
erage performance coming from SVR, which is a black-
box model. However, the difference between SVR and
the linear model is small in absolute terms, suggesting that
linear models already perform quite well. The KANs ex-
hibit slightly higher errors than the linear models but still
remain in a low range. This initially indicates that there
may be no pressing need to resort to black-box models in
typical sound-quality metric problems, particularly when
the context is well understood.

However, the “Best” model shows a considerably
lower error than the SVR, and the “best interp.” approach
outperforms the standalone linear model, suggesting that
combining multiple models can provide a boost in overall
performance, which is not particular a surprise. Interest-
ing here is that now KANs represent a non-linear inter-
pretable model.

Figure 3 illustrates the improvement (or lack thereof)
of each method relative to the linear metric for individual
tests (possible since we used the same folds for all mod-
els). While average differences may be small, some indi-
vidual tests see an improvement of up to 0.2 in MAE for
non-linear approaches, indicating that there are scenarios
where more complex models can provide a clear benefit.

Figure 4 shows the “victory frequency” for each
model, indicating how often a particular model outper-
forms another. For the black-box models, although SVR
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Figure 3. MAE improvement compared to the linear
metric across individual test cases.

may produce the best results on average, there are many
cases where Gaussian Process performs better, suggest-
ing it can be a viable fallback if SVR underperforms (in
contrast to linear). Comparing our two interpretable solu-
tions (linear and KANs), KANs are better about 42% of
the time, which aligns with the modestly superior results
of "best interp.”.
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Figure 4. Frequency in which a given model outper-
forms another, computed over all tests.

It would be helpful to have a guide to when KANs
may be better than linear models, and in fact, the better in-
terpretable model correlates well with the number of sam-
ples available in the listening test. In Figure 5 we make

a comparison only of interpretable models (linear or
KAN) as a function of the number of samples in the listen-
ing tests. Linear models tend to prevail for smaller sample
sizes (fewer than about 40 samples), whereas KANs often
become more effective as the sample size increases. By
contrast, when considering all models (including black-
boxes), Figure 6 shows that black-box methods can out-
perform linear even in small-sample scenarios. Indeed,
while linear models reliably produce small errors, they are
hardly the best model.

Best Model vs Number of Samples
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Figure 5. Which model is best with respect to the
number of samples in the listening test. Here only
interpretable models.
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Figure 6. Which model is best with respect to the
number of samples in the listening test. Here for all
models.
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5.2 KAN Interpretability

KANs not only allow for non-linear modeling but also
yield interpretable symbolic formulas. Below, we provide
two examples of the equations generated. First, a rela-
tively simple one:

y = —0.832; — 0.2323 — 0.57 cos(1.26z2 — 9.62)

~0.23, ©)

which is easy to interpret in terms of the roles of x1, x5
and x3. To understand the advantages of interpretabil-
ity, suppose we want to improve the quality of a sound
but can only control zo. If one starts with a value of
9 = 9.62/1.26, we known that x5 should increase to im-
prove the metric, but only while cos(1.26xo — 9.62) stays
negative. This allows one to easily define a target without
complex sensibility analysis. The second example is more
complex (in which only two of 11 features were selected
by the KAN):

y = —0.02(—x; —0.44)?
—17.73 exp(—61.29(—z; — 0.51)?
+3.18sin(0.23z11 — 0.93)) + 0.33.

(6)

Although more challenging to interpret, it is still com-
prehensible, particularly because only two parameters are
used, as opposed to 11 in the linear model. In this model,
for example, x; is critical and should remain low to reduce
the exponential term without favoring the first quadratic
term too much. Interestingly, some KAN-derived mod-
els turned out to be essentially linear, confirming that in
some scenarios linear models might be sufficient when
based on relevant psychoacoustic analysis. While KANs
are slightly less accurate than the best black-box methods,
their interpretability can be essential for practical sound
quality optimization.

6. CONCLUSIONS

We investigated the use of KANs for interpretable non-
linear modeling of sound quality metrics by evaluating
19 different listening tests. Overall, we found that linear
models are remarkably effective when using psychoacous-
tic parameters as predictors, often providing performance
close to that of black-box methods. This is likely be-
cause psychoacoustic parameters themselves already cap-
ture significant non-linear aspects of human perception.
Nevertheless, some individual tests demonstrated a
0.2 MAE improvement with non-linear models (including
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interpretable ones like KANs), which supports a model
diversity approach. KANs by their merit allow a ”in-
terpretable diversity approach”, reducing error, on av-
erage, by 10% and, on individual cases, by up to 0.2
when combined with linear. Compared to linear models,
KANs show particular benefits in higher-sample scenar-
ios (around 40 or more samples), suggesting a practical
rule-of-thumb for model selection.

Based on the results, we believe the main bottleneck
in sound quality metric design seems to be not in the mod-
eling itself, but rather in the feature selection part. Nor-
mally, an expert engineer needs to evaluate the sounds and
find metrics with a causal relationship to the sound qual-
ity, which involves a great deal of experience. A way to
automate this selection could be a good direction of future
work.
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