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ABSTRACT

Conditional Generative Adversarial Networks (CGANSs)
have previously been used to generate simulated Room
Impulse Responses (RIRs) in which the conditional em-
bedding was formed by the room dimensions and rever-
beration time (RT60), along with the spatial coordinates
of the microphone and loudspeaker. In this paper we ex-
plore the use of CGANSs to model a complete set of real
RIRs measured in different rooms. To this end, we pro-
pose to increase the number of features used in the em-
bedding vector by including acoustic parameters related
to a given RIR such as the source-to-microphone dis-
tance and its relation to the critical distance, the direct-to-
reverberant ratio (DDR), the early-to-total sound energy
ratio (D50), and the clarity index (C50). Our interest is
twofold: on the one hand, to evaluate the performance of
CGANSs in modeling real RIRs by means of comprehen-
sive ablation experiments and, on the other hand, to assess
the importance of additional acoustic features on model
performance. For the latter purpose, we carried out ex-
plainability techniques to identify the most relevant input
features on CGAN performance. Results demonstrate the
effectiveness of our approach in generating realistic RIRs,
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providing valuable insights for future research in acoustic
modeling techniques.

Keywords: Room Impulse Responses, Deep Learning,
GAN, SHapley Additive exPlanations

1. INTRODUCTION

The rapid growth in immersive audio technologies has
significantly transformed how users perceive and inter-
act with audiovisual content. While significant advance-
ments have been made in visual quality, the acoustic
experience still holds untapped potential for enhance-
ment, particularly within domestic environments where
multi-channel audio systems increasingly replace tradi-
tional headphones. Accurate acoustic modeling, espe-
cially through Room Impulse Responses (RIRs), is essen-
tial for the successful implementation of intelligent audio
applications such as immersive 3D audio [1], active noise
cancellation [2], or sound zone systems [3].

Recent advances in generative deep learning models,
specifically Conditional Generative Adversarial Networks
(CGANSs) [4], have demonstrated promising results in
synthesizing realistic RIRs directly in the time domain.
However, the problem of understanding precisely how dif-
ferent acoustic features influence the performance of these
generative systems is still open. Our work aims to assess
this influence by modeling the RIRs of a set of different
rooms through a CGAN, such that introducing a certain
embedding as its input, the model output can faithfully in-
fer the corresponding RIR.
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Therefore, this paper analyzes the importance of different
acoustic features encoded in the embedding for CGAN-
based room modeling. We expand upon earlier work [5]
by incorporating additional acoustically relevant features
such as the distance between the source and the mi-
crophone, the value of their direct-to-reverberant ratio
(DRR), the energy level, and the room critical distance
into the conditioning process. Leveraging explainability
techniques, particularly SHapley Additive exPlanations
(SHAP) [6], we identify and discuss the most meaning-
ful acoustic parameters, providing insights into their roles
and interactions within the model.

2. METHODS
2.1 Dataset

The experiments carried out in this work make use of
a comprehensive dataset of measured impulse responses
originally introduced by Zhao et al. [7]. This dataset
is formed by recordings captured across various acousti-
cal environments, allowing a comprehensive evaluation of
our Conditional Generative Adversarial Network (CGAN)
models.

The data collection employed a configuration consisting
of a circular array of 60 loudspeakers and two distinct mi-
crophone arrays. The loudspeakers were uniformly dis-
tributed along a circle of radius 1.5m. Two microphone
arrays were utilized: the first was an 8 x 8 square grid con-
sisting of 64 microphones, spaced uniformly at 4cm inter-
vals; the second featured a dual-layer circular array with
60 microphones distributed across two concentric circles
of radii 12cm and 10cm, respectively.

Measurements were systematically acquired in all the
rooms from five distinct zones within the loudspeaker cir-
cle: four zones (A, B, C, and D) located along the perime-
ter of an inner circle of radius 0.4m, and a central zone (E).
The dataset comprises a total of 260, 400 measured RIRs
of 43,480 samples each, recorded at a sampling frequency
of 48kHz, resulting in impulse responses of approximately
one-second long. For computational efficiency and model
training purposes, RIRs were truncated to the initial 0.128
seconds (approximately 6,144 samples), long enough to
capture the direct sound and early reflections of the RIRs,
which are essential for acoustic characterization.

2.2 Fundamentals of CWGAN

When evaluating acoustic characteristics used by Condi-
tional GANs for room impulse response modeling, we fol-
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Table 1. Features included in the initial embedding.

Feature

Listener{X, Y, Z}

Description

Spatial coordinates of
the microphone (in cm)
Spatial coordinates of
the loudspeaker (in cm)
Spatial dimensions of
the room (in m)
Reverberation time (in
ms) [12]

Speaker{X, Y, Z}

Room{X, Y, Z}

RT60

low the methodology employed in previous research [4]:
the Conditional Wasserstein Generative Adversarial Net-
work (CWGAN) [8]. CWGAN is a specialized variant of
the Generative Adversarial Network (GAN) architecture,
designed specifically to generate realistic data conditioned
on given inputs or features. It consists of two main neural
networks: the generator and the critic. The generator cre-
ates new, synthetic data samples guided by the provided
conditional information, while the critic evaluates the au-
thenticity and quality of these generated samples by com-
paring them with actual, real-world data.

A significant distinction between a CWGAN and a tradi-
tional GAN is its use of conditional information to guide
the generation process, coupled with the Wasserstein dis-
tance as its training criterion [9]. The Wasserstein distance
serves as a metric to measure differences between the dis-
tributions of generated and real data, helping to reduce
common training problems observed in standard GANSs,
such as mode collapse, a situation in which a model re-
peatedly generates very similar outputs, failing to capture
the full diversity of the underlying data distribution.
Moreover, the CWGAN architecture integrates additional
techniques such as gradient clipping or gradient penal-
ties [10], ensuring that the critic network behaves well
throughout training. This stability allows the generator
network to explore more realistic data points effectively.

2.3 Acoustic Features

In our experimental analysis, we first considered a base-
line set of geometric values and one acoustic feature as
originally employed in [5, 11]. These features, serving as
our benchmark, are described in Tab. 1.

These parameters represent fundamental acoustic and spa-
tial attributes of a given environment, which in turn de-
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Table 2. New features included in the embedding.

Feature Description
Distance Distance between loudspeaker
and microphone (in cm)
Energy dB  Total energy of the RIR (in dB)
Critical Critical distance of the room
Distance (in cm)
DRR Direct-to-Reverberant  Ratio
(in dB)
D50 Early-to-total sound energy ra-
tio (in dB)

C50 Clarity Index (in dB)

termine the particular propagation of a sound within that
enclosure, establishing a reference performance for sub-
sequent model comparisons.

In the second phase of experiments, we expanded upon
the initial benchmark by incorporating additional acous-
tic characteristics into the embedding vector. These new
features are described in Tab. 2. The definition of the new
acoustic parameters “Critical Distance”, “DRR”, “D50”
and “C50” can be found in [12]. The goal was to repli-
cate the initial experiment’s conditions while assessing the
impact and relevance of these newly introduced acoustic
parameters.

Finally, a third experimental iteration has been carried out
after conducting a feature selection process based on the
outcomes of the previous experiments. Upon examina-
tion of the performance metrics and contribution of each
acoustic feature, we selected the most influential features
to include in our final model. This methodical approach
ensures the final model utilizes only the most significant
and informative characteristics for accurate acoustic mod-
eling.

3. RESULTS

In this study, we use the SHAP methodology [6] to per-
form an interpretability analysis of our CWGAN model
[8]. SHAP is an advanced interpretability framework that
quantifies the influence of individual features on a model’s
predictions. It assigns each feature a value that repre-
sents its average marginal contribution to the model’s out-
put, computed over all possible combinations of input fea-
tures. This provides a consistent measure of feature im-

portance, enabling a clear visualization and interpretation
of the model’s behavior.

To visualize and interpret these contributions, we use
SHAP summary plots, which is essential to clarify how
these visualizations should be interpreted. In SHAP plots,
acoustic features are listed vertically and ordered accord-
ing to their influence on model performance. The mag-
nitude of each feature’s influence is represented by the
SHAP values along the horizontal axis.

Negative SHAP values indicate that the corresponding
feature contributes to reducing the model’s error, mea-
sured in NMSE (dB), thus improving prediction accuracy.
Conversely, positive SHAP values mean that the feature
increases the model’s error, which is unfavorable.

Each point in the plot represents a specific embedding in-
stance. The color of these points encodes the original nu-
meric value of the feature for that embedding: red points
indicate high feature values, while blue points represent
lower feature values.

3.1 SHAP Analysis Across Experimental Stages

As described in Section 2.3, to evaluate how the geomet-
rical and acoustic features influence the performance of
our CWGAN to model the RIRs, we performed a series of
SHAP analyses across three experimental settings. Each
setting corresponds to a specific configuration of the con-
ditioning vector: 1) the benchmark model with the base
set of features of Tab. 1, 2) an extended model incorporat-
ing the additional acoustic parameters of Tab. 2, and 3) a
final model using a reduced and optimized subset of fea-
tures.

Results of the SHAP analysis for the benchmark model
are shown in Fig. 1. As said before, each point represents
one of the RIRs of the testset, which is a subset of the
training dataset, since the goal of the CWGAN is to accu-
rately model previously seen RIRs. The feature value is
represented by the color according to the range shown on
the right side of the figure, and the SHAP value represents
the impact of the corresponding feature on the model error
such that the lower the SHAP value, the lower the model
error. Features are ordered by increasing SHAP value, i.e.,
from the most “beneficial” to the most “damaging* for the
model performance.

It can be noted from Fig. 1 that ListenerY and ListenerX
are the most influential features. This result aligns with
the dataset’s structure, which includes a rich diversity of
microphone positions, providing the model with substan-
tial spatial variation to learn from. In contrast, the Speak-
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Figure 1. SHAP summary plot for the benchmark
model.

erX and SpeakerY features had a more limited impact,
likely due to the smaller number of loudspeakers present
in the dataset. RoomX and RoomY, representing the hor-
izontal dimensions of the room, also showed strong influ-
ence, in accordance with their acoustic relevance, while
RoomZ had little effect, likely because most rooms (ex-
cept the Hemi-Anechoic chamber) share the same ceiling
height [7]. Additionally, SpeakerZ and ListenerZ were
among the least influential features, which is expected
given that all microphones and loudspeakers are posi-
tioned at a fixed height, resulting in no variation along the
vertical axis. RT60, in contrast, demonstrated a meaning-
ful contribution, confirming its importance in characteriz-
ing reverberant conditions.

In the extended model configuration, shown in Fig. 2,
new features from Tab. 2 were introduced to the embed-
ding. Among these, distance emerged as the most rel-
evant feature, with higher distances generally leading to
lower model errors. Energy dB also exhibited signifi-
cant influence, with lower energy levels contributing to
better predictions — likely due to the smoother structure
of RIRs at lower amplitudes. Although critical distance
showed slightly more influence than RT60, the difference
was not substantial enough to justify its inclusion in the
final model. Given that RT60 is a more widely adopted
and representative feature in room acoustics, it was fa-
vored during feature selection. Parameters DRR, D50,
and C50 revealed different levels of influence, with DRR
standing out as the most relevant among them. Since they
are closely related, we decided to select the most relevant
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Figure 2. SHAP summary plot for the extended
model.

for the third experiment, the DRR.

A significant difference between results obtained in Fig. 1
and Fig. 2 is that overall SHAP values in this last config-
uration tended to cluster around zero, indicating that the
model had difficulty extracting strong predictive signals
from the larger set of features. This suggests that the in-
clusion of too many features may introduce redundancy
and reduce the relative influence of individual parameters.
The final experiment focused on a refined selection of fea-
tures based on the insights from the previous SHAP analy-
ses, their results are shown in Fig. 3. Compared to the sec-
ond experiment, a clear improvement in feature relevance
is observed: most SHAP values are now shifted toward
negative values, indicating that the selected features con-
tribute more consistently to reducing the model error. Ad-
ditionally, unlike in the benchmark, none of the selected
features appear to increase the error on average. This
supports the hypothesis that a controlled number of well-
chosen representative acoustic characteristics can help the
model focus more effectively on relevant information.

To further validate the insights obtained from the SHAP
analysis, we evaluated the three models on a held-out
test set using two objective metrics: Normalized Mean
Squared Error (NMSE) and Normalized Projection Mis-
alignment (NPM) of the RIRs obtained by the CWGAN
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Figure 3. SHAP summary plot for the final model.

) Y

where h(n) is the true time-domain RIR represented as a
vector of 6,144 samples as described in Section 2.1, and
h(n) is the CWGAN modeled RIR. The the NPM is de-

fined as
) N )]

3

model. The NMSE is defined as

Ih(n) —h(n)|”

Ih(n) — Sh(n)|
[h(n)]?

NPM = 10log;, (

where )

h' (n)h(n)

flT(n)fl(n) .
The mean and variance of both metrics are summarized in
Tab. 3.
Interestingly, while the SHAP results suggested a more
structured and consistent influence of the selected features
in the final model, this result did not translate into a lower
NMSE or NPM on the test set. In fact, the benchmark
model slightly outperformed both the extended and final
models in terms of average error. The extended model
showed the worst performance, consistent with the SHAP
findings where feature influence was diffuse and close to
zero. Although the final model improved upon the ex-
tended one, it still fell short of the benchmark in terms of
raw error.
This discrepancy highlights an important consideration:
SHAP provides a valuable lens into feature relevance and
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Table 3. Mean and (variance) in dB of the NMSE
and NPM metrics computed over the test set.

Model NMSE (dB) | NPM (dB)
Benchmark | -2.11 (3.4) -2.96 (1.5)
Extended -0.80 (5.6) 234 (1.1)
Final -0.96 (5.5) -2.45(1.2)

model interpretability, but it does not guarantee improve-
ments in performance metrics. The results suggest that,
although feature selection helped reduce redundancy and
improve focus, the benchmark configuration may still cap-
ture additional information beneficial for RIR synthesis.

4. CONCLUSIONS

This work has presented an interpretability-driven anal-
ysis of Conditional GANs for modeling Room Impulse
Responses using SHAP explanations. By progressively
modifying the feature set across three experimental con-
figurations, we were able to assess not only the predictive
relevance of individual acoustic features, but also the ef-
fect of their selection on model performance.

Our results show that while the benchmark model, using a
base set of spatial and reverberation parameters, achieved
the best quantitative performance, the final model demon-
strated a more interpretable use of its inputs, with all se-
lected features contributing positively to the precision of
the prediction. The extended configuration, which incor-
porated a large number of features, resulted in degraded
performance and limited interpretability, highlighting the
risk of over-parameterization.

Ultimately, this study underscores the importance of bal-
ancing interpretability with performance in generative
acoustic modeling. Explainability tools such as SHAP of-
fer valuable insights that can guide feature selection, im-
prove model transparency, and inform future architectures
for RIR synthesis and modeling.
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