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ABSTRACT

Accurate Head-Related Transfer Functions (HRTFs) are
key elements for virtual audio rendering and can be nu-
merically computed from detailed 3D scans of a subject’s
head and ears. While high-precision scanning techniques
yield reliable geometries, their accessibility is limited.
Photogrammetry, leveraging widely available camera sen-
sors, offers a more accessible alternative, though it intro-
duces scanning errors affecting HRTF fidelity.

This study investigates the use of Deep Neural Networks
(DNNs) to denoise photogrammetric ear scans. Various
DNN architectures are tested against a classical denoising
approach. To improve performance, the DNNs are mod-
ified and fine-tuned on pinna samples with synthetic er-
rors replicating those in photogrammetric dummy head
scans. Comparing HRTFs from original and denoised
scans with reference data shows that the best-performing
DNN reduces HRTF deviations, though improvements re-
main limited. Correlation analyses between geometric
features and HRTF metrics, computed on scanned point
clouds and corresponding HRTFs, identify key measures
for assessing deviations from reference scans. These find-
ings provide insights for refining denoising techniques and
enhancing photogrammetric scans for HRTF computation.
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1. INTRODUCTION

Spatial sound perception relies on the brain’s interpre-
tation of auditory cues in signals reaching a subject’s
eardrums [1]. The Head-Related Transfer Functions
(HRTFs) contain these binaural and monaural cues. The
latter, largely influenced by pinna morphology, are cru-
cial for elevation perception [2]. HRTF individualisation
is essential for realistic binaural audio rendering. How-
ever, standard acquisition methods, i.e. measurements or
simulations via numerical techniques such as the Finite
Element Method (FEM) on a subject’s scan, require spe-
cialised equipment, limiting large-scale application [1, 3].

This study focuses on numerical HRTF computa-
tion, leveraging efficient simulation techniques and ac-
cessible scanning methods. A key challenge of this ap-
proach is capturing the pinna geometry, requiring a res-
olution of 1mm for accurate HRTFs [1]. While laser
and structured-light scanners provide sufficient resolution,
their widespread use is limited by the costly equipment.
Photogrammetry, employing common camera sensors, of-
fers high scalability. However, it tends to introduce scan-
ning errors due to self-occlusion, particularly in acousti-
cally relevant concave pinna regions [4]. These errors can
severely impact the HRTF spectral features, compromis-
ing the elevation cues. Thus, denoising photogrammetric
point clouds or using alternative acquisition methods is
necessary to obtain accurate individual HRTFs [3].
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Point cloud denoising has recently gained attention,
especially through Deep Neural Network (DNN) tech-
niques, often outperforming classical methods based on
filtering or optimisation [5]. DNNs are typically trained
on datasets of generic shapes corrupted with synthetic
error, usually modelled as unstructured Gaussian noise.
While effective on such noise types, their performance
tends to decline when error characteristics differ signifi-
cantly from those encountered during training [6].

This paper evaluates the effect of DNN-based denois-
ing on photogrammetric scans of dummy head ears and
its potential to enhance the accuracy of computed HRTFs.
Two DNNs are compared against a classical denoising
method using various geometric metrics. To improve de-
noising performance, the DNNs are trained or fine-tuned
on a dataset of ear geometries corrupted by synthetic pho-
togrammetric error replicating experimental data. Mod-
ifications are applied to one DNN to further enhance its
effect. HRTFs computed on meshes derived from original
and denoised scans are assessed using objective and per-
ceptually inspired metrics. Correlations between geomet-
ric and HRTF metrics are analysed to provide insight into
the most effective geometric measures in relation to HRTF
accuracy. These findings can better guide the selection of
relevant metrics and loss functions for developing HRTF
individualisation techniques based on individual scans.

2. METHODS

2.1 Denoising methods

Let Y = {yi, i = 1, . . . , NY } be a noisy point cloud
of NY points yi, often approximated as yi = xi + ei,
where ei is an error affecting the clean point cloud X =
{xi, i = 1, . . . , NX}. Denoising is formulated as ỹi =
D(yi), where D is a function mapping Y to its denoised
version Ỹ . D can represent classical denoising techniques
or DNNs usually trained in a supervised manner on noisy-
clean data pairs [5]. To evaluate the denoising effect, the
deviation between Ỹ (or Y ) and X is measured using met-
rics such as the Chamfer Distance (CD) [6]:

CD =
1

NX

∑
xi∈X

min
yi∈Y
∥xi, yi∥2+

1

NY

∑
yi∈Y

min
xi∈X

∥yi, xi∥2,

(1)
or the symmetric Hausdorff Distance (HD) [5]:

HD = max

{
sup
xi∈X

inf
yi∈Y
∥xi, yi∥, sup

yi∈Y
inf

xi∈X
∥yi, xi∥

}
.

(2)

Completeness (Cmp) has also been used to assess ear
scans [4], representing the percentage of reference points
in X within 1mm of the nearest point in Y . Additionally,
a Mesh Distance (MD) is defined using a distance func-
tion dM (y,M), measuring the deviation between y and
the nearest face of a reference mesh M [5]:

MD =
1

NY

∑
yi∈Y

dM (yi,M)2. (3)

In this work, the tested DNNs for point cloud de-
noising are PointCleanNet (PCN) [6] and DMRDenoise
(DMR) [7]. A classical polynomial filtering method
(POL) is used as a benchmark [8]. These models oper-
ate on local point cloud patches, i.e. neighbouring points
within a radius r from a query point (r-balls), with r typ-
ically set as a small fraction of the point cloud bounding
box diagonal (l) [5].

PCN processes an input r-ball centred at a query point
(ŷi) through a spatial transformer network, rotating patch
points to a canonical orientation. Subsequently, a feature
extractor and symmetric operator compute order-invariant
patch features, which are passed to a regressor predicting
an optimal displacement vector for ŷi. Supervised training
is performed on noisy-clean point patch pairs extracted
from generic shapes with Gaussian noise at varying levels.
Training patches consist of several randomly sampled r-
balls with r = 5% of l. The loss function is formulated
as a weighted combination of two terms: Ls, measuring
proximity between X and Ỹ , andLr, promoting a uniform
point distribution in Ỹ . These are defined as the minimum
and maximum squared distances between the denoised ŷi
and the corresponding clean patch in X , respectively [6].

DMR employs an auto-encoder architecture compris-
ing a representation encoder and a manifold reconstruc-
tion decoder. The encoder features a differentiable down-
sampling unit selecting points closer to the underlying ge-
ometry. The decoder maps each sampled point and its
neighbours onto a patch manifold, enabling up-sampling
of the denoised point cloud. Supervised training is done
similarly to PCN, using CD as the loss function [7].

POL operates by fitting an implicit plane to an r-ball
and approximating the point patch with a 2D polynomial
of arbitrary order. The estimated surface normal is then
used to project the query point onto the polynomial sur-
face [8]. In this study, r is set to 3mm, and a 2nd order
polynomial approximation is applied.
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2.2 Ear dataset

DNNs require extensive datasets for effective training.
Thus, multiple scans are conducted on three dummy
heads: the Neumann KU100 (KU1), the Neutrik COR-
TEX MK2 (COR), and the GRAS KEMAR 45BB (KEM)
with its original ears and two sets of custom 3D-printed
pinnae [9]. Photogrammetric scans are performed on the
optically treated manikins, using white matte scanning
spray to enhance surface reconstruction [4]. Following
the methodology in [3], the scans yield ear point clouds of
approximately 100 000 points. A single scan is conducted
for COR and the three KEM configurations, whereas the
KU1 scan is repeated four times after reapplying the sur-
face treatment. Precise reference geometries are also re-
quired. For KU1, this is taken from a previous scan,
where a uniform triangular mesh with an Average Ele-
ment Length (AEL) of 0.6mm is acquired through a laser
scanner [3]. The KEM geometry is derived from its CAD
model, meshed with an AEL of 0.6mm, also replacing
its original pinnae with the custom ear geometries [9].
For COR, a structured-light scan from a study on binaural
room impulse responses is used [10], featuring an AEL of
3.5mm at the head and below 1.5mm at the ears.

Given the low amount of scanned data, the properties
of the Real Photogrammetric Error (RPE) are extracted
and used to design a Synthetic Photogrammetric Error
(SPE) replicating the real one. This is achieved by align-
ing the scans with the corresponding reference mesh and
computing the Signed Distance Function (SDF) between
them. The SDF represents the Euclidean distance, with
a positive sign when the point lies outside the underlying
surface and vice versa. Fitting the best distribution to the
SDF for each scanned ear shows that it is generally well
approximated by a t-distribution (T ) with median param-
eters: shape ν = 1.95, location µ = 0.02% of l, and scale
σ = 0.20% of l, where l ≈ 117mm. Furthermore, Cmp
and maximum deviation (Mxm) are determined. The for-
mer, relating to holes in scanned point clouds, has a me-
dian value of Cmp = 93.45%, while Mxm = 3.78% of
l. Ear regions exhibiting the largest RPE are approximated
using the Ambient Occlusion (AO) [4], computed as the
fraction of unobstructed directions over a hemisphere cen-
tred at a surface point, ranging from 0 to 1. Instead of
AO, its complement, i.e. AOc = 1 − AO, is used to ob-
tain larger values at the most occluded regions, where er-
rors are concentrated. To further emphasise concave pinna
structures, AOc is raised to an integer power p, found by
maximising the Pearson’s correlation coefficient between

AOcp and the absolute SDF at each point, yielding a me-
dian value of p = 3 across all scans. A visualisation of
AOc and its raised version with p = 3 is shown in Fig. 1.

(a) p = 1. (b) p = 3.

Figure 1: KU1 right ear point cloud from the laser
scan. The colour shows the ambient occlusion com-
plement, raised to the integer power p.

Based on the RPE parameters, SPE realisations are
generated and used to corrupt individual meshes sourced
from the HUTUBS HRTF database [11]. The processing,
mainly done in Pymeshlab 1 , starts by uniformly remesh-
ing a head mesh to an AEL of 0.3mm and computing
the AO at its vertices. A clean left ear point cloud X ,
with NX ≈ 100 000, is obtained by extracting mesh ver-
tices and related AO within a cylinder of 40mm radius
aligned with the interaural axis. A corresponding noisy
point cloud Y is created by subsampling X to introduce
incompleteness, and generating an additive error E =
{ei, i = 1, · · · , NY } following a scaled t-distribution T̂ ,
used to displace the subsampled X according to:

yi = xi + ei = xi + T̂i · ni, (4)

where ni denotes the point normal at xi. The procedure
is detailed in Alg. 1, where weighted random choice al-
gorithms (RChoice) are employed to subsample X and
assign larger |E| values to the most concave pinna re-
gions using a weight w proportional to AOcp. Differ-
ent noise levels are generated by defining a range of σ
values (σrange) between 0.1% and 0.5% of l. Cmp is
selected based on σ, varying from Cmpmin = 80% to
Cmpmax = 98%. These values approximate the observed
σ and Cmp ranges in the RPE.

A comparison between the RPE and SPE at the right
ear of the KU1 is shown in Fig. 2. While similarities are

1 https://zenodo.org/records/14974687
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Algorithm 1 Synthetic photogrammetric error
Input: clean point cloud X , NX , l

error parameters ν, µ, σrange, p
weight w = AOcp

Output: noisy point cloud Y
1: for σ ∈ σrange do

# Subsample X
2: η ← (σ − σmin)/(σmax − σmin)
3: Cmp← Cmpmax ∗ (1− η) + Cmpmin ∗ η
4: NY ← Integer(NX ∗ Cmp)
5: iS ← RChoice(iX , size=NY , weight=1 - w)
6: XS ← X[iS ] # Subsampled X

# Generate scaled T samples
7: T ← GenerateT (ν, µ ∗ l, σ ∗ l, size=NY )
8: for Ti ∈ T do
9: if |Ti| > Mxm then

10: T̂i ← Ti/max |Ti| ∗Mxm
11: else
12: T̂i ← Ti
13: end if
14: end for

# Displace Y based on assigned T̂ samples
15: iT̂ ← SortIndex(|T̂ |, order=descending)
16: iYw ← RndChoice(iY , size=NY , weight=w)
17: E[iYw

]← T̂ [iT̂ ] # Sorted error samples
18: Y ← AddNoise(XS , E) # Eqn. (4)
19: end for

seen, particularly at the most concave pinna structures,
some differences are noted. Specifically, the RPE is higher
than the SPE at the most convex parts. However, errors in
these regions have a low influence on the HRTFs [3]. As
the SPE distribution is designed to follow that of the RPE,
objective metrics computed on both yield similar values.

The left ears of 20 HUTUBS subjects are selected as
training data, with 6 SPE levels applied, i.e. σ ranging
from 0% to 0.5% of l in steps of 0.1%, with the 0% value
included to train the DNNs to preserve the clean geometry
[6]. Validation and testing datasets consist of 10 left ears
each, with 3 error levels, i.e. σ = 0.1%, 0.3% and 0.5%.
This results in 120 noisy-clean data pairs for training,
and 30 each for validation and testing, consistent with
the amount of data used in the original training of the
DNNs [6, 7]. Additionally, a dataset is created using the
dummy head scans, including both left and mirrored right
ears, resulting in 16 samples from 8 dummy head scans.
This is done to evaluate the denoising effect on the RPE.

(a) Real error. (b) Synthetic error.

Figure 2: KU1 right ear point clouds with real and
synthetic photogrammetric error. The colour shows
the SDF from the laser scan, cropped at ±2.5mm.

2.3 HRTF computation and assessment

Graded meshes suitable for HRTF computation are ob-
tained from the scans as in [3]. Similarly, meshes are gen-
erated after merging the denoised ears with the head scan.
The adaptive order FEM approach is leveraged for the
HRTF computations [12], using the fine accuracy level,
and employing an automatically matched layer to impose
free-field conditions [13]. The results of this method are
validated against measured data in [14]. Given the un-
known acoustic impedance of the manikin materials and
its low effect on HRTFs [15], rigid boundary conditions
are applied. The results are compared through the Inter-
Subject Spectral Difference (ISSD) [3]:

ISSD =
1

NΨ

∑
Ψ

Varf

(
H̃i(Ψ, f)− H̃j(Ψ, f)

)
, (5)

with Varf denoting variance between the dB amplitude
of two gammatone-filtered HRTFs, H̃i and H̃j , averaged
across frequency f and number NΨ of incidence angles Ψ.
Since low deviations are seen in binaural metrics between
reference and photogrammetric KU1 HRTFs in [3], these
are omitted. A sagittal plane localisation model is used
as a perceptually inspired metric [2], implemented in the
Auditory Modeling Toolbox 1.5 2 . This model compares a
template and a target HRTF through a virtual sound local-
isation experiment, predicting localisation results in terms
of Quadrant Error (QE) and Polar Error (PE), relating to
percentage of confusion and local angular precision be-
tween target and localised sound source, respectively.

2 https://amtoolbox.org/
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3. RESULTS AND DISCUSSION

3.1 Denoising

Different trainings of the DNNs are tested, including pre-
trained models (PRT) on the original dataset of generic
shapes with unstructured noise [6,7], and refined versions
(RFN) through fine-tuning on the ear dataset with SPE.
Additionally, PCN is further modified to better tackle
scanning errors by adjusting its loss function’s proxim-
ity term to L̂s = Ls · ÂOcyi

, where ÂOcyi
represents

AOc at yi normalised by its average value on the point
cloud. This model, denoted as PCN modified (PCNm), is
retrained from scratch (RTR) on the ear dataset with SPE
and further fine-tuned on a subset of dummy head scans
with RPE. For this, the COR and KMR scans are used for
training and validation, while the KU1 geometries are re-
served for testing. While other modifications and trainings
of the DNNs have been tried, their results are not included
in the following analyses given their lower performance.
A summary of the tested DNN models is listed in Tab. 1.

Table 1: Summary of training and fine-tuning
datasets for tested DNN models.

DNN ID Training data Fine-tuning data
DMR PRT original DMR /
DMR RFN original DMR ears with SPE
PCN PRT original PCN /
PCN RFN original PCN ears with SPE

PCNm RTR ears with SPE ears with RPE

The denoising effect is evaluated on ear geometries
affected by SPE and RPE. For the latter, only the KU1
samples are tested, as the others are used for refining
PCNm. The CD, HD, and MD, defined in Eqn. (1), (2),
and (3), respectively, are used for assessment. To facilitate
comparisons, the Noise Reduction (NR) is computed:

NR =
M(Y,X)−M(Ỹ , X)

M(Y,X)
, (6)

whereM denotes a distance metric between clean, noisy,
and denoised point clouds, i.e. X , Y , and Ỹ , respec-
tively. Effective denoising corresponds to positive val-
ues in Eqn. (6), while negative NR indicates increased er-
ror in Ỹ . The resulting NR for data with RPE and SPE
is shown in Fig. 3, plotted separately for each denoising

method, starting from the initial noisy photogrammetric
point cloud (NSY), having NR = 0.

(a) Ear dataset with SPE.

(b) Ear dataset with RPE.

Figure 3: Noise reduction of denoising algorithms
on different datasets. The bars show the interquartile
range, while the markers show the median.

The results in Fig. 3a for ear data with SPE show that
all models can reduce CD and MD, though DMR exhibits
high variability. However, their impact on HD is minimal
or even negative, e.g. for PCN. Since HD is influenced
by outliers, i.e. single points at a large distance from X ,
this suggests that the denoising methods struggle to ad-
dress them. Refinement or retraining appears beneficial
only for PCN. Indeed, PCNm RTR is the only DNN out-
performing POL in CD and MD, reaching NR ≈ 50%.
The other models show limited or no improvement over
their pretrained versions. For RPE, the results in Fig. 3b
indicate a weaker denoising effect. Only POL, PCN RFN,
and PCNm RTR achieve NR > 20% for MD, while other
models and metrics show limited or adverse effects. This
can relate to differences between SPE and RPE, hinder-
ing generalisation of the models refined on the SPE alone.
Although PCNm RTR is fine-tuned on a small set of sam-
ples with RPE, its denoising performance remains modest,
probably due to the low amount of data for refinement.

A visualisation of the denoising effect of the various
models on a photogrammetric scan (PHO) of the KU1
right ear is provided in Fig. 4. Only samples denoised with
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(a) PHO. (b) POL. (c) DMR RFN. (d) PCN RFN. (e) PCNm RTR.

Figure 4: KU1 right ear point cloud from the photogrammetric scan PHO, denoised with POL and refined RFN
or retrained RTR DNNs (PCN, DMR). The colour shows the SDF from the laser scan, cropped at ±2.5mm.

POL and the refined or retrained versions of the DNNs are
displayed. It is noticeable that different algorithms yield
different outcomes. POL, enforcing smoothness in the ge-
ometry, is effective in removing overall noise, although
outliers persist in the most concave pinna regions. DMR
tends to reduce errors in some pinna locations while intro-
ducing deviations in others, likely due to the down-sample
up-sample technique, which may be hindered by the com-
plex pinna shape. PCN RFN and PCNm RTR exhibit simi-
lar overall denoising, with a notable difference in the most
concave locations, where PCNm RTR specifically targets
denoising. Indeed, fewer outliers are observed in these
regions in the PCNm RTR results.

3.2 HRTFs

The denoising effect on the point clouds is further evalu-
ated by computing HRTFs on the KU1 geometries and as-
sessing them in terms of their ISSD, defined in Eqn. (5),
and sagittal plane localisation error, in relation to the
HRTFs of the reference KU1 laser scan (LAS). The ini-
tial photogrammetric scans PHO and denoised samples
with POL and the refined or retrained DNNs are com-
pared. The results are summarised in Tab. 2. It is notable
that the only model capable of consistently reducing the
deviation of the PHO HRTFs from the reference is PCNm
RTR, though by a small amount. The resulting deviation is
slightly higher than that between reference and accurately
measured HRTFs in [3], considered to relate to low differ-
ences in localisability in binaural renderings. Conversely,
POL tends to increase the HRTF deviation, while the other
models show little to no benefit, with improvements in
only some HRTF metrics. Although a clear explanation

for these results is not trivial, the differences might be
linked to the specific denoising effect of each method, as
displayed in Fig. 3. For instance, POL and PCN RFN are
more effective on the overall point clouds but leave errors
in the most critical pinna regions, which are better handled
by PCNm RTR. Conversely, DMR might over-smooth the
geometry, introducing additional discrepancies.

Table 2: Median deviation of objective and perceptu-
ally inspired metrics for scanned and denoised KU1
HRTFs from the KU1 laser scan HRTF.

HRTF Median deviation from reference
ID ISSD /dB2 QE /% PE /◦

PHO 1.54 8.53 4.83
POL 2.05 9.81 5.70

DMR RFN 1.58 8.48 3.96
PCN RFN 1.50 8.71 4.42

PCNm RTR 1.28 5.58 3.21

The QE and PE results are further summarised in
Fig. 5, where the median and interquartile range of the lo-
calisation errors obtained on the computed KU1 HRTFs
are compared to the expected error ranges with individual
accurate, inaccurate, and non-individual KU1 HRTFs [3].
While the median values show that the deviation is the
lowest with PCNm RTR, it is notable that all results exhibit
a large spread, similar to that of the original PHO data,
which the denoising models struggle to reduce. This large
variability, ranging from values close to the deviation be-
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tween reference and accurately measured data to levels ex-
ceeding the deviation observed with individual inaccurate
results affected by measurement error, is attributed to dif-
ferent amounts of scanning errors in the initial photogram-
metric data, and necessitates further analyses.

Figure 5: Sagittal plane localisation error with tem-
plate KU1 laser scan HRTF and different scanned
and denoised target HRTFs. The bars show the in-
terquartile range, while the markers show the me-
dian. The envelopes show the interquartile range
of several individual and non-individual measured
HRTFs. The black line corresponds to chance rate.

3.3 Correlation

Evaluating the correlation between geometric and HRTF
metrics computed on ear point clouds and their corre-
sponding HRTFs provides insights into the most relevant
metrics for assessing ear geometries. These findings can
inform the selection of an appropriate loss function to op-
timise the denoising models. Thus, the Pearson’s corre-
lation coefficient is computed between all tested geomet-
ric metrics and the ISSD, QE, and PE calculated on the
KU1 geometries. The resulting median values are shown
in Fig. 6 as a function of the integer power p applied to
ÂOc for weighting the distance from the reference geom-
etry before computing the geometric metrics.

The correlation between geometric and HRTF met-
rics remains low when no weighting is applied, i.e. for
p = 0. In this case, the highest correlation, observed for
MD, reaches 0.3, while CD exhibits values close to 0;
hence, the latter is ineffective at predicting deviations be-
tween HRTFs computed on the tested geometries. All cor-
relation coefficients increase with p, suggesting that the
distance weighting emphasises points in acoustically rele-
vant pinna regions. All metrics achieve coefficients above
0.5 at p = 3, with CD and MD exceeding 0.7. Thus, em-
ploying these weighted metrics is recommended to better

Figure 6: Median correlation coefficients between
geometric and HRTF metrics computed on the
scanned and denoised KU1 point clouds and related
HRTFs, as a function of the integer power p used to
raise the AOc for distance weighting.

assess ear point clouds and as a potential loss function in
DNN methods to improve denoising.

As an alternative approach, a Parametric Pinna Model
(PPM) can be used to obtain a reliable mesh from mea-
sured or scanned data of a target ear. This method morphs
a precise ear mesh to match the target geometry by tun-
ing a set of parameters [1]. DNNs can be used to pre-
dict optimal PPM parameters from pinna images, yielding
promising outcomes [16]. While the results of that study
are assessed with a metric similar to HD, the current find-
ings suggest that other metrics, such as the weighted CD
or MD, may offer a more reliable quantitative assessment
of the match between pinna geometries.

4. CONCLUSION

Denoising of photogrammetric pinna scans to enhance
HRTF accuracy is explored using both DNNs and a clas-
sical approach. Two DNNs are fine-tuned on ear data cor-
rupted with synthetic errors, with one model further mod-
ified to better target errors in concave pinna regions. Geo-
metric metrics comparing the original, denoised, and ref-
erence scans indicate that fine-tuning is not always ben-
eficial; only one DNN outperforms the classical method
on synthetic data and performs comparably on real scans.
This likely reflects that the synthetic error only partially
represents real noise, highlighting the need for more data
to improve the former or enable training on real scans.

HRTF comparisons show that only the modified
DNN consistently reduces deviations from reference data,
though the improvements remain marginal and may bene-
fit from a more suitable loss function. Correlation analy-
ses reveal that the MD is an effective metric to assess ear

6611



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

point clouds in relation to their HRTFs, and that applying
a distance weighting factor proportional to AOc further
enhances the correlation. These findings offer valuable
insights for refining denoising techniques and improving
HRTF individualisation based on scanned data.
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