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ABSTRACT

Statistical reverberation theory is a foundational frame-
work for describing sound in enclosures, yet it often
fails in practical scenarios, especially in rooms with non-
compact geometries or uneven material distributions. This
study investigates its validity by examining the absorption
and scattering coefficients that govern the build-up and de-
cay of non-specular sound fields. Backwards integrated
impulse responses, generated with an image source model
and a SPPS model (I-SIMPA), are used to extract coeffi-
cients via exponential fittings. These reconstructed coef-
ficients are then compared to the conventional mean area-
weighted coefficients across scenarios with varying com-
pactness and material distributions. Results indicate that
the fit improves with increasing compactness and that in
terms of the spatial distribution of material properties sce-
narios with opposing walls of differing material properties
show the poorest agreement. The findings of this study
highlight the need to assess room characteristics before
applying statistical reverberation theory or use an acous-
tic prediction model that is (partly) reliant on it.
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1 Introduction

Concerns about the classical statistical reverberation mod-
els like Sabine [1] and Eyring [2] arise from their reliance
on a room-averaged decay rate derived from the mean
free path, which often fails to capture the manifold of de-
cay phenomena present in realistic room acoustical sce-
narios [3]. The prerequisites that are necessary for the
foundational assumptions of statistical reverberation the-
ory to hold, namely that rooms are compact and that ab-
sorption properties are uniformly distributed, are not al-
ways met, particularly in the case of disproportionate or
weakly mixing rooms, in which sound energy disperses
slowly or unevenly, violating the assumptions of uniform
energy density underlying statistical models. Many exten-
sions to the classical reverberation models have been pro-
posed over time to make better prediction for real rooms,
for example [4–6]. Although these models have relaxed
some of the restrictive assumptions of classical reverber-
ation theory, they remain insufficient for fully capturing
the complexities found in many practical real-world sce-
narios.
This work evaluates the applicability of the classical one-
dimensional decay descriptions in a three-dimensional
context. By decomposing the sound field into specular
and non-specular components, we reconstruct average ab-
sorption and average scattering coefficients utilizing im-
age source and particle-tracing impulse responses. Our
goal is to determine when classical approaches remain
valid and to quantify deviations using goodness-of-fit met-
rics and by comparing mean area-weighted absorption and
scattering coefficients with those derived from impulse re-
sponses.
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2 Used prediction methods

2.1 Compactness

A measure of an enclosures compactness, is to compare it
to the most compact enclosure with the same volume i.e.
a spherical enclosure. This measure is called the ‘spheric-
ity’ (Ψ) and is defined as follows;

Ψ =
π1/3 (6V )

2/3

A
(1)

with V the geometry’s volume and A its surface area. For
example a spherical enclosure has a sphericity of 1 and
the most compact cuboid enclosure is a cube which has a
sphericity of 0.81.

2.2 The Image Source Method

In this study, we utilize a pressure-based IS model for the
special case of cuboid enclosures, as was described by
Allen and Berkley [7], to model the specular part of the
sound-field.

2.3 SPPS method

In order to model a total impulse response consisting of
scattered as well as specularly reflected sound compo-
nents we use the open source room acoustical simulation
software I-Simpa with the build-in SPPS method. The
SPPS method [8] used in I-Simpa [9] is a particle tracing
method.

2.4 Statistical reverberation theory

Note that the idealized decay of sound energy in a room,
based on classical statistical acoustics, is given by:

Wtot(fi, t) =
(
1− ᾱ

(
fi
))c/lc·t

, (2)

with ᾱ the room-averaged absorption coefficient and lc the
mean free path of the room (4V/S). This Wtot can be split
into a specularly (Ws) and non-specularly reflected part
(Wns),

Wtot = Ws +Wns, (3)

where the specularly reflected part is described as,

Ws(fi, t) =

[(
1− s̄

(
fi
))

·
(
1− ᾱ

(
fi
))]c/lc·t

, (4)

with s̄ the room-averaged scattering coefficient. The non-
specularly reflected part is described as,

Wns(fi, t) =

[
1−

(
1− s̄

(
fi
))c/lc·t

]
·
(
1− ᾱ

(
fi
))c/lc·t

.

(5)
Wtot, Ws and Wns are shown in Fig. 1 for a room with
ᾱ = 0.18, s̄ = 0.2 and lc = 2.97m.
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Figure 1. Temporal evolution of total (Wtot), specular
(Ws), and non-specular (Wns) reflected sound
energy.

Note: All quantities are normalized with respect to
the initial reflected energy, such that Wtot = 1 at t = 0,
and are therefore dimensionless.

3 Method
In Sec.3.1, we describe the calculation of absorption and
scattering coefficients within the framework of statistical
reverberation theory. To assess how well these averaged
coefficients represent a room’s sound field, we compare
them with absorption and scattering coefficients extracted
from impulse responses generated using the sound parti-
cle simulation and the Image Source (IS) method. The
procedure for obtaining these coefficients is detailed in
Sec.3.2. We then discuss the analysis of these extracted
coefficients in Sec. 3.3. Finally, this section concludes
with an overview of the room acoustical scenarios that will
be investigated.

3.1 Calculating mean area-weighted coefficients

In classical statistical reverberation theory, the calcula-
tion of sound decay curves relies on the volume, the total

4216



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

boundary surface area of the enclosure, and the mean ab-
sorption coefficients for a given frequency. In this paper,
we consider a frequency-independent case, where a single,
representative mean area-weighted absorption coefficient
ᾱ is used, defined as:

ᾱ =
1

Stot

n∑
i=1

αi · Si, (6)

where αi is the random incidence absorption coefficient of
each surface, and Si is the area of each surface, with Stot
representing the total surface area. Similarly, the mean
area-weighted scattering coefficient s̄ can be computed as:

s̄ =
1

Stot

n∑
i=1

si · Si, (7)

where si is the scattering coefficient for each surface.

3.2 Obtaining absorption and scattering
coefficients utilizing impulse responses from
sound particle simulation and image source
method

In order to reconstruct absorption and scattering coeffi-
cients from impulse responses we adopt the following ap-
proach. We add a surface scattering coefficient to the im-
age source model, which basically entails that upon each
reflection in a surface besides the reduction due to sound
absorption there is now an additional reduction according
the scattering coefficient assigned to that surface. The re-
sult will be an impulse response that represents the spec-
ular field only (hs).

We then simulate the same room only with a model
that simulates the total impulse response, that is specular
and diffuse part combined (htot). For that purpose we use
the open source platform I-Simpa with its build in particle
tracer engine (SPPS).

We now have two impulse responses, htot and hs.
Note that, within the framework of the statistical reverber-
ation theory described in the previous section, Wtot ≈ h2

tot
and Ws ≈ h2

s . This similarity allows us to relate the en-
ergy decay of the total and specular components to the
squared impulse responses. Furthermore, from h2

tot and
h2

s , we can also derive the non-specular portion of the
sound field,

h2
ns(t) = h2

tot(t)− h2
s (t). (8)

3.2.1 Utilizing Schroeder integration to smooth
out reflection peaks

The impulse responses from both the image source and
SPPS simulations exhibit discrete reflection peaks. To
smooth these peaks and derive a continuous energy decay
curve (EDC), we apply Schroeder integration [10], which
sums the reflections in reverse time. The resulting EDC
is then normalized to its maximum value, as specified in
ISO 3382-1 [11]. For the SPPS impulse response htot, we
compute the energy decay as:

Eh2
tot
(t) =

∫∞
t

h2
tot(τ) dτ∫∞

0
h2

tot(τ) dτ
, (9)

and similarly for the squared ISM response with scattering
hs:

Eh2
s
(t) =

∫∞
t

h2
s (τ) dτ∫∞

0
h2

s (τ) dτ
. (10)

Performing the reverse-time integration on the theoretical
description of Wtot and normalizing it to its definite inte-
gral from zero to infinity yields Wtot again. I.e. if,

Wtot(t) = (1− ᾱ)tc/lc , (11)

the reverse-time integral of Wtot is:
∞∫
t

(1− ᾱ)tc/lc dτ = − 1

ln (1− ᾱ)
· (1− ᾱ)tc/lc (12)

and the integral from 0 to infinity is:
∞∫
0

(1− ᾱ)tc/lc = − 1

ln (1− ᾱ)
(13)

Thus, the energy decay for Wtot becomes:

EWtot (t) =
− 1

ln (1−ᾱ)
· (1− ᾱ)tc/lc

− 1
ln (1−ᾱ)

= (1− ᾱ)tc/lc = Wtot

(14)
Similarly, for the specular part of the energy decay, we
get:

∞∫
t

((1− ᾱ) (1− s̄))tc/lc =

− 1

ln (1− ᾱ) + ln (1− s̄)
· ((1− ᾱ) (1− s̄))tc/lc (15)

and the integral from 0 to infinity is:
∞∫
0

((1− ᾱ) (1− s̄))tc/lc = − 1

ln (1− ᾱ) + ln (1− s̄)
(16)
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EWs

− 1
ln (1−ᾱ)+ln (1−s̄)

· ((1− ᾱ) (1− s̄))tc/lc

− 1
ln (1−ᾱ)+ln (1−s̄)

=

((1− ᾱ) (1− s̄))tc/lc = Ws (17)

The reverse-time integrated and normalized theoret-
ical decay Wtot and Ws are self-similar—i.e., their
normalized reverse time integrals retain the same
functional form as the original expressions. This the-
oretical property proves useful when applied to im-
pulse responses: by performing the same reverse-
time integration and normalization on simulated re-
sponses such as h2tot or h2s , we obtain smooth energy
decay curves (EDCs) suitable for exponential fitting.
These fitted curves enable the estimation of absorp-
tion and scattering coefficients. Figure 2 shows the
total energy decay Eh2

tot
, the specular part Eh2

s
, and

the non-specular part Eh2
ns

, which resemble the theo-
retical decay curves in Fig. 1.
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Figure 2. Total Eh2
tot

, specular Eh2
s
, and non-specular Eh2

ns

parts of reflected energy (ᾱ = 0.18, s̄ =
0.2, lc = 2.97m).

3.2.2 Deriving the Specular-to-Total Energy
Decay Ratio

To extract a scattering coefficient, we require a de-
cay curve that depends solely on scattering. While
we already have an expression that depends on both
absorption and scattering Eh2

ns
, it takes the form of a

two-term exponential (Eq.5), which is, more difficult

to fit robustly than a single-term exponential. There-
fore, we seek an expression that isolates the effect of
scattering. Within the framework of statistical rever-
beration theory, we can derive such a curve by taking
the ratio of the specular part of the reflected energy
to the total reflected energy. This results in:

Wγ (t) =
Ws

Wtot
=

(1− s̄)
c
lc
·t (1− ᾱ)

c
lc
·t

(1− ᾱ)
c
lc
·t

= (1− s̄)
c
lc
·t

(18)

Note that this ratio, Wγ (t) represents a curve that de-
pends solely on the scattering coefficient. Following
this approach we now obtain a similar ratio curve
by dividing the backwards-integrated ISM-IR curves
Eh2s and Eh2tot,

Eh2
γ
(t) =

Eh2
s
(t)

Eh2
tot
(t)

(19)

This curve (Eγ) and the two backward integrated
curves (Es and Etot) are shown in Fig. 3(a). As an
example Fig. 3(b) shows the same curves only now
obtained via Schroeder integration of the statistical
curves Wtot and Ws. It is evident that in this case of
a compact room with an homogeneous distribution
of material properties on the boundaries these curves
closely resemble the curves in Fig. 3(a). In contrast
to the original IRs, which exhibited discrete peaks,
we now have obtained curves that can be used for ex-
ponential fitting. We can utilize Eh2

tot
to obtain a best

fit absorption coefficient and we can utilize Eh2
γ

to
obtain a best fit scattering coefficient.

4218



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

0 0.1 0.2 0.3 0.4 0.5

Time (s)

0

0.5

1

E
 (

-)

E
h

2

tot

E
h

2

s

E
h

2

(a)

0 0.1 0.2 0.3 0.4 0.5

Time (s)

0

0.5

1

W
 (

-)

W
tot

W
s

W

(b)

Figure 3. (a) Schroeder curves of IS-IR (Eh2
s
), SPPS-IR

(Eh2
tot

) and their ratio Eh2
λ

(b) Wtot, Ws and Wγ

(ᾱ = 0.18 s̄ = 0.2, lc = 2.97m).

3.2.3 Exponential Fitting

Absorption Coefficient We define ᾱfit as the ab-
sorption coefficient estimated by fitting an exponen-
tial decay to Eh2

tot
using MATLAB’s curve fitting

toolbox:

Etot,fit(t) = A exp

(
ln(1− ᾱfit)

c

lc
t

)
. (20)

The scalar A is typically near 1; for ideal statistical
curves, A = 1 yields an exact ᾱfit with R2 = 1. The
fitting range is [t0, t0 + tTβ

] with

t0 =
∥v⃗s−v⃗r∥

c and tTβ
= −4V

cS

ln(10β/10)
ln(1−α) ,

where t0 is the arrival time of the direct sound and
v⃗s , v⃗r the position vector of the source and receiver
respectively. β is the fitting range in dB, we used a
60 dB fitting range.

Scattering Coefficient Similarly, we define sfit by
fitting an exponential decay to Eh2

γ
:

Eγ,fit(t) = A exp

(
ln(1− s̄fit)

c

lc
t

)
. (21)

To account for rapid diffuse field build-up in case of
high scattering, the fit is performed over [t0, t0 + tc]
with

tc =
4V

cS

ln
(
1− P

100

)
ln(1− s̄)

,

where P is the percentage of non-specularity (set to
80% ≈ 1dB).

3.3 Fit and Coefficient Analysis

3.3.1 Goodness-of-fit Metrics

We assess how well a single exponential decays can
be fitted to Eh2

tot
and Eh2

γ
under varying compactness

and boundary homogeneity by calculating the root
mean square error (RMSE). This metric is displayed
in box plots grouped by enclosure variant. We expect
lower RMSE with increased room compactness and
material homogeneity.

3.3.2 Comparison of Statistical and Simulated
Coefficients

The differences between the reconstructed (ᾱfit, s̄fit)
and the mean area-weighted coefficients (ᾱ,s̄) are
quantified by:

ϵ̄α =
1

n

n∑
i=1

|ᾱfit,i − ᾱ| , ϵ̄s =
1

n

n∑
i=1

|s̄fit,i − s̄| .

Where n is the number of source receiver combina-
tions. Their standard deviations indicate how closely
the reconstructed coefficients match the averaged
values. Impulse responses are obtained at various
room positions to analyze the variability of the re-
constructed coefficients around the room-average.

3.4 Room acoustical scenarios

3.4.1 Characteristics of enclosures in terms of
compactness

In Table 1 the four cuboid enclosures chosen for this
study are shown. These enclosures vary in terms of
their compactness represented in terms of sphericity
(Ψ) in the table.
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Table 1. Characteristics of enclosures

Characteristics

Enclosure Length
(m)

Width
(m)

Height
(m)

Area
(m2)

Volume
(m3)

Ψ

No.1 12.65 2.71 2.60 148.31 89 0.65
No.2 9.83 3.48 2.60 137.61 89 0.70
No.3 7.66 3.87 3.00 128.53 89 0.75
No.4 4.46 4.46 4.46 119.60 89 0.81

3.4.2 Characteristics in terms of distribution of
material properties

Several cases in terms of material property distribu-
tion are defined. These cases are outlined in Tab.2,
the assigned wall numbers are shown in Fig.4. The
absorption coefficients (α) are random incidence ab-
sorption coefficients.

Figure 4. Assigned wall numbers for the cuboid enclo-
sures used in the simulation model.

Table 2. Wall characteristics by variant

Wall number

Variant 1 2 3 4 5 6

I α 0.18 0.18 0.18 0.18 0.18 0.18
s 0.20 0.20 0.20 0.20 0.20 0.20

II α 0.09 0.09 0.18 0.18 0.09 0.09
s 0.10 0.10 0.20 0.20 0.15 0.15

III α 0.09 0.18 0.09 0.18 0.09 0.18
s 0.10 0.10 0.10 0.10 0.10 0.10

IV α 0.18 0.18 0.32 0.32 0.25 0.25
s 0.10 0.10 0.10 0.10 0.10 0.10

3.4.3 Source and receiver positioning

To investigate the influence of source and receiver
positioning, IRs are simulated for a variety of source
receiver combinations, these combinations are set
forth in Tab.4.

Table 3. Mean area-weighted absorption and scattering
coefficients per variant and enclosure.

Enclosure

Variant 1 2 3 4

I ᾱ 0.180 0.180 0.180 0.180
s̄ 0.200 0.200 0.200 0.200

II ᾱ 0.130 0.123 0.122 0.120
s̄ 0.167 0.162 0.159 0.150

III ᾱ 0.135 0.135 0.135 0.135
s̄ 0.100 0.100 0.100 0.100

IV ᾱ 0.274 0.267 0.262 0.250
s̄ 0.100 0.100 0.100 0.100

Table 4. Coordinates of source positions and receiver po-
sitions used in the different enclosures

Positions

E
nc

.

C
rd

.

R1 R2 R3 R4 R5 R6 S1 S2

1
x 3.41 6.08 9.74 2.91 6.58 9.74 4.99 11.32
y 1.56 1.56 1.56 0.65 0.65 0.65 1.15 2.06
z 1.20 1.20 1.20 1.20 1.20 1.20 1.50 1.50

2
x 2.71 4.67 7.62 2.21 5.16 7.62 3.94 8.85
y 2.07 2.07 2.07 0.91 0.91 0.91 1.41 2.57
z 1.20 1.20 1.20 1.20 1.20 1.20 1.50 1.50

3
x 2.17 3.58 5.99 1.66 4.08 5.99 3.12 6.95
y 2.33 2.33 2.33 1.04 1.04 1.04 1.54 2.83
z 1.20 1.20 1.20 1.20 1.20 1.20 1.50 1.50

4
x 1.37 1.98 3.59 0.86 2.48 3.59 4.09 1.92
y 2.72 2.72 2.72 1.24 1.24 1.24 3.22 1.74
z 1.20 1.20 1.20 1.20 1.20 1.20 1.50 1.50

4 Results and Discussion

4.1 Goodness-of-fit metrics for decay curve
fitting

4.1.1 Scattering

Figure 5 shows the RMSE values for the Eγ,fit vari-
ables over all source receiver combinations and vari-
ants. Looking at the RMSE values we can see that
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the RMSE values are smallest for the case of the cu-
bic room Ψ = 0.81, and that they increase when the
compactness of the enclosure decreases with enclo-
sure 4 resulting in the highest RMSE values. This
confirms the expectations that the fit quality increases
with increasing compactness of the room. Variant 4
shows the highest RMSE values among all the vari-
ants, for this variant sets of opposing walls have dif-
fering absorption properties.
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Figure 5. Boxplots of RMSE values of the Eγ,fit over all
source receiver combinations and variants 1-4.

4.1.2 Absorption

The RMSE values for absorption generally follow
the expected trend of increasing with decreasing
compactness. A notable exception is the second vari-
ant, this is probably because of the fact that the aver-
aged scattering increases with decreasing compact-
ness here, facilitating a more diffuse sound field.
Variant 4 has the highest RMSE values , this is likely
because in this variant sets of parallel walls have dif-
ferent decay rates due to having diverging absorptive
characteristics assigned to them. Overall the RMSE
values are relatively small compared to the ones ob-
tained for scattering, indicating a overall good expo-
nential fit. But a distinct dependence on the different
variants and enclosure sizes is visible, and show sim-
ilar behavior as the RMSE values obtained for the
reconstructed scattering coefficients.
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Figure 6. Boxplots of RMSE values of the Etot,fit over all
source receiver combinations and variants 1-4

4.2 Comparison of mean area-weighted
coefficients and reconstructed coefficients

4.2.1 Scattering

Figure 7 shows the average differences in the recon-
structed scattering coefficients across all scenarios.
It reveals that variant 2 exhibits the highest errors re-
garding scattering coefficients, caused by strong vari-
ations between wall sets. Variant 1 also shows larger
deviations than variant 3, likely due to its higher av-
erage scattering coefficient, while variant 4’s devia-
tions are less pronounced than those in variant 2.
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Figure 7. Boxplots of ϵs values over all source receiver
combinations and variants 1-4
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4.2.2 Absorption

Figure 8 shows that the largest errors between mean
area-weighted and reconstructed absorption coeffi-
cients occur in variant 4, due to differing decay rates
among the three wall sets. More compact enclosures
show smaller deviations across all variants.
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Figure 8. Boxplots of ϵα values over all source receiver
combinations and variants 1-4

5 Conclusions

This study explored the limits of statistical reverbera-
tion theory by simulating impulse responses in rooms
with varying compactness and material homogene-
ity using image source and SPPS models. Absorp-
tion and scattering coefficients were extracted via
Schroeder integration and exponential fitting. Our
findings indicate that compact enclosures conform
more closely to the predictions of statistical rever-
beration theory, while discrepancies increase the less
compact the space becomes or when the average ab-
sorption within the different sets of opposing walls
are inconsistent.
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