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ABSTRACT

Sound field estimation in a region of a room is essential
for many sound field reproduction tasks. Although most
estimation methods require microphones to be stationary,
a few recently developed methods allow for flexible es-
timation with moving microphones, which can relax the
equipment constraints of the estimation process. These
methods have been evaluated on simulated data, leaving
unanswered questions about their robustness in realistic
environments. In this paper an experimental evaluation
is made of sound field estimation methods using moving
microphones, in particular those based on spherical har-
monics. Experiments are conducted using sound field data
collected with two microphones rotating around concen-
tric circles, and 60 stationary microphone measurements
in the interior of the circles. Position information is avail-
able for both moving and stationary microphones, as it
is essential for sound field estimation. The data are re-
leased publicly to facilitate further experiments. The ex-
periments indicate that given similar conditions, the mov-
ing microphone methods perform similarly well to the sta-
tionary microphone methods. However, due to the motor
associated with the moving microphones, the signals are
noisier, which leads to the stationary microphone methods
performing better on the real data.
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1. INTRODUCTION

Sound field reproduction tasks such as sound zone control
generally require knowledge of the sound field generated
by the available loudspeakers for one or more regions in
the room [1–4]. For accurate reconstruction, the region of
interest must be densely sampled compared to the wave-
length of the highest frequency, which means that often
many spatial samples must be collected.

To reduce the number of required spatial samples,
many sound field estimation methods have been proposed,
based on spherical harmonics [5], Gaussian processes
[6, 7], kernel ridge regression [8, 9], and machine learn-
ing [10], among others. A central assumption among these
methods is that the microphones are stationary during the
measurement process. Using only one microphone, the
measurement process must be repeated many times. Al-
ternatively, a microphone array can be used, which is more
expensive and cumbersome than a single microphone.

Although more difficult from a signal processing per-
spective, allowing the microphones to be moving can sim-
plify the estimation process for the user. Some methods
have been proposed for the purpose, with different prop-
erties and restrictions [11–14]. These methods have thus
far been evaluated on simulated data, leaving unanswered
questions about the robustness to noise, calibration errors,
and model misspecifications that can be present in realis-
tic environments [15, 16].

To provide an account on the real-world applicability
of such methods, an experimental validation is made us-
ing real sound field data collected with moving and sta-
tionary microphones. The data is made available pub-
licly 1 , and contains moving microphone signals together

1 Available at github.com/pvjesper/romms
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Table 1. Available options in the RoMMS dataset.
Options

Microphones 60 stationary, 2 moving
Acoustic conditions 4 reverberation times
Maximum frequency 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz
Sequence length 0.5 s, 1.0 s

Figure 1. A picture of the stationary microphone ar-
ray (left) and the moving microphones (right).

with both source signal and position as a function of time.
In addition, measurements from a grid of stationary mi-
crophones is provided, which can be used to evaluate the
sound field estimates. A particular focus is put on the
methods [13, 14], which uses spherical harmonic sound
field models. While both methods allow for essentially
arbitrary trajectories, [14] allows for directional micro-
phones and avoids truncating the sequence of spherical
harmonic coefficients.

The experiments using real data are supplemented us-
ing simulated data, to investigate the influence of different
error sources. In particular, the effects of noise in the mi-
crophone signals and error in the position estimates are
investigated.

2. DATASET DESCRIPTION

The Rotating Moving Microphone Sound field (RoMMS)
dataset is available at github.com/pvjesper/
romms. A summary of the dataset features is shown in Ta-
ble 1. The data was recorded with a RME Fireface UFX+
interface at a sampling rate of 48 kHz, using its internal
inputs for the moving microphones and 4 RME Micstasy
units for the stationary microphones. The loudspeaker was
a Genelec 1032A studio monitor, and the microphones
were GRAS 40AZ 1/2” low frequency microphones with
GRAS 26CC 1/4” preamps, which were calibrated with a
B&K 4231 field calibrator.
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Figure 2. Geometry of the microphones and loud-
speaker in the dataset.
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Figure 3. The reverberation time in third-octave
bands for each of the four acoustic conditions.

2.1 Geometry

The measurements were made using a single loudspeaker,
two moving microphones, and a microphone array with 30
stationary microphones, the geometry of which are shown
in Fig. 2. The microphones and the loudspeaker were
placed 1.03 m above the floor. The stationary microphone
array was placed at two locations to obtain a 10 × 6 grid
with 10 cm spacing, covering an area of 90× 50 cm.

2.2 Acoustic conditions

The dataset was recorded in four different acoustic con-
ditions. This can be useful to investigate how to adapt to
changing acoustic conditions [17]. The acoustic condition
was changed by varying the number of absorbent panels
on the walls, thereby changing the reverberation time. The
acoustic conditions are referred to as room A, B, C and D,
listed from most to fewest acoustic panels.
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Figure 4. The recorded signal of the outer mov-
ing microphone (top), and only background noise
recorded by the same microphone (bottom).

The reverberation time in terms of the RT60 was com-
puted for third-octave bands between 40–4000 Hz by esti-
mating the RT20. The mean RT60 of the stationary micro-
phones is shown in Fig. 3. As expected, room A has the
shortest and room D has the longest reverberation time.

2.3 Loudspeaker signal

The loudspeaker signal used was a perfect periodic sweep,
which is well suited for acoustic measurements, and has
been used for moving microphones previously [12, 14].
The period of the signal should be chosen as equal length
or longer than the room impulse response (RIR), other-
wise a wraparound error is incurred. Recordings were
made using a period length of 1 s as well as 0.5 s. Con-
sidering the reverberation time shown in Fig. 3, a period
length of 1 s can be expected to be clearly sufficient, while
0.5 s could incur a small error. Because the RIRs will have
decayed close to 60 dB after 0.5 s, high signal-to-noise ra-
tio (SNR) is required for the error incurred by the shorter
period length to be significant.

The periodic sweep has a frequency range between
0 Hz and fmax. Depending on the application, different
frequency ranges can be of interest. Therefore, recordings
were made with fmax = 500, 1000, 2000, and 4000 Hz.

For the remainder of this section, an example record-
ing will be considered, with parameters fmax = 4000Hz,
sequence length 1 s, and slow speed, referred to as exam-
ple A, B, C or D, depending on which acoustic environ-
ment is used. A spectrogram of the outer moving micro-
phone signal of example A can be seen in Fig. 4, clearly
showing the sweep used.

2.4 Moving microphones

As seen in Fig. 1, the two moving microphones are placed
on a microphone boom arm fitted with a DC motor. As
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Figure 5. The speed of the outer moving microphone
over time.

the boom arm of the microphone stand rotates, the mi-
crophones trace circles of radii 0.45 and 0.5 m. The data
are collected for slightly less than two revolutions of the
boom arm. Shortly before the end of the second revolu-
tion, a switch is closed to stop the rotation, generating a
clicking noise. This noise along with the signals recorded
afterwards is excluded from the data, explaining why the
data does not contain two full rotations.

The encoder used for the motor produces a square
wave signal as it rotates, which is recorded simultaneously
with the microphone signals using the same signal chain,
ensuring synchronicity between the position information
and acoustic signal from the moving microphones. The
square wave pulses are counted from the recorded signal,
producing a sequence of timesteps where the estimated
position of the microphones is incremented along the cir-
cle from their starting position. The encoder has a reso-
lution of 500 pulses per revolution, and a gear with ratio
81.37 was used, which means that 40685 pulses are emit-
ted for a single revolution around the circle. Equivalently,
the resolution is 1.54 × 10−4 rad. Between the time of
each such measured pulse, the angle is linearly interpo-
lated to produce a smooth trajectory.

The moving microphone signals were recorded at a
fast and slow speed. The mean speed over all recordings
for the fast setting are 0.334 m/s and 0.376 m/s, and for
the slow setting 0.186 m/s and 0.206 m/s, for the inner and
outer microphone respectively. The speed over time for
the example data can be seen in Fig. 5, which shows that
the speed of the rotation varies slightly.

To obtain insights into the error characteristics of the
position estimate, a closer look will be taken at the fast
trajectory with fmax = 500Hz, sequence length 0.5 s, in
room A, which is used in Section 3. In Fig. 6, the devia-
tions between the angles representing the estimated posi-
tions and the angles representing a constant speed trajec-
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Figure 6. The angle of the microphone as a function
of time, after removing the mean speed. The angle
deviation is highpassed at 0.1, 1, 10, and 100 Hz.

tory at the mean speed is shown. The deviations are high
passed at 0.1, 1, 10, and 100 Hz using a first-order Butter-
worth filter, which reveals different characteristics for dif-
ferent frequency ranges. The size of deviations decrease
as the frequency increases. Due to the inertia of the mi-
crophones and boom arm, the high frequency deviations
can be reasonably assumed to represent errors in the po-
sition estimates, while the lower frequency deviations are
more difficult to predict whether they correspond to the
true position or not. Whether even the largest deviations
are large enough to affect the sound field estimation per-
formance considerably remains to be shown, and will be
considered in Section 4.2.

2.5 Noise

For each of the acoustic conditions, the ambient noise
level was recorded with the stationary microphones for
30 out of the 60 positions, the positions with a positive
y-coordinate, i.e. for one placement of the 30-microphone
array. Noise was also recorded with the moving micro-
phones at fast and slow speed, as well as staying still at
the initial point of the trajectory.

Spectrum estimates of the signals recorded by both
the stationary and moving microphones in example A are
shown in Fig. 7. The spectrum of the loudspeaker signal
has an ambiguous scaling, as it is the loudspeaker signal
prior to transmission. The spectrum estimates are com-
puted using the Welch method, with a Hann window of
length 2048 samples, 50% overlap, and as the mean over
all microphones of the same type. The dominant noise

−100

−80

−60

−40

Spectrum (dB)

Loudspeaker Microphone slow Microphone fast

Noise still Noise slow Noise fast

0 1,000 2,000 3,000 4,000

−100

−80

−60

−40

Frequency (Hz)

Loudspeaker Microphone Noise

Figure 7. The spectrum of the moving microphone
(top) and the stationary microphone (bottom) signals.

source for the moving microphones is the motor, which
leads to higher noise levels for a fast speed over a slow
speed, which in turn is higher than when still. The station-
ary microphone signals have a relatively constant noise
level as a function of frequency, while the noise level for
the moving microphone signals is highly frequency de-
pendent. Fig. 7 shows that the amplitude of the micro-
phone signal decreases drastically for frequencies below
50 Hz, and for frequencies close to the Nyquist frequency.
The reduced amplitude for the low frequencies is due to
the loudspeaker, and for the high frequencies due to the
construction of the periodic sweep signal. Therefore, ac-
curate estimates cannot be expected at the highest and
lowest frequencies, due to the inevitably poor SNR.

2.6 Delay correction

The stationary microphone and the moving microphone
signals are recorded through two different signal chains,
that while being clock-synchronized introduces slightly
different amounts of delay, enough to hinder a compari-
son between estimated sound pressures from the two sets
of microphones. Therefore, the data from the moving mi-
crophones have been delayed in order to align the signals
with the stationary microphones.

The positions of the loudspeaker and the microphones
are known along with the speed of sound, which means
that the propagation times from the loudspeaker to the mi-
crophones are known. This time can then be compared
to the direct path component in the estimated RIRs from
the stationary and moving microphones. The time for the
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Figure 8. The position of the stationary microphones
and the moving microphones in the experiments.

direct path component in the estimated RIRs is estimated
by choosing the largest peak of the RIR. As the quantity
of interest is the relative delay between the stationary and
moving microphones, more sophisticated methods are not
deemed necessary. This process is performed for each
fmax, sequence length, and acoustic condition, using the
fast speed. The mean relative delay is 0.259 ms, there-
fore the moving microphone signals are delayed by that
amount, rounded to the nearest sample at a sampling rate
of 48 kHz.

3. SOUND FIELD ESTIMATION WITH REAL
DATA

The moving microphone data will be used to estimate the
sound field in the interior of the disc traced by the circle.
The parameters for the data are fmax = 500Hz, sequence
length 0.5 s, fast speed, and room A. The trajectory is cho-
sen as one full revolution around the circle, using half the
data from each moving microphone, as shown in Fig. 8.
This choice avoids the forbidden-frequency problem, as
opposed to using a full revolution of one microphone [18,
Section 8.10.2]. The eight stationary microphones shown
in Fig. 8 are used for sound field estimation with station-
ary microphones.

The choice of stationary microphones is fairly arbi-
trary, and the choice leads to better or worse estimation
performance compared to the moving microphone meth-
ods. Therefore, the microphones are chosen such that
the moving and stationary microphones methods achieve
a similar lowest estimation error. The choice in Fig. 8
provides a lesser amount of data for the stationary micro-
phones, but instead has higher SNR and spatial samples
located closer to the evaluation points.
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Figure 9. The estimation error as a function of the
regularization parameter.

The first considered sound field estimation method is
moving omni, the proposed method of [14] using mov-
ing omnidirectional microphones. Spatial spectrum is the
method from [13] using moving microphones, with im-
plementation details described in [14, Section V.B.4]. The
moving microphone methods are compared against one
method using stationary microphones, which is station-
ary omni, the method from [5] which can be viewed as the
stationary microphone equivalent of moving omni. Sta-
tionary omni is also equivalent to [8] for omnidirectional
microphones, which is the case in these experiments.

3.1 Regularization

Both moving omni and spatial spectrum require a regu-
larization matrix to be chosen. In the Bayesian approach
of [14], the interpretation of this regularization matrix is
λ−1Σ, where Σ is the covariance of the measurement
noise, and λ is the prior variance of the harmonic coef-
ficients. In these experiments, Σ is chosen as σ2

ϵI , cor-
responding to an assumption that the noise is temporally
white. The parameter σ2

ϵ is the noise power calculated
from the noise-only recordings in the dataset. The regu-
larization in spatial spectrum is chosen as the same value.

While the noise power can be relatively easily mea-
sured, the same is not true for the prior variance of the
harmonic coefficients λ. In Fig. 9 the effect of the regular-
ization parameter λ−1σ2

ϵ on the estimation error is shown.
To obtain a comparatively low error for all methods, the
prior variance parameter is set to λ−1 = 0.1, and the noise
variance parameter σ2

ϵ is set according to the data.

3.2 Experimental results

The estimation performance in terms of the normalized
mean square error (NMSE) is shown in Fig. 10 as a func-
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Figure 10. The NMSE of the considered methods as
a function of frequency for real data.

tion of frequency. Stationary omni outperforms moving
omni, which in turn outperforms spatial spectrum. How-
ever, the SNR is lower in the stationary microphone data,
as well as some of the microphones being placed closer
to the evaluation points compared to the moving trajec-
tory. The NMSE increases close to the Nyquist frequency,
which is due to the true value approaching zero, as can
be seen in Fig. 7, and is therefore not an indication of an
increased absolute error.

The real part of the sound field estimates for several
frequencies are shown in Fig. 11 as a function of space.
It is again apparent that the accuracy for all sound field
estimation methods decreases as the frequency increases.

4. INVESTIGATION OF ERROR SOURCES

To provide insights into the factors leading to the loss
of estimation accuracy between the moving and station-
ary microphone methods, the influence of the background
noise and microphone position error will be investigated
in a simulation study. Considering experiments presented
in [14], it can be expected that under ideal conditions the
stationary and moving microphones methods should per-
form similarly well.

A room of size 7×3.2×2.5 m was simulated using the
image-source method [19, 20], with a reverberation time
of 0.36 s. Unless stated otherwise, experiment parame-
ters are chosen identically to the experiment described in
Section 3. The trajectory for the moving microphones is
constructed identically to Fig. 2, but with the microphones
moving at a constant speed, chosen as the mean speed of
the real data used in Section 3. For a fair comparison, the
stationary microphones are positioned on the trajectory of
the moving microphones, shown in Fig 8, with one micro-
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Figure 11. The real part of the sound field estimates
for different frequencies. The sound field is shown at
the positions of the stationary microphones in Fig. 2.

phone per period of the periodic sweep. The evaluation
points covers the same area as in Fig. 2, but with a higher
resolution at a microphone distance of 5 cm.

The regularization of spatial spectrum is chosen as in
Section 3.1, but no smaller than 10−3, as numerical issues
then cause the estimation error to drastically increase.

4.1 Microphone signal noise

As shown in Fig. 7, the moving microphones have a lower
SNR due to the noise of the motor, which means that ro-
bustness to noise can be important. Therefore, the rela-
tionship between SNR and estimation performance will
be investigated.

A noise-only recording from the real moving micro-
phone data is added to the simulated data for both mov-
ing and stationary microphones, with a scaling to produce
different SNRs. In Fig. 12 the estimation performance is
shown as a function of the SNR. The NMSE starts to in-
crease for moving omni and stationary omni once the SNR
is below 40 dB, which can be compared against the SNR
of the real data which is approximately 21 dB for the data
used in Section 3. The figure shows that given the same
SNR, moving omni and stationary omni provides almost
identical estimation performance. These results indicate
that the higher noise level in the moving microphone sig-
nals in the real data is at least partly responsible for the
degraded estimation performance. The estimation error
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Figure 12. The estimation performance for different
SNRs (top) and position noise powers (bottom).

of moving omni per frequency is shown in Fig. 13. The
degradation for the low frequencies in particular is con-
siderable as the SNRs decreases.

4.2 Position error

Another potential error source is the microphone position
estimation error. In this experiment the sound field es-
timates are computed using perturbed position estimates.
The angle at each sample is perturbed by a white zero-
mean Gaussian noise with variance σ2

θ . These perturbed
estimates will always be on the circle.

In contrast to the microphone signal noise, moving
omni does not include an explicit uncertainty in the po-
sition estimates. Still, to obtain good estimates, the regu-
larization parameter should be chosen comparatively large
if there is a significant position error, even if the noise in
the microphone signal is negligible. Therefore a heuristic
strategy for selecting the regularization parameter is used,
following the strategy described in Section 3.1, but using
10σ2

θ instead of σ2
ϵ .

The NMSE for varying levels of position error is
shown in Fig. 12. The added position error can be com-
pared against the variability in the position of the real data
shown in Fig. 6. Only the lowest frequency deviations in
Fig. 6 are high enough amplitude that Fig. 12 would in-
dicate an effect on the estimation performance. This indi-
cates that only the lowest frequency parts of the deviations
in Fig. 6 are likely to be a contributor.
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Figure 13. The estimation performance of moving
omni as a function of frequency for different levels of
noise in the microphone signals (top) and the position
estimates (bottom).

5. CONCLUSION

An experimental validation of sound field estimation
methods using rotating moving microphones has been
made. The effect of noise in the signal and position es-
timates has been investigated, indicating that the noise in
the moving microphone signal from its associated motor
is a likely significant source of performance degradation
in the real data. For similar noise conditions, similar qual-
ity of estimates were obtained from stationary and mov-
ing microphones. The moving microphone methods were
thereby shown to be competitive on real data, indicating
that sound field estimation with moving microphones is a
promising approach for sound field measurements.
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coustics: A Python package for audio room simula-
tions and array processing algorithms,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
pp. 351–355, Apr. 2018.

4118


