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ABSTRACT

Dementia represents a substantial health challenge, with
early detection being critical to enable timely interven-
tions and mitigate its progression. Speech analysis, in-
tegrated with Machine Learning (ML) techniques, has
gained prominence as a promising approach for the au-
tomatic detection of dementia, as vocal and linguistic
biomarkers serve as valuable indicators of cognitive im-
pairment that can be effectively exploited by ML algo-
rithms. Explainability is a critical requisite for the prac-
tical application of ML-based systems in clinical set-
tings. In this study, we address this challenge by feed-
ing the system with a reduced set of acoustic and lin-
guistic features easily understood by humans. These fea-
tures are determined utilizing SHapley Additive exPla-
nations (SHAP) values, an Explainable Artificial Intelli-
gence (XAI) method. This way, SHAP helps to identify
the most impactful features on the predictions, which al-
lows not only to explain the model decisions, but also to
select the characteristics according to their global rele-
vance, thus optimizing the model and enhancing its ex-
plainability. The proposed framework is firstly applied
independently to the acoustic and text (transcriptions)
modalities and secondly, to the multimodal system. Ex-
periments on the ADReSS dataset demonstrate its feasi-
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bility and highlight the potential of explainable feature se-
lection to bridge ML techniques with clinically meaning-
ful insights.

Keywords: dementia detection, speech biomarkers, ex-
plainable machine learning, feature selection, Shapley
values.

1. INTRODUCTION

Dementia is a broad term referring to the loss of mem-
ory, language, problem-solving, and other cognitive abili-
ties whose leading cause is the neurodegenerative disorder
called Alzheimer’s Disease (AD) [1]. As AD is an age-
related disorder, it is expected to become more prevalent
as the elderly population grows, what it is very likely to
occur in the near future. This trend highlights the need for
effective strategies for AD early detection and monitoring.

However, existing diagnostic methods are expensive
and time-consuming [2], leading to a large number of peo-
ple with AD not receiving timely interventions. Digital
biomarkers can alleviate this problem as they offer remote
and non-intrusive evaluations, saving time and costs [3].
In this context, speech biomarkers have become a promis-
ing approach, as it is well-known that one of the first
signs of AD is degradation in voice and language produc-
tion [4]. In fact, AD can alter the physical characteris-
tics of the voice, leading to reduced articulatory precision
and speech fluency, which in turn affects speech intelli-
gibility. It also decreases prosodic variation, yielding a
more monotonous speech. Additionally, AD impacts lan-
guage production, often resulting in a diminished vocab-
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ulary, loss of word meaning, difficulty in finding the right
words, and reduced coherence in discourse.

As a result, there is currently an active research line
on AD detection from speech using acoustic, linguistic
modalities or their combination [5]. Many of these stud-
ies have been conducted within the framework of the
ADReSS Challenge, introduced at the INTERSPEECH
2020 conference [6], which has significantly contributed
to the growing research interest in this area.

These works follow mainly two different approaches.
The first one is based on the use of hand-crafted features,
such as the eGeMAPSV2 repertory [7, 8] for the audio
modality or lexical diversity descriptors for the textual
one, in combination with traditional Machine Learning
(ML) models [9]. The second one adopts Deep Learning
(DL) methods often through the use of pre-trained mod-
els, such as VGGish [10] or BERT [11], for the extraction
of, respectively, acoustic and linguistic embeddings. Al-
though DL models typically achieve high accuracy, their
opacity hinder their use in sensitive areas like healthcare,
where interpretability is crucial. In fact, for the AD de-
tection system to be clinically useful, it would need to
provide the medical staff not only with a prediction of
whether a subject is suffering or not AD, but also an ex-
planation of the factors it relied on to make that decision.

From this perspective, an appealing approach is the
use of more interpretable methods, such as ML mod-
els powered by understandable features. Besides, a re-
duced number of characteristics would make easier to ex-
plain the system output. The first issue can be addressed
through the application of eXplainable Artificial Intelli-
gence (XAI) methods. Specifically, the Shapley Additive
Explanations (SHAP) approach [12] is widely employed
in a diversity of tasks. However, for the best of our knowl-
edge, it has been scarcely explored for dementia recog-
nition from speech [8]. Regarding the second issue, the
literature offers various feature selection techniques [13].
However, these methods typically do not incorporate in-
terpretability considerations into the selection process.

Considering both aspects, this paper focuses on de-
signing a reduced set of interpretable multimodal speech
biomarkers for dementia detection. To achieve this, an
explainable feature selection method is proposed, which
relies on SHAP values as a metric for choosing the most
relevant features. Results show that this strategy not only
enhances the system interpretability and clinical utility but
also improves its accuracy, specificity and sensitivity.

The rest of the paper is organized as follows: Sec-
tion 2 outlines AD-related acoustic and linguistic changes.
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Section 3 details our methodology. Section 4 covers
the dataset, experiments and results. Finally, Section 5
presents the main conclusions and future work.

2. DEMENTIA SPEECH PATTERNS

As speech can reveal cognitive disorders, tasks eliciting
spontaneous speech are extensively used for assessing the
vocal and language abilities of patients. In this context,
the task of describing the Cookie Theft picture from the
Boston Diagnostic Aphasia Examination [14] , that is rep-
resented in Fig. 1, is one of most commonly employed.

From an acoustic perspective, the analysis of the spo-
ken descriptions facilitates the identification of character-
istic speech patterns commonly associated with demen-
tia [15, 16]: (1) changes in prosodic features, such as re-
duced pitch variability, resulting in a more monotonous
voice, and decreased speech intensity, leading to a weaker
voice; (2) distortions in voice quality, including increased
breathiness and hoarseness; (3) reduced articulatory pre-
cision, which reduces speech clarity and overall intelligi-
bility; and (4) a slower speech rate with more pauses and
hesitations, disrupting natural speech fluency.

Regarding the linguistic domain, the Cookie Theft
task is useful to reveal diminishing skills in several aspects
[17]: (1) salience of information: AD subjects may not de-
scribe the low salience or background details (e.g. curtains
or window in the picture); (2) semantic categories: AD
subjects may employ more general than concrete terms
(e.g., “lady” instead of “mother”); (3) referential cohe-
sion: AD subjects may misuse the pronouns to refer to
a particular person or object; (4) causal and temporal rela-
tions: AD subjects may fail in describing this kind of rela-
tionships; (5) mental state language: descriptions by AD
subjects may lack terms like “want”, “attention” or “see”;
(6) structural language and speech: descriptions by AD
persons may contain many unfilled or filled (“eh”, “well”)
pauses and non-specific vocabulary (“it”, “something”);
and (7) general cognition and perception: AD people may
produce fragmented or disorganized descriptions.

3. METHODOLOGY

Fig. 2 represents the proposed multimodal system for AD
detection. As shown in Fig. 2(a), the process starts by
training a ML model fed with the whole set of acoustic and
linguistic features. Then, the contribution of each feature
to the model output is computed with SHAP (see Subsec-
tion 3.4). As depicted in Fig. 2(b), these SHAP values are
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Figure 1. Cookie Theft picture from the Boston Di-
agnostic Aphasia Examination [14].

used as metric for selecting the more relevant characteris-
tics. This subset is the input to the final ML model, that is
subsequently trained. For a particular example, this model
outputs both the prediction and the corresponding expla-
nation in terms of its SHAP values. In next subsections,
the main components of the system are described.

3.1 Feature extraction
3.1.1 Acoustic characteristics

In this study, we have focused on acoustic features with
a clear relationship with the perceptual alterations that
dementia can produce on speech as described in Section
2, with the aim of obtaining a repertory of interpretable
and clinically useful acoustic biomarkers of AD. The set
of acoustic characteristics is based on those proposed in
[18,19], and is composed of the following 34 features:

* Prosodic features: Intensity (minimum, maximum,
mean, standard deviation, q1, median and q3), and
pitch (minimum, maximum, mean, standard devi-
ation, ql, median, q3, fraction of voiced frames
and the mean of the absolute pitch slope). Both
are linked to prosody perception.

Voice quality features: Glottal to Noise Excitation
(GNE) ratio (maximum, mean, standard deviation),
that is related to breathiness.

Articulatory features: Formants (standard devia-
tion of the first, second, third and fourth formants,
formant dispersion and average formant), that are
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associated to the control of the articulatory mus-
cles. Also, articulation rate (number of syllables
divided by the duration of the audio excluding
pauses) and average duration of the syllable (the
duration of the audio excluding pauses divided by
the number of voiced peaks) are considered as they
are related to the articulation precision.

Fluency and pause features: Speech rate (number
of syllables divided by the duration of the audio in-
cluding pauses) that is a metric for the perceived
speaking speed. Additionally, pause features (total
speech time, total pause time, percentage of pauses,
pause-to-speech ratio, and mean and standard de-
viation of pause length) are included for measuring
the speech fluency.

The acoustic features were extracted following [18],
that in turn used the Parselmouth [20,21] and the DigiPsy-
chProsody [22] packages.

3.1.2 Linguistic characteristics

The linguistic characteristics consists of the “Term
Frequency-Inverse Document Frequency” (TF-IDF) fea-
tures, previously proposed for this task in [9]. TF-IDF
represents the importance of a term in a document (tran-
scription) balancing its frequency in that document with
its rarity across the corpus, and can reflect the linguistic
patterns of dementia speech mentioned in Section 2.

The TF-IDF representation was extracted from the
preprocessed transcriptions of the audio recordings. The
preprocessing stage consisted of the removal of special
characters and lemmatization, that was performed with
the spaCy package [23] and the en_core_web_sm model.
Then, the TF-IDF model was generated with the sckiz-
learn package [24] setting the dictionary size to 150 terms
and eliminating the stopwords. The list of stopwords was
created ad hoc for this task, before the examination of the
tokens contained in the training corpus.

3.2 Classifier

In this work, we have chosen to employ traditional ML
models over more complex DL approaches, as the former
provide enhanced interpretability, especially when using
hand-crafted features. In particular, the developed classi-
fier is based on Support Vector Machines (SVM) that has
demonstrated good performance over small datasets, as is
our case. For the implementation of the SVM classifier,
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Figure 2. Interpretable feature selection for the dementia recognition system based on acoustic and linguistic
characteristics: (a) Block diagram of the computation of the Shapley values; (b) Block diagram of the dementia
detection system where the input is the set of selected interpretable features and the output are the predictions
made by the ML model and their explanation in terms of the Shapley values.

the sckit-learn package [24] was employed. In the train-
ing process, the hyperparameters were tuned using grid
search and a 5 fold cross-validation strategy.

3.3 Interpretability method

To enhance the transparency of the ML model, we have
employed the SHAP technique due to its capability to
offer both local explanations for individual predictions
and global interpretability of the model’s overall behav-
ior. This last property allows the use of SHAP as a feature
selection mechanism, as shown in Section 3.4.

SHAP is a model-agnostic XAl technique grounded
on game theory, that quantifies the contribution of each
feature to a prediction [12]. In binary classification tasks,
as is our case, SHAP values indicate the extent to which
each feature influences the model output (score), pushing
it toward either the positive class (AD) or the negative one
(non-AD). The prediction for a given instance can be re-
constructed as the sum of its SHAP values, plus a baseline
term representing the mean prediction in the dataset.

3.4 Interpretable Feature Selection

As previously stated, SHAP quantifies the contribution of
each feature to a particular prediction. This contribution
can be seen as a measure of the feature relevance, and
therefore, it can be used as a criterion for feature selection.

In order to employ SHAP as an interpretable feature
selection technique, we leverage its capability to provide a
global interpretation of the model’s behavior as proposed
in [25]. For doing that, the SHAP values across the entire
training dataset are computed and averaged afterwards.
Then, the ranking of features is obtained by sorting the
resulting aggregated SHAP values in decreased order, and
the top-n features are chosen.

SHAP exhibits two notable properties as feature se-
lection method: firstly, it identifies the most influen-
tial features through an interpretability-driven approach,
thereby improving model transparency, and secondly, in
contrast to other methods, such as those based on Mutual
Information [26], it takes into account the interactions be-
tween features.
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4. EXPERIMENTS AND RESULTS
4.1 Database and experimental protocol

The database used in this study is the ‘“Alzheimer’s
Dementia Recognition through Spontaneous Speech”
(ADReSS) dataset curated for the ADReSS Challenge [6].
It contains speech recordings and the corresponding tran-
scripts of descriptions of the Cookie Theft picture by 156
speakers (78 AD and 78 non-AD). The number of subjects
in the training and test sets is, respectively, 108 and 48.

The developed systems have been evaluated in terms
of accuracy, F1-Score, specificity, and sensitivity. Also,
we have measured the Clinical Utility Index (CUI) [27],
a clinically oriented assessment that is divided into two
parts: (1) Positive Utility (CUI+), computed as the prod-
uct of the positive predictive value and sensitivity; and (2)
Negative Utility (CUI-), computed as negative predictive
value and specificity. The CUI is the average of CUI+ and
CUI- weighted by the prevalence. There are four levels of
diagnostic utility: “poor utility” (CUI < 49%), “fair util-
ity” (49% < CUI < 64%), “good utility” (64% < CUI <
81%), and “excellent utility” (CUI > 81%).

4.2 Results of the single-modality systems

Following the pipeline depicted in Fig. 2(a), the SHAP
values over the training set were computed using only one
of the modalities (either audio or text). Fig. 3(a) and (b)
are the summary plots of the 10 highest SHAP values for
the acoustic and linguistic features, respectively. In these
graphs, features are sorted by their global importance and
each dot represents a single prediction for a feature. The
x-axis shows the SHAP contribution, where positive val-
ues indicate that the feature pushes the prediction towards
the positive class (AD), while negative values push it to-
wards the negative class (non-AD). The color reflects the
feature value (red for high and blue for low). For exam-
ple, low values of the feature speech rate (i.e., the person
speaks slowly) makes the system tends to predict AD.

As can be observed, for the acoustic modality,
the more influential features are mainly related to
speech fluency and pauses (speech_rate, pause_time
and pause_length_mean), followed by prosodic char-
acteristics (intensity_median, intensity_q3, intensity_
stddev, pitch_mean, absolute_pitch_slope_mean and
voiced_fraction). For the linguistic case, the frequency of
appearance of concrete terms (cookie, sink, mother, stool,
run), mental state terms (see) and filled pauses (well), the
use of non-specific vocabulary (if) and the description
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of background details (curtain) are the most impactful
features on the predictions.

Fig. 4 depicts the accuracy and F1-score achieved by
the single-modality systems as a function of the percent-
age of features selected by SHAP. As can be seen, keeping
around the 40% of features for the audio modality (13 out
34) and the 30% for the textual one (45 out 150) improves
the corresponding baselines (when all features are used).
Tab. 1 contains the results achieved by the baselines and
the optima subsets of features for both modalities. As ob-
served, all metrics either improve or remain unchanged
when the interpretable feature selection is applied, show-
ing that SHAP is able to choose the combination of fea-
tures that are more informative for the AD task. As for the
comparison between both modalities, linguistic features
perform significantly better than the acoustic ones in all
cases independently of the number of features selected.

4.3 Results of the multimodal system

In the multimodal system, early fusion was implemented
by concatenating features from both modalities at the in-
put level. Results for both scenarios, without and with fea-
ture selection, are reported in Tab. 1. As can be observed,
while the direct use of all features does not surpass the
performance of the linguistic-only modality, SHAP-based
feature selection effectively identifies an optimal subset
of acoustic and linguistic features, yielding superior re-
sults across all evaluated systems. In this configuration,
only ~ 20% of the original features (33 out of 184) are
retained. Moreover, the multimodal system achieves the
highest CUI, exhibiting an “excellent utlilty” level and
thereby underscoring its potential clinical applicability.
Tab. 2 contains the best configuration of characteris-
tics selected by SHAP in the multimodal system. As can
be observed, these features have a clearly interpretable
meaning and their observed behavior matches the typical
dementia speech patterns trends described in Section 2.
Fig. 5 shows an example of the SHAP explanation for
a test instance that has been classified as AD with an score
of f(x) = 0.631. For each feature, its value (on the left
side) and its positive (number inside the red bar) or neg-
ative (blue bar) contribution to AD prediction are shown.
In this case, the large amount of filled pauses (high value
of well), small presence of concrete terms (low values of
cookie and stool), and monotonous voice (low value of ab-
solute _slope_pitch_mean) pushes the model’s prediction to
AD, whereas the description of background details (high
values of outside, open and window) pushes it to non-AD.
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Figure 3. SHAP summary plots of single-modality SVM-based systems for AD detection: (a) Acoustic modal-

ity; (b) Linguistic modality.
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Figure 4. Accuracy and Fl-score as a function of
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5. CONCLUSIONS

In this paper, we have proposed an interpretable multi-
modal dementia detection system from speech. It uses a
reduced number of clinically and perceptual meaningful
acoustic and linguistic features that have been chosen by
means of the application of a SHAP-guided feature selec-
tion method. Results over the ADReSS dataset show that

Figure 5. Local explanation based on SHAP values
for an specific test instance.

this approach not only enhances the system explainabil-
ity and clinical utility but also improves its accuracy, F1-
score, specificity and sensitivity, highlighting the potential
of explainable feature selection to bridge ML techniques
with clinically meaningful insights. For future work, we
plan to extend our research to the other related tasks, such
as AD progression prediction.
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Table 1. Results of the SVM model for acoustic, linguistic and acoustic+linguistic modalities. ALL and FS
stand, respectively, for the case where all the features and the selected features by SHAP are considered.

No. No. Accuracy | Fl-score | Specificity | Sensitivity | CUI+ | CUI- | CUI

features | features [%]
Acoustic ALL 34 100 68.75 70.59 62.50 75.00 50.00 | 44.64 | 47.32
Acoustic FS 13 ~ 40 75.00 75.00 75.00 75.00 56.25 | 56.25 | 56.25
Linguistic ALL 150 100 83.33 81.82 91.67 75.00 67.50 | 72.02 | 69.76
Linguistic FS 45 30 89.58 89.36 91.67 87.50 79.89 | 80.67 | 80.28
Multimodal ALL 184 100 85.42 84.44 91.67 79.17 71.63 | 74.69 | 73.16
Multimodal FS 33 ~ 20 91.67 91.30 95.83 87.50 83.52 | 84.78 | 84.15
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