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ABSTRACT

Detecting machine failures or anomalies using sound re-
mains a challenging task. In real-world environments,
recording machine anomalies or failures is difficult, as
they do not happen so often, limiting the systems to train-
ing on normal operational sounds. Additionally, the vari-
ability in environmental and machine conditions, such as
speed, temperature, and background noise, further com-
plicates the task. While significant progress has been
made in recent years, much of the research has focused on
mono audio processing. To explore whether multichan-
nel audio can enhance model performance, we propose
a modification of the DCASE Task 2 baseline model to
support multichannel processing. Instead of processing
all channels uniformly, our approach involves using one
channel as a reference and calculating its difference from
the others. Although each channel has its encoder and de-
coder, the embedded space is shared and passed to each
decoder. The performance of this model is compared with
the baseline, demonstrating slightly better results.
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1. INTRODUCTION

The goal of anomalous sound detection (ASD) is to deter-
mine whether a sound corresponds to normal operation or
indicates an anomaly. The goal of anomalous sound detec-
tion (ASD) is to determine whether a sound corresponds
to normal operation or indicates an anomaly. This task has
various applications, such as in medical analysis [1], traf-
fic control [2], and industrial monitoring and conditioning
systems [3]. In the context of industrial machines, ASD
aims to detect whether a machine is functioning normally
or exhibiting an anomaly. However, collecting real-world
anomalous sound data is challenging due to its rarity and
high variability [4]. To address this, modern ASD meth-
ods typically train models on normal sound data, learn-
ing its distribution to distinguish normal from abnormal
sounds.

A widely used approach involves autoencoders (AE),
which learn compressed representations by reconstructing
input data. The DCASE Task 2 baseline [3] employs a
simple autoencoder trained on normal data, using recon-
struction error as an anomaly score. Similarly, [5] applies
an autoencoder for condition monitoring of rotating ma-
chines. More advanced methods integrate LSTM layers
to improve detection [6], while others explore convolu-
tional [7], hybrid [8], and variational autoencoders [9].
A GAN-based adversarial training approach is proposed
in [10].

While effective, these approaches focus on monaural
processing, using only single-channel audio and overlook-
ing spatial characteristics. These have proven beneficial
in tasks like sound source localization, speech enhance-
ment, and acoustic scene analysis. For instance, in sound
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source localization, [11] employs a U-Net-based model
to extract spatial features from beamforming maps. In
speech enhancement, [12] proposes a binaural method us-
ing a CNN-transformer architecture to improve intelligi-
bility while preserving spatial cues. For acoustic scene
analysis, [13] introduces the spatial cepstrum method to
enhance robustness without requiring microphone syn-
chronization.

Despite their success in other areas, spatial features
remain underexplored in ASD. In this work, we pro-
pose a multi-channel autoencoder-based method that in-
corporates spatial information, analyzing audio using both
single-channel data and inter-channel differences.

2. PROPOSED METHOD

Our proposal is based on extending the baseline model in-
troduced in the DCASE Task 2 (2023) [3]. This model
employs an autoencoder trained exclusively on normal
sound data, using the reconstruction error as the anomaly
score. To define a decision threshold, the authors assume
that anomaly scores for normal sounds follow a gamma
distribution. The parameters of this distribution are es-
timated based on the reconstruction errors from normal
sound data in the training set for each machine. The
threshold is then determined as the 90th percentile of the
gamma distribution, with any score surpassing this value
identified as anomalous. For model input, 128 bands of
log-Mel energies are extracted using STFT with 64 ms
frames and a 50% hop size. Five consecutive frames are
concatenated to form input vectors for the autoencoder,
resulting in a 640-dimensional representation. Figure 1(a)
provides an example, where each column corresponds to
one such input vector.

The model’s architecture is depicted in Figure 2.
From the audio waveform, input feature vectors (x~) are
computed as described earlier. Each vector is then passed
through the encoder (Enc), which compresses it into an
embedded space representation (z). The decoder ( Dec)
subsequently reconstructs the signal (27) from this latent
representation. For training, the AE model parameters 6
are optimized to minimize the mean squared error (MSE)
between a normal input sample z~ and its reconstructed
output £~. This error also serves as the anomaly score
during inference.

Loss =MSE(z™,27), (1
where

&~ = Decy(z) = Decy(Ency(z7)). 2)

Mel Features

Input Vectors

(a) (b)

Input Vectors

Figure 1. (a) Eight input vectors, each comprising
five concatenated frames of the Mel spectrogram of
the input channel on the baseline and the reference
channel on our proposal. (b) Eight input vectors,
each comprising five concatenated frames of the Mel
spectrogram of the difference input channel.

The baseline model also included an alternative mode for
computing the anomaly score. While the model architec-
ture remains unchanged, this version replaces the standard
mean squared error (MSE) with Mahalanobis distance as
the anomaly score. During training, the model computes
the residuals, the differences between normal inputs and
their reconstructions, and uses these residuals to estimate
a covariance matrix. This matrix models the expected dis-
tribution of reconstruction errors under normal conditions.
After the final training epoch, this covariance matrix is
fixed and used during inference to compute the Maha-
lanobis distance between the residual (the difference be-
tween the input = and its reconstruction Z) and the learned
distribution.

Ay (z) = Mahalanobis(z, #, % 71), 3)

where X is the covariance matrix.

Several modifications are proposed to adapt this
model for spatial processing. First, defining the model’s
input is a non-trivial task, as it is crucial to maximize fea-
ture learning while minimizing the size of the model. Our
approach utilizes two channels recorded from opposite-
side microphones: a reference channel (z), representing
the signal from one microphone, and a difference channel
("), computed as the signal difference between the two
microphones. Both channels are processed similarly to the
baseline, where 128 Mel features are extracted, and five
consecutive frames are concatenated to form input vec-
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Figure 2. Baseline model from the DCASE chal-
lenge 2024 task [3]

tors. An example of these input vectors can be seen in
Figure 1 where (a) corresponds to the reference channel
and the (b) to the difference channel.

The model structure is illustrated in Figure 3. Each
channel has its encoder and decoder. The input vectors
(z~ and z'7) are fed into their respective encoders, which
generate the corresponding embedded space representa-
tions (z and 2’). These representations are then concate-
nated and passed to both decoders, which attempt to re-
construct their respective input vectors.

To define the model’s loss function, we combine two
reconstruction errors:

L=Lros+ alyy, 4)

where L,.r is the reconstruction error of the reference
channel, and Lg4;¢ is the reconstruction error of the dif-
ference channel:

Lye; = MSE(z™,27) 5)

Lais = MSE(z'~,2"). (©6)

We introduce the hyperparameter « to balance the contri-
bution of each channel’s reconstruction error during train-
ing. This parameter controls the relative weighting of the
difference channel’s loss, allowing us to adjust its influ-
ence on the overall optimization. By tuning o, we can
assess the impact of each channel on the model’s perfor-
mance and determine which contributes more effectively
to improving anomaly detection.

Like the baseline, we extend our approach to the Ma-
halanobis distance-based anomaly scoring. We compute
two covariance matrices: one for the reference channel

—{} Loss

channel 0

orrspith—]
channel 1

2

| oSSy

Figure 3. Proposed two-microphone model.

and one for the difference channel. From each one, we
compute an anomaly score and combine them as:

AQ (1‘) = Aref (1‘) + a-Adif (I/)v (7)

where
A;cf(z) = Mahalanobis(z, &, E;elf) (8)
Aqif(z") = Mahalanobis(a', &', £} ). )

Here, Y.y and Xg;7 are the covariance matrices for the
reference and difference channels, respectively.

3. EXPERIMENTS AND RESULTS
3.1 Dataset

We evaluate our method using the MIMII dataset [14],
which includes recordings of four machine types: fans,
slide rails, valves, and pumps. For each type of machine,
recordings were made from multiple individual units. The
sounds were captured as 16-bit audio signals sampled at
16 kHz. As shown in Fig. 4, recordings were made us-
ing a circular microphone array with eight microphones
placed 50 cm from the machines, except for valves, which
were recorded at 10 cm. Each session captured a single
machine along with background noise.

For training, we randomly selected 1,000 normal au-
dio samples, mixing different individual units and noise
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Figure 4. Recording scheme of the dataset (repro-
duced from [14])

levels. The test set included 200 normal and anomalous
audio files, simulating conditions similar to those in the
DCASE challenge.

3.2 Evaluation Metrics

To measure the performance of our proposal, we have
used the same metrics used in the DCASE Challenge and
by the majority of related works [4,7,9, 10]. We use the
area under the ROC curve (AUC) and the partial AUC
(pAUC). These metrics are computed as follows:

N_ Ny
— 1 + _
AUC= NN, ;;’H (Ao(z}) — Ao(z7)) , (10)
1 [pPN_] Ny
AUC= —— H (Ag(a) = Ag(z7)),
P LpN_JN+ 1:21 ]; ( 9<xJ) 0(1’.1 ))

(1D
where N_ and IV, are the number of normal test samples
(x1) and the number of anomalous test samples (z7), re-
spectively. The pAUC is computed by defining a false-
positive rate (FPP) p (in our case p = 0.1) and H(-) de-
notes the Heaviside step function, returning 1 if its argu-
ment is positive and O otherwise.
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3.3 Implementation

Following the same approach as the baseline, our pro-
posed model is trained independently for each machine
type, meaning a distinct model is optimized using data
specific to that machine category. For each machine type,
we train both our model and the baseline model using
1,000 raw waveform signals. For the log-Mel spectrogram
computation, we use a frame size of 1,024 samples with
50% overlap, and apply a Mel filter bank consisting of
128 filters. The Adam optimizer is used for training. [15]
to train the model with a learning rate of 0.001. The model
is trained for 50 epochs, and the batch size is 256.

3.4 Performance comparison

We evaluated our model using different microphone pairs
and « values for each machine. Table 1 summarizes
the results across all configurations and scoring methods:
Mean Squared Error (MSE) and Mahalanobis Distance
(Mahala). The best-performing result for each machine
and scoring method is highlighted in bold. Our model
consistently outperforms the baseline across all machines
and scoring metrics, demonstrating that optimizing the o
parameter and selecting appropriate microphone pairs sig-
nificantly enhances anomaly detection performance. Ex-
amining the average results, our method consistently sur-
passes the baseline, with MSE scoring showing the most
significant improvement—AUC and pAUC increasing by
4.29% and 3.45%, respectively.

In Fig. 5, a detailed representation of the AUC (%)
results is provided. Each subgraph shows the AUC perfor-
mance for a specific machine, comparing two microphone
pairs and analyzing the impact of the parameter o.. The in-
fluence of microphone placement is clear, as the optimal
pair varies by machine, emphasizing the need for proper
setup selection. Regarding «, for both microphone combi-
nations, at least one value always surpasses the baseline,
showing that tuning this parameter can significantly im-
prove performance.

4. CONCLUSIONS

In this paper, we have presented a self-supervised anoma-
lous sound detection model that leverages autoencoders
with spatial information. The proposed method demon-
strates improved performance compared to the traditional
single-channel audio processing model. This experiment
opens the door for further exploration of spatial process-
ing in other common ASD models and provides oppor-
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Table 1. Results of all the experiments carried out with two different pairs of microphones and for scores
computed using MSE and for Mahalanobis distances. The baseline results are included for comparison.

MSE MAHALANOBIS
Machine | Metric | MICS 0-4 MICS 2-6 Baseline| MICS 0-4 MICS 2-6 Baseline
a=0,1 a=05a=20 =100 a=01 «a=05a=2,0 a=10,0 a=0,1 a=05 a=2,0 a=10,0 a=0,1 a=0,5 a=20 a=10,0
Fan AUC |87,14 91,21 93,03 94,03 88,99 88,44 86,10 8537 86,98 86,12 90,90 93,96 94,46 89,77 89,81 8896 8829 87,19
pAUC |70,07 77,12 82771 85,78 75,26 72,59 7043 6743 69,59 67.47 74,49 8092 8348 74,01 71,97 7091 67,65 70,32
Slider |AUC 9521 94,85 94,89 93,14 92,98 94,13 95,52 96,00 92,24 95,90 95,07 9546 93,05 89,99 91,36 93,79 94,69 92,01
pAUC 85,70 8542 8571 8224 82,84 84,31 87,00 87,89 79,27 82,40 81,80 82,21 76,54 75,63 76,76 79,48 82,58 73,56
Pump |AUC |71,90 73,64 68,63 67,66 73,54 75,19 75,79 73,83 69,10 77,23 79,10 73,79 72,69 80,78 82,88 82,56 81,19 75,61
pAUC |58,88 61,11 56,76 56,80 64,07 65,68 65,57 63,23 58,00 53,80 54,02 53,14 5336 56,76 58,63 56,98 58,59 52,01
Valve AUC 58,24 58,17 5728 58,12 56,79 54,58 51,65 52,17 55,13 48,08 4835 4732 4724 49,15 4733 47,06 4522 46,63
pAUC 48,68 48,54 4836 4825 48,54 48,28 4843 48,54 47,99 48,83 48,87 48,65 48,72 48,36 48,68 48,65 48,90 48,79
Average |[AUC |75,39 76,51 75,02 74,97 75,19 74,70 73,21 72,93 72,80 71,70 72,93 71,68 71,10 72,76 72,37 72,38 71,02 70,17
pAUC |63,03 64,89 6446 64,36 64,97 6496 6494 6387 61,48 60,58 61,90 62,60 62,20 61,51 62,00 61,74 62,10 59,23
AUC (%) Fan AUC (%)  Slider tunities to experiment with additional channels and mi-
941 _e— MIC 0-4 96.0 1 crophone placements. These advancements pave the way
o g";‘;:“:e 5.5 | for more robust and adaptable approaches to anomalous
92 1 05.0 1 sound detection in industrial settings.
94.5
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