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ABSTRACT

Machine Learning (ML) techniques are gaining interest in
many scientific applications, including analysing and
forecasting road traffic noise. Many alternatives to the
classic Road Traffic Noise Models (RTNMs) are then
opened: ML provides ways for studying the traffic noise in
urban and non-urban environments straightforwardly, using
the same input data of the RTNMs. In this work, an analysis
of road traffic noise equivalent levels by using ML
regressors is described. Those regressors are calibrated on
real data (coming from an experimental long-term
monitoring station) using the well-known 80%/20%
calibration/validation split rule. Splitting of data for
calibration and validation is coupled with shuffling of the
data themselves to evaluate possible output variations. Even
with some differences, regressors exhibit promising
potentialities in the simulation of the road traffic noise
levels in the case under study. The mean error is very low
and comparable with other models available in Literature.
The comparison between the distribution of the measured
data and the simulated one shows a general good
agreement, and also underlines peculiarities of the single
regressors.
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1. INTRODUCTION

Noise has a severe impact on urban environments since it is
ubiquitous and its gravity is generally not perceived as other
pollutants. People subjected to high noise levels, anyway,
experience equal or even worse effects. Consequences of
prolonged exposure to high noise levels are numerous:
tiredness, lack of sleep, irritability and irascibility, problems
in concentration, scarce intelligibility during conversations,
tinnitus, and difficulty in conducting daily tasks like study
or work [1]. Worse consequences may be related to
transient or permanent hearing loss and, even if rarely, to
hypertension and/or cardiovascular diseases [2]. Road
traffic is responsible for the main part of the impact of noise
in a given urban environment, and for this reason,
governments are constantly trying to implement noise
control and reduction strategies [3]. European Union, for
example, aims at a 30% reduction in the number of people
subjected to high noise levels before 2030 [4]. Due to this,
the importance of monitoring and controlling noise in urban
areas is clear, and the implementation of valid measuring
strategies is decisive for a successful assessment of the
problem. Noise can be directly measured, but when such a
direct approach is not possible, modelling is an appropriate
alternative. Many models, commonly known as Road
Traffic Noise Models (RTNMs), exist since long time, and
different RTNMs have been adopted in the past by different
national institutions: the CoRTN model, used in the United
Kingdom [5], the SonRoad model, used in Switzerland [6];
the NMBP model in France [7]; the ASJ in Japan [8]; the
RLS90 in Germany [9] and the Harmonoise model [10]. A
comprehensive review of the evolution of RTNMs can be
found in [11]. Recently the European Union (EU) has
realized and recommended the CNOSSOS-EU model,
which is a common procedure for the evaluation and
simulation of transportation and industrial noise levels in all
European countries [12-13]. CNOSSOS-EU framework is
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also used for the final development of noise maps. Together
with the aforementioned methods, anyway, recently new
procedures have recently been investigated and
implemented for the assessment of noise. In particular,
Machine Learning (ML) techniques have been more and
more used for this scope. While RTNMs investigate the
direct physical cause-effect relationships between noise
emitters characteristics (number of wvehicles running,
vehicle category, speed) and noise levels at a sensible
receiver, ML approaches evaluate such relationship from a
statistical point otrof view. In such a way they open to their
usability in the same contexts where traditional RTNMs are
commonly applied, but also in unusual traffic conditions
(presence of roundabouts and/or stops and traffic lights).
This is very important considering that RTNMs typically
presuppose free-flow conditions. Many examples can be
found in the literature. In [14], as an example, Support
Vector Machine and Multilinear Regression have been used
to evaluate noise in relation to its annoyance to people,
generating a final model that correlates noise perception,
noise exposure levels, and demographics; in [15] a similar
approach is reported, but with more details on the type and
number of inputs to be used. An Extreme Gradient
Boosting (XGB) approach has been used in [16] to properly
relate the performances of the most common traffic noise
models and validate them. A wide comparison of the
efficiency of several ML approaches can be found in [17].
In the work of Singh et al. [18], a ML approach is used
together with a Monte Carlo Simulation for the assessment
of noise impact in India. In [19], together with the classic
input road traffic parameters, the honking occurrences have
been used as input for ML approaches, namely Decision
Tree and Random Forest. In [20] the very same regressors
have been calibrated by using pass-by noise. All these
literature experiences, together with the high potentiality of
such approaches, have led the authors to dedicate efforts to
the production of a large and comprehensive study on three
different ML regressors - Multilinear Regressor (MLR),
Decision Tree (DT) and Random Forest (RF) to predict
Road traffic noise equivalent levels. After a detailed
hyperparameter tuning and calibration approach such
models have been validated on a set of road traffic collected
data. Specifically, data have been collected by French
researchers in a specific extra-urban viaduct in Saint
Berthevin, France, during an experimental campaign that
lasted several years called “Long Term Monitoring Station"
(LTMS). Such data are freely available for research use.

The here presented study stands out for the important
aspects of the ML application to road traffic noise
simulation. The experimental procedures have been
developed using Python programming language. Outputs of
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the here presented models are provided as hourly
continuous equivalent sound level Legn. The result is a study
on the potentiality of the application of such ML
approaches on noise assessment and its impact on the
environment of urban and extra-urban contexts.

2. MATERIALS AND METHODS

2.1 Workflow of the experimental procedure and used
programming environment

Jupyter notebook, a Python environment, has been used to
implement the Machine Learning analysis on a DELL
personal computer (Intel® Xeon® CPU E3-1245 v5 @3.50
GHz) with 16 GB of RAM installed, 64-bit. The main
packages used were: pandas, numpy, scikitlearn, matplotlib
and seaborn. The whole experimental procedure consisted
of three parts: a first part in which the three chosen
regressors have been tuned with the best hyperparameters
combination; a second part consisting in the calibration of
the regressors, and a final part of validation of the regressor
themselves. Figure 1 visually resumes the steps of the
process.

2.2 Dataset used for calibration and validation of the
regressors

The data used in this experiment to calibrate and validate
the regressors come from a large road traffic noise dataset
available in the literature, obtained from a large campaign
of data collection pursued by the Unité Mixte de Recherche
en Acoustique Environnementale (UMRAE), within
Université Gustave Eiffel, Nantes. In this study, both
meteorological and acoustic data were collected by different
masts installed in the city of Saint-Berthevin (France) for a
period of six years, from 2002 to 2007 [21]. Within this
large dataset, the following data were used in this paper:
sound equivalent levels, number of light and heavy
vehicles, and average speeds for both vehicle categories.
Specifically, all the above parameters were recorded in 15-
minute intervals, but for this study, they were converted to
60-minute time ranges. To do this, equivalent levels based
on 15 minutes were logarithmically summed to calculate
the equivalent hourly level. When performing this
procedure, authors removed the entries where, for some
reasons, equivalent levels were missing. A detailed report of
this procedure can be found in [22]. As a result, the dataset
used for this contribution was reduced from the original
30347 entries (based on 15 minutes) to a filtered one of
3404 entries (based on 1 hour).
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Hyperparameter tuning and calibration of the three regressors
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Figure 1: Workflow of the experimental procedure.

2.3 Hyperparameters tuning of the regressors

Hyperparameters tuning is a procedure aiming at finding
the best combination possible of the hyperparameters of
each regressor to get the best simulation results taking as
input a given set of data. In this application, the tuning test
has been performed on the same dataset used in the
calibration described in subsection 2.4. Different nested
cycles have been implemented to check the progressive
advances of each test and to save the results. Please note
that an in-built function for hyperparameter testing is
present in the Scikit-learn package, but the authors preferred
to build a personalized one, to have more control over the
phases of each iteration. A description of the
hyperparameters involved in the tuning procedure is
reported below.

For Decision Tree (DT), the hyperparameters are: the
criterion to measure the quality of the split, the strategy
used to choose the split at each node, the maximum depth
of the tree, the minimum number of samples required to
split an internal node, the minimum number of samples
required to be at a leaf node, the minimum weighted
fraction of the sum of weights, the number of features to
consider when looking for the best split, the function
considering the randomness of the estimator, a maximum
number of nodes for each leaf, the value inducing a
decrease of the impurity at each node split, the
hyperparameter used for Minimal Cost-Complexity Pruning
and the monotonicity constraint to enforce on each feature.
For Random Forest (RF), the hyperparameters are: the
number of trees in the forest, the function to measure the
quality of a split, the maximum depth of the tree, the
minimum number of samples required to split an internal
node, the minimum number of samples required to be at a
leaf node, the minimum weighted fraction of the sum total
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of weights, the number of features to consider when looking
for the best split, a hyperparameter to grow trees with a
maximum number of leaves in best-first fashion, the value
inducing a decrease of the impurity at each node split, a
hyperparameter to establish whether bootstrap samples are
used when building trees, a hyperparameter to establish
whether to use out-of-bag samples to estimate the
generalization score, the number of jobs to run in parallel, a
hyperparameter controlling both the randomness of the
bootstrapping of the samples used when building trees, the
hyperparameter controlling the verbosity when fitting and
predicting, a hyperparameter establishing to reuse the
solution of the previous call to fit and add more estimators
to the ensemble, a complexity hyperparameter used for
Minimal Cost-Complexity Pruning, the number of samples
to draw to train each base estimator the monotonicity
constraint to enforce on each feature.

Finally, for MultiLinear Regressor (MLR), the
hyperparameters are: the hyperparameter controlling
whether to calculate the intercept or not, the number of jobs
to use for the computation, a hyperparameter forcing the
coefficients to be all positive.

2.4 Calibration of the regressors

The calibration of the regressors is the process by which
every single regressor involved in this experimental study
has been trained with a section of the calibration dataset and
then has been evaluated in a subsequent validation (test)
phase. This process has been carried out following a
standard procedure where a section of the data has been
devoted to the training of the regressors and the remaining
section to their validation. For this specific application 80%
of the whole dataset has been used for training, and the
remaining 20% for the validation. The train/test split of the
dataset is randomly performed by an in-built method of the
scikit-learn package that assigns a seed to assure the
repeatability of the process. All the analyses reported in
Section 3 have been pursued using the same seed, thus
fixing the calibration and validation datasets.

2.5 Validation of the regressors

After the calibration of the model, the validation step has
been performed by comparing the values simulated by each
single regressor with the real one. The validation of the
regressors took accounts of statistical analysis of the
distribution of the simulated values and of the real ones
(mean, standard deviation, skewness, kurtosis) and also a
statistical evaluation of the distribution of the errors, where
errors have been calculated as the difference of real data
and the corresponding simulated ones.
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3. RESULTS

3.1 Hyperparameters tuning and calibration results

The first step of evaluation of the work focused on the
hyperparameters tuning of the four regressors. As described
in subsection 2.3, MLR has been tuned by testing 4
hyperparameters, DT has been tuned by testing 11
hyperparameters and RF has been tuned by testing 17
hyperparameters. In Figure 2 the authors report the boxplots
of the distributions of the MAE for the three regressors
considered. MLR has a very narrow distribution of MAE
values: the minimum value is 1.37 dBA, and the maximum
one is 1.39 dBA. DT has a value of MAE ranging from 1.17
dBA to 1.49 dBA. RF has a minimum MAE value of 1.01
dBA and a maximum of 1.32 dBA.

Regressor
HE MLR
. DT

I RF
1.0

Figure 2: Boxplots of the MAE distributions of all
the tested hyperparameters combinations, for all
regressors. The solid line is the median of the
distribution.

Figure 2 implies an important consideration to be done
when calibrating a model since it clarifies how the accuracy
of the regressors cannot be considered as a single value
coming from a single procedure, but it must be interpreted
after taking account of the hyperparameters’ tuning. If
working on RF, as an example, an output having MAE of
1.3 dBA could be considered as a good value since both
MLR and DT have higher average values, but carefully
analysing the results of hyperparameters’ tuning, it’s
observed that the final result could be furtherly improved
with a better hyperparameters’ combination, having an even
lower MAE value.

Table 1 reports the best hyperparameters’ combination for
each regressor as a function of the MAE and mean
residuals. The residual is computed as the difference
between the measured and the simulated noise levels in the
tuning/calibration phase. Consequently, the negative values

of the mean residuals found in Table 1 show a slight
overestimation of all the models.

Since the tuning has been performed by testing the various
hyperparameters’ combinations on the same 80% of the
overall dataset selected for the calibration, the results of this
process provided the final calibration of each regressor.

Table 1: Results of the best hyperparameters’
tuning combination for each regressor, in terms of
mean error and MAE

Regressor | Mean Error [dBA] | MAE [dBA]
MLR -0.05 1.38
DT -0.04 1.17
RF -0.08 1.01

3.2 Simulation outputs: validation and error analysis

After the regressors tuning and calibration phase, the
validation step of the regressors themselves has been made.
A due premise to this subsection is that until now authors
used the MAE metric as the main indicator for the tuning
and calibration phase. The strategy of using MAE as an
indicator of the calibration phase has been used to drive the
choice of the best hyperparameters setting for each
calibration since it is a concise and easy-to-use indicator. In
contrast, the validation process has been pursued more in
detail, comparing the distributions of real and simulated
data, and performing on them statistical investigations.
Specifications of such analysis are presented below.

After the hyperparameters selection has been done, the
regressors have been fed with input validation data and the
final outputs have been collected and compared with the
measured levels. Table 2 reports the main statistical
descriptors of the measured and simulated equivalent sound
level distributions for each regressor, which are plotted in
Figure 3.

Table 2. Main statistical descriptors of measured
and simulated levels distributions.

Mean Median | St.dev. skew | Kurt
[dBA] | [dBA] [dBA]
Measured | 72.04 72.52 2.16 -2.13 | 4.87
MLR 72.09 72.03 0.88 0.49 0.06
DT 72.09 72.41 1.89 -1.50 | 4.42
RF 72.13 72.38 1.40 -1.79 | 5.09
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Figure 3. Distributions of measured and simulated
equivalent sound levels, calculated by each
regressor. The dashed line is the median and the
dotted lines are the 1%t and 3™ quartile.

70 75

At first glance, all the regressors give as output simulated
data close to the measured ones, meaning that the
hyperparameters’ tuning process performed before the
calibration indeed selected a good combination for each
regressor. Validation data present a mean value of 72.04
dBA, a median of 72.52 dBA, a standard deviation of 2.16
dBA, a skewness of -2.13 (due to the equivalent levels on
the left tail of the distribution), and a kurtosis index of 4.87.
As for the central tendency metrics, all the regressors
perform well, especially with the mean values of the
distributions being very close to the measured ones. Median
values show a small underestimation of MLR compared to
the other regressors.
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As for the standard deviations, it is interesting to note how
the three regressors’ distributions present a value lower than
the measured levels one, meaning that no regressor can
fully and properly simulate the dispersion of the real data,
especially in the tails of the distribution. This behaviour
reflects also on the skewness and kurtosis indexes for MLR,
which are significantly different from those related to the
distribution of the measured levels. More specifically, MLR
tends to stabilize around zero skewness and kurtosis
indexes. In contrast, DT and RF have higher values (in
absolute) for both indexes, close to those of the distribution
of the measured levels. MLR, then, can simulate data whose
mean value is very close to the real one but misses the
shape information of the simulated data distribution. DT
and RF also catch the central tendency of the distribution
but, in addition, they can also depict the left tail of the
distribution, even if not perfectly.

A deeper analysis of the results comes from the
investigations of the errors, defined as measured minus
simulated equivalent levels in each entry of the dataset
(each 1-hour slot), whose distributions are reported in
Figure 4. The main statistical descriptors of error
distributions for each regressor are resumed in Table 3.
Shapes of the error’s distributions are very similar for the
three regressors and all have mean values very close to zero
(see Table 3). This aspect means that all the chosen
regressors can simulate the equivalent noise levels in a good
way and that the models aren’t affected by any systematic
underestimation or overestimation error. From Table 3 it
also appears the Gaussian shape of the errors’ distribution,
since the Shapiro-Wilk index [23], measuring the normality
of the distribution, is very high (0.91 for all the regressors).

80

Regressor i

70 9 MLR ‘
[ DT

60 [0 RF

50

40

30
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oL A .
-125 -10.0 75 -5.0 -2.5 0.0 25 5.0

Errors [dBA]

Figure 4. Distributions of the errors according to
the regressor used for simulation.
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Table 3. Main statistical descriptors of the error
distributions for all the regressors.

MLR | DT RF

Mean [dBA] -0.05 | -0.04 | -0.08
Median[dBA] 0.32 | 0.02 | 0.06
St. deviation [dBA] 192 | 162 | 1.48
Kurtosis index 6.32 | 2.10 | 10.72
Skewness index -1.75 | -0.42 | -1.46

Shapiro-Wilk index 0.89 | 0.97 | 091
Bowley-Youle index -0.15 | 0.00 | -0.09

The Bowley-Yule test [24], used to estimate the symmetry
of the distributions, is also good since it is very close to zero
for all three regressors. Errors of the regressors, then, are
peaked to zero and are symmetrically distributed on both
negative and positive values, ensuring the stochastic nature
of the errors themselves.

A final investigation comes from the visualization of Figure
5, where the scatterplots of measured (on x-axis) versus
simulated (on y-axis) values of Leg for all the regressors are
reported. The solid red diagonal line represents the ideal 1:1
agreement, whereas the red dashed lines indicate a +2 dBA
deviation, which does not have any statistical validity but
it’s a commonly accepted range in environmental noise
modelling.

As for MLR (top plot), one of the most striking aspects of
the model’s behaviour is that it does not predict values
lower than approximately 70 dBA. The same aspect was
observed also in Figure 3, looking at the missing left tail.
This result suggests a limitation in its ability to capture the
full range of noise levels, possibly due to the linear nature
of the model. If the dataset includes lower measured values,
the model might be constrained by the way predictor
variables interact, leading to an artificial threshold effect.
Additionally, the data points are tightly clustered, with a
tendency to underestimate higher values, as confirmed by
the median simulated level in Table 2 and median error in
Table 3, reinforcing the idea that MLR struggles with
nonlinear relationships in the data.

The DT model (centre plot) exhibits a much wider scatter,
with significant deviation from the 1:1 line. Unlike MLR, it
does predict lower values but does so with higher
dispersion. The large spread outside the +2 dBA range
reinforces the known tendency of decision trees to create
rigid, locally optimized models that may not perform well
on new data [25].
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Figure 5. Scatterplots of simulated vs measured
data for each regressor
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As for the RF model (bottom plot), it provides a more
balanced spread of predictions across the range of measured
values, without the artificial cut-off seen in MLR. The
alignment with the 1:1 line is generally better, although
some dispersion is still evident, particularly at the extreme
ends of the scale. This suggests that while RF effectively
captures nonlinear dependencies, it may still struggle with
rare or extreme cases. However, the lower variance
compared to DT and the statistics resumed in Table 3
indicate a better ability to generalize.

From a comparative standpoint, the RF model appears to be
the most robust, showing good predictive capability across
the measured range while maintaining relatively low
variability. The MLR model, despite being a simpler
approach, fails to predict values below 70 dBA, which
raises concerns about its suitability for datasets with a wider
dynamic range. Meanwhile, the DT model, though flexible,
introduces higher variability.

For a better understanding of such results, the authors
calculated the amount of data lying between the 2 dBA
diagonal dashed lines. Table 4 resumes the percentage of
data falling within and outside the mentioned interval. RF
has the greater amount of data within the £2 dBA interval,
confirming the above comments about its performances.

Table 4. Percentage of data within the + 2 dB area
for each regressor.

MLR
81.06%

DT
80.91%

RF
87.96%

Data within £ 2 dBA lines

4. CONCLUSIONS

In this paper three different regressors have been tuned,
calibrated and validated on a measured dataset of equivalent
continuous sound levels available in literature, to simulate
the road traffic noise levels of an extra-urban road. The
calibration approach of the regressor is a classical one,
where a section of the whole dataset (80%) has been
dedicated to the calibration and the remaining part (20%) to
the validation of the models. Before the calibration, the
regressors were tuned with fine hyperparameter tuning,
which revealed the best combination of each regressor to
get the lower MAE.

When validating on the dedicated portion of the dataset,
outputs show how the simulated values with all regressors
fall in a reasonable range of validity. The three regressors
seem to get equivalent results when considering central
tendency metrics. Anyway, differences exist and can be
highlighted by looking at the shape of the distributions of
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the simulated data, which are slightly different from the
measurements’ distribution.

MLR is not able to depict the data on the tails, completely
missing then noise situations far from the average ones and
exhibiting an artificial threshold effect around 70 dBA. For
this reason, concerns have been raised regarding its
suitability for datasets exhibiting a broader dynamic range,
even if the MLR model respects the parsimony principle,
with a low number of parameters. DT, while sufficiently
accurate, introduces slightly higher variability in the error.
The RF model appears to be the most precise, exhibiting
good performances in the entire range of measurements and
keeping relatively low error mean and dispersion.

In conclusion, machine learning regressors seem to provide
a valid option, besides the already existing models, to
simulate noise traffic values, starting from the very same
input parameters. The future steps of this work will be
surely focused on improving the analyses performed on the
regressors and including additional models, as well as
testing all the regressors on new datasets, possibly related
not only to highway road traffic noise data but also urban
levels. This will shed light on the usability of such an
approach in more complex scenarios, in which several
sources may contribute to the environmental noise levels.
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