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ABSTRACT* 

Machine Learning (ML) techniques are gaining interest in 

many scientific applications, including analysing and 

forecasting road traffic noise. Many alternatives to the 

classic Road Traffic Noise Models (RTNMs) are then 

opened: ML provides ways for studying the traffic noise in 

urban and non-urban environments straightforwardly, using 

the same input data of the RTNMs. In this work, an analysis 

of road traffic noise equivalent levels by using ML 

regressors is described. Those regressors are calibrated on 

real data (coming from an experimental long-term 

monitoring station) using the well-known 80%/20% 

calibration/validation split rule. Splitting of data for 

calibration and validation is coupled with shuffling of the 

data themselves to evaluate possible output variations. Even 

with some differences, regressors exhibit promising 

potentialities in the simulation of the road traffic noise 

levels in the case under study. The mean error is very low 

and comparable with other models available in Literature. 

The comparison between the distribution of the measured 

data and the simulated one shows a general good 

agreement, and also underlines peculiarities of the single 

regressors. 
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1. INTRODUCTION 

Noise has a severe impact on urban environments since it is 

ubiquitous and its gravity is generally not perceived as other 

pollutants. People subjected to high noise levels, anyway, 

experience equal or even worse effects. Consequences of 

prolonged exposure to high noise levels are numerous: 

tiredness, lack of sleep, irritability and irascibility, problems 

in concentration, scarce intelligibility during conversations, 

tinnitus, and difficulty in conducting daily tasks like study 

or work [1]. Worse consequences may be related to 

transient or permanent hearing loss and, even if rarely, to 

hypertension and/or cardiovascular diseases [2]. Road 

traffic is responsible for the main part of the impact of noise 

in a given urban environment, and for this reason, 

governments are constantly trying to implement noise 

control and reduction strategies [3]. European Union, for 

example, aims at a 30% reduction in the number of people 

subjected to high noise levels before 2030 [4]. Due to this, 

the importance of monitoring and controlling noise in urban 

areas is clear, and the implementation of valid measuring 

strategies is decisive for a successful assessment of the 

problem. Noise can be directly measured, but when such a 

direct approach is not possible, modelling is an appropriate 

alternative. Many models, commonly known as Road 

Traffic Noise Models (RTNMs), exist since long time, and 

different RTNMs have been adopted in the past by different 

national institutions: the CoRTN model, used in the United 

Kingdom [5], the SonRoad model, used in Switzerland [6]; 

the NMBP model in France [7]; the ASJ in Japan [8]; the 

RLS90 in Germany [9] and the Harmonoise model [10]. A 

comprehensive review of the evolution of RTNMs can be 

found in [11]. Recently the European Union (EU) has 

realized and recommended the CNOSSOS-EU model, 

which is a common procedure for the evaluation and 

simulation of transportation and industrial noise levels in all 

European countries [12-13]. CNOSSOS-EU framework is 
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also used for the final development of noise maps. Together 

with the aforementioned methods, anyway, recently new 

procedures have recently been investigated and 

implemented for the assessment of noise. In particular, 

Machine Learning (ML) techniques have been more and 

more used for this scope. While RTNMs investigate the 

direct physical cause-effect relationships between noise 

emitters characteristics (number of vehicles running, 

vehicle category, speed) and noise levels at a sensible 

receiver, ML approaches evaluate such relationship from a 

statistical point otrof view. In such a way they open to their 

usability in the same contexts where traditional RTNMs are 

commonly applied, but also in unusual traffic conditions 

(presence of roundabouts and/or stops and traffic lights). 

This is very important considering that RTNMs typically 

presuppose free-flow conditions. Many examples can be 

found in the literature. In [14], as an example, Support 

Vector Machine and Multilinear Regression have been used 

to evaluate noise in relation to its annoyance to people, 

generating a final model that correlates noise perception, 

noise exposure levels, and demographics; in [15] a similar 

approach is reported, but with more details on the type and 

number of inputs to be used. An Extreme Gradient 

Boosting (XGB) approach has been used in [16] to properly 

relate the performances of the most common traffic noise 

models and validate them. A wide comparison of the 

efficiency of several ML approaches can be found in [17]. 

In the work of Singh et al. [18], a ML approach is used 

together with a Monte Carlo Simulation for the assessment 

of noise impact in India. In [19], together with the classic 

input road traffic parameters, the honking occurrences have 

been used as input for ML approaches, namely Decision 

Tree and Random Forest. In [20] the very same regressors 

have been calibrated by using pass-by noise. All these 

literature experiences, together with the high potentiality of 

such approaches, have led the authors to dedicate efforts to 

the production of a large and comprehensive study on three 

different ML regressors - Multilinear Regressor (MLR), 

Decision Tree (DT) and Random Forest (RF) to predict 

Road traffic noise equivalent levels. After a detailed 

hyperparameter tuning and calibration approach such 

models have been validated on a set of road traffic collected 

data. Specifically, data have been collected by French 

researchers in a specific extra-urban viaduct in Saint 

Berthevin, France, during an experimental campaign that 

lasted several years called "Long Term Monitoring Station" 

(LTMS). Such data are freely available for research use.  

The here presented study stands out for the important 

aspects of the ML application to road traffic noise 

simulation. The experimental procedures have been 

developed using Python programming language. Outputs of 

the here presented models are provided as hourly 

continuous equivalent sound level Leq,h. The result is a study 

on the potentiality of the application of such ML 

approaches on noise assessment and its impact on the 

environment of urban and extra-urban contexts. 

2. MATERIALS AND METHODS 

2.1 Workflow of the experimental procedure and used 

programming environment  

Jupyter notebook, a Python environment, has been used to 

implement the Machine Learning analysis on a DELL 

personal computer (Intel® Xeon® CPU E3-1245 v5 @3.50 

GHz) with 16 GB of RAM installed, 64-bit. The main 

packages used were: pandas, numpy, scikitlearn, matplotlib 

and seaborn. The whole experimental procedure consisted 

of three parts: a first part in which the three chosen 

regressors have been tuned with the best hyperparameters 

combination; a second part consisting in the calibration of 

the regressors, and a final part of validation of the regressor 

themselves. Figure 1 visually resumes the steps of the 

process. 

2.2 Dataset used for calibration and validation of the 

regressors 

The data used in this experiment to calibrate and validate 

the regressors come from a large road traffic noise dataset 

available in the literature, obtained from a large campaign 

of data collection pursued by the Unité Mixte de Recherche 

en Acoustique Environnementale (UMRAE), within 

Université Gustave Eiffel, Nantes. In this study, both 

meteorological and acoustic data were collected by different 

masts installed in the city of Saint-Berthevin (France) for a 

period of six years, from 2002 to 2007 [21]. Within this 

large dataset, the following data were used in this paper: 

sound equivalent levels, number of light and heavy 

vehicles, and average speeds for both vehicle categories. 

Specifically, all the above parameters were recorded in 15-

minute intervals, but for this study, they were converted to 

60-minute time ranges. To do this, equivalent levels based 

on 15 minutes were logarithmically summed to calculate 

the equivalent hourly level. When performing this 

procedure, authors removed the entries where, for some 

reasons, equivalent levels were missing. A detailed report of 

this procedure can be found in [22]. As a result, the dataset 

used for this contribution was reduced from the original 

30347 entries (based on 15 minutes) to a filtered one of 

3404 entries (based on 1 hour). 
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Figure 1: Workflow of the experimental procedure. 
 

2.3 Hyperparameters tuning of the regressors 

Hyperparameters tuning is a procedure aiming at finding 

the best combination possible of the hyperparameters of 

each regressor to get the best simulation results taking as 

input a given set of data. In this application, the tuning test 

has been performed on the same dataset used in the 

calibration described in subsection 2.4. Different nested 

cycles have been implemented to check the progressive 

advances of each test and to save the results. Please note 

that an in-built function for hyperparameter testing is 

present in the Scikit-learn package, but the authors preferred 

to build a personalized one, to have more control over the 

phases of each iteration. A description of the 

hyperparameters involved in the tuning procedure is 

reported below. 

For Decision Tree (DT), the hyperparameters are: the 

criterion to measure the quality of the split, the strategy 

used to choose the split at each node, the maximum depth 

of the tree, the minimum number of samples required to 

split an internal node, the minimum number of samples 

required to be at a leaf node, the minimum weighted 

fraction of the sum of weights, the number of features to 

consider when looking for the best split, the function 

considering the randomness of the estimator, a maximum 

number of nodes for each leaf, the value inducing a 

decrease of the impurity at each node split, the 

hyperparameter used for Minimal Cost-Complexity Pruning 

and the monotonicity constraint to enforce on each feature.  

For Random Forest (RF), the hyperparameters are: the 

number of trees in the forest, the function to measure the 

quality of a split, the maximum depth of the tree, the 

minimum number of samples required to split an internal 

node, the minimum number of samples required to be at a 

leaf node, the minimum weighted fraction of the sum total 

of weights, the number of features to consider when looking 

for the best split, a hyperparameter to grow trees with a 

maximum number of leaves in best-first fashion, the value 

inducing a decrease of the impurity at each node split, a 

hyperparameter to establish whether bootstrap samples are 

used when building trees, a hyperparameter to establish 

whether to use out-of-bag samples to estimate the 

generalization score, the number of jobs to run in parallel, a 

hyperparameter controlling both the randomness of the 

bootstrapping of the samples used when building trees, the 

hyperparameter controlling  the verbosity when fitting and 

predicting, a hyperparameter establishing to reuse the 

solution of the previous call to fit and add more estimators 

to the ensemble, a complexity hyperparameter used for 

Minimal Cost-Complexity Pruning, the number of samples 

to draw to train each base estimator the monotonicity 

constraint to enforce on each feature.  

Finally, for MultiLinear Regressor (MLR), the 

hyperparameters are: the hyperparameter controlling 

whether to calculate the intercept or not, the number of jobs 

to use for the computation, a hyperparameter forcing the 

coefficients to be all positive. 

2.4 Calibration of the regressors 

The calibration of the regressors is the process by which 

every single regressor involved in this experimental study 

has been trained with a section of the calibration dataset and 

then has been evaluated in a subsequent validation (test) 

phase. This process has been carried out following a 

standard procedure where a section of the data has been 

devoted to the training of the regressors and the remaining 

section to their validation. For this specific application 80% 

of the whole dataset has been used for training, and the 

remaining 20% for the validation. The train/test split of the 

dataset is randomly performed by an in-built method of the 

scikit-learn package that assigns a seed to assure the 

repeatability of the process. All the analyses reported in 

Section 3 have been pursued using the same seed, thus 

fixing the calibration and validation datasets. 

2.5 Validation of the regressors 

After the calibration of the model, the validation step has 

been performed by comparing the values simulated by each 

single regressor with the real one. The validation of the 

regressors took accounts of statistical analysis of the 

distribution of the simulated values and of the real ones 

(mean, standard deviation, skewness, kurtosis) and also a 

statistical evaluation of the distribution of the errors, where 

errors have been calculated as the difference of real data 

and the corresponding simulated ones.  
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3. RESULTS 

3.1 Hyperparameters tuning and calibration results 

The first step of evaluation of the work focused on the 

hyperparameters tuning of the four regressors. As described 

in subsection 2.3, MLR has been tuned by testing 4 

hyperparameters, DT has been tuned by testing 11 

hyperparameters and RF has been tuned by testing 17 

hyperparameters. In Figure 2 the authors report the boxplots 

of the distributions of the MAE for the three regressors 

considered. MLR has a very narrow distribution of MAE 

values: the minimum value is 1.37 dBA, and the maximum 

one is 1.39 dBA. DT has a value of MAE ranging from 1.17 

dBA to 1.49 dBA. RF has a minimum MAE value of 1.01 

dBA and a maximum of 1.32 dBA. 

 

 
 

Figure 2: Boxplots of the MAE distributions of all 

the tested hyperparameters combinations, for all 

regressors. The solid line is the median of the 

distribution. 
 

Figure 2 implies an important consideration to be done 

when calibrating a model since it clarifies how the accuracy 

of the regressors cannot be considered as a single value 

coming from a single procedure, but it must be interpreted 

after taking account of the hyperparameters’ tuning. If 

working on RF, as an example, an output having MAE of 

1.3 dBA could be considered as a good value since both 

MLR and DT have higher average values, but carefully 

analysing the results of hyperparameters’ tuning, it’s 

observed that the final result could be furtherly improved 

with a better hyperparameters’ combination, having an even 

lower MAE value. 

Table 1 reports the best hyperparameters’ combination for 

each regressor as a function of the MAE and mean 

residuals. The residual is computed as the difference 

between the measured and the simulated noise levels in the 

tuning/calibration phase. Consequently, the negative values 

of the mean residuals found in Table 1 show a slight 

overestimation of all the models. 

Since the tuning has been performed by testing the various 

hyperparameters’ combinations on the same 80% of the 

overall dataset selected for the calibration, the results of this 

process provided the final calibration of each regressor. 

 

Table 1: Results of the best hyperparameters’ 

tuning combination for each regressor, in terms of 

mean error and MAE 
Regressor Mean Error [dBA] MAE [dBA] 

MLR -0.05 1.38 

DT -0.04 1.17 

RF -0.08 1.01 

3.2 Simulation outputs: validation and error analysis  

After the regressors tuning and calibration phase, the 

validation step of the regressors themselves has been made. 

A due premise to this subsection is that until now authors 

used the MAE metric as the main indicator for the tuning 

and calibration phase. The strategy of using MAE as an 

indicator of the calibration phase has been used to drive the 

choice of the best hyperparameters setting for each 

calibration since it is a concise and easy-to-use indicator. In 

contrast, the validation process has been pursued more in 

detail, comparing the distributions of real and simulated 

data, and performing on them statistical investigations. 

Specifications of such analysis are presented below. 

After the hyperparameters selection has been done, the 

regressors have been fed with input validation data and the 

final outputs have been collected and compared with the 

measured levels. Table 2 reports the main statistical 

descriptors of the measured and simulated equivalent sound 

level distributions for each regressor, which are plotted in 

Figure 3. 

   

Table 2. Main statistical descriptors of measured 

and simulated levels distributions. 

 Mean 

[dBA] 

Median 

[dBA] 

St.dev. 

[dBA] 
Skew Kurt 

Measured 72.04 72.52 2.16 -2.13 4.87 

MLR 72.09 72.03 0.88 0.49 0.06 

DT 72.09 72.41 1.89 -1.50 4.42 

RF 72.13 72.38 1.40 -1.79 5.09 
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Figure 3. Distributions of measured and simulated 

equivalent sound levels, calculated by each 

regressor. The dashed line is the median and the 

dotted lines are the 1st and 3rd quartile. 
 

At first glance, all the regressors give as output simulated 

data close to the measured ones, meaning that the 

hyperparameters’ tuning process performed before the 

calibration indeed selected a good combination for each 

regressor. Validation data present a mean value of 72.04 

dBA, a median of 72.52 dBA, a standard deviation of 2.16 

dBA, a skewness of -2.13 (due to the equivalent levels on 

the left tail of the distribution), and a kurtosis index of 4.87. 

As for the central tendency metrics, all the regressors 

perform well, especially with the mean values of the 

distributions being very close to the measured ones. Median 

values show a small underestimation of MLR compared to 

the other regressors. 

As for the standard deviations, it is interesting to note how 

the three regressors’ distributions present a value lower than 

the measured levels one, meaning that no regressor can 

fully and properly simulate the dispersion of the real data, 

especially in the tails of the distribution. This behaviour 

reflects also on the skewness and kurtosis indexes for MLR, 

which are significantly different from those related to the 

distribution of the measured levels. More specifically, MLR 

tends to stabilize around zero skewness and kurtosis 

indexes. In contrast, DT and RF have higher values (in 

absolute) for both indexes, close to those of the distribution 

of the measured levels. MLR, then, can simulate data whose 

mean value is very close to the real one but misses the 

shape information of the simulated data distribution. DT 

and RF also catch the central tendency of the distribution 

but, in addition, they can also depict the left tail of the 

distribution, even if not perfectly. 

A deeper analysis of the results comes from the 

investigations of the errors, defined as measured minus 

simulated equivalent levels in each entry of the dataset 

(each 1-hour slot), whose distributions are reported in 

Figure 4. The main statistical descriptors of error 

distributions for each regressor are resumed in Table 3. 

Shapes of the error’s distributions are very similar for the 

three regressors and all have mean values very close to zero 

(see Table 3). This aspect means that all the chosen 

regressors can simulate the equivalent noise levels in a good 

way and that the models aren’t affected by any systematic 

underestimation or overestimation error. From Table 3 it 

also appears the Gaussian shape of the errors’ distribution, 

since the Shapiro-Wilk index [23], measuring the normality 

of the distribution, is very high (0.91 for all the regressors).  

 

 
Figure 4. Distributions of the errors according to 

the regressor used for simulation. 
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Table 3. Main statistical descriptors of the error 

distributions for all the regressors. 

 
MLR DT RF 

Mean [dBA] -0.05 -0.04 -0.08 

Median[dBA] 0.32 0.02 0.06 

St. deviation [dBA] 1.92 1.62 1.48 

Kurtosis index 6.32 2.10 10.72 

Skewness index -1.75 -0.42 -1.46 

Shapiro-Wilk index 0.89 0.97 0.91 

Bowley-Youle index -0.15 0.00 -0.09 

 

The Bowley-Yule test [24], used to estimate the symmetry 

of the distributions, is also good since it is very close to zero 

for all three regressors. Errors of the regressors, then, are 

peaked to zero and are symmetrically distributed on both 

negative and positive values, ensuring the stochastic nature 

of the errors themselves. 

A final investigation comes from the visualization of Figure 

5, where the scatterplots of measured (on x-axis) versus 

simulated (on y-axis) values of Leq,h for all the regressors are 

reported. The solid red diagonal line represents the ideal 1:1 

agreement, whereas the red dashed lines indicate a ±2 dBA 

deviation, which does not have any statistical validity but 

it’s a commonly accepted range in environmental noise 

modelling. 

As for MLR (top plot), one of the most striking aspects of 

the model’s behaviour is that it does not predict values 

lower than approximately 70 dBA. The same aspect was 

observed also in Figure 3, looking at the missing left tail. 

This result suggests a limitation in its ability to capture the 

full range of noise levels, possibly due to the linear nature 

of the model. If the dataset includes lower measured values, 

the model might be constrained by the way predictor 

variables interact, leading to an artificial threshold effect. 

Additionally, the data points are tightly clustered, with a 

tendency to underestimate higher values, as confirmed by 

the median simulated level in Table 2 and median error in 

Table 3, reinforcing the idea that MLR struggles with 

nonlinear relationships in the data. 

The DT model (centre plot) exhibits a much wider scatter, 

with significant deviation from the 1:1 line. Unlike MLR, it 

does predict lower values but does so with higher 

dispersion. The large spread outside the ±2 dBA range 

reinforces the known tendency of decision trees to create 

rigid, locally optimized models that may not perform well 

on new data [25]. 

 

 

 

 
Figure 5. Scatterplots of simulated vs measured 

data for each regressor 
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As for the RF model (bottom plot), it provides a more 

balanced spread of predictions across the range of measured 

values, without the artificial cut-off seen in MLR. The 

alignment with the 1:1 line is generally better, although 

some dispersion is still evident, particularly at the extreme 

ends of the scale. This suggests that while RF effectively 

captures nonlinear dependencies, it may still struggle with 

rare or extreme cases. However, the lower variance 

compared to DT and the statistics resumed in Table 3 

indicate a better ability to generalize. 

From a comparative standpoint, the RF model appears to be 

the most robust, showing good predictive capability across 

the measured range while maintaining relatively low 

variability. The MLR model, despite being a simpler 

approach, fails to predict values below 70 dBA, which 

raises concerns about its suitability for datasets with a wider 

dynamic range. Meanwhile, the DT model, though flexible, 

introduces higher variability.  

For a better understanding of such results, the authors 

calculated the amount of data lying between the ±2 dBA 

diagonal dashed lines. Table 4 resumes the percentage of 

data falling within and outside the mentioned interval. RF 

has the greater amount of data within the ±2 dBA interval, 

confirming the above comments about its performances.  

 

Table 4. Percentage of data within the ± 2 dB area 

for each regressor. 

 
MLR DT RF 

Data within ± 2 dBA lines 81.06% 80.91% 87.96% 

4. CONCLUSIONS 

In this paper three different regressors have been tuned, 

calibrated and validated on a measured dataset of equivalent 

continuous sound levels available in literature, to simulate 

the road traffic noise levels of an extra-urban road. The 

calibration approach of the regressor is a classical one, 

where a section of the whole dataset (80%) has been 

dedicated to the calibration and the remaining part (20%) to 

the validation of the models. Before the calibration, the 

regressors were tuned with fine hyperparameter tuning, 

which revealed the best combination of each regressor to 

get the lower MAE.  

When validating on the dedicated portion of the dataset, 

outputs show how the simulated values with all regressors 

fall in a reasonable range of validity. The three regressors 

seem to get equivalent results when considering central 

tendency metrics. Anyway, differences exist and can be 

highlighted by looking at the shape of the distributions of 

the simulated data, which are slightly different from the 

measurements’ distribution.  

MLR is not able to depict the data on the tails, completely 

missing then noise situations far from the average ones and 

exhibiting an artificial threshold effect around 70 dBA. For 

this reason, concerns have been raised regarding its 

suitability for datasets exhibiting a broader dynamic range, 

even if the MLR model respects the parsimony principle, 

with a low number of parameters. DT, while sufficiently 

accurate, introduces slightly higher variability in the error. 

The RF model appears to be the most precise, exhibiting 

good performances in the entire range of measurements and 

keeping relatively low error mean and dispersion.  

In conclusion, machine learning regressors seem to provide 

a valid option, besides the already existing models, to 

simulate noise traffic values, starting from the very same 

input parameters. The future steps of this work will be 

surely focused on improving the analyses performed on the 

regressors and including additional models, as well as 

testing all the regressors on new datasets, possibly related 

not only to highway road traffic noise data but also urban 

levels. This will shed light on the usability of such an 

approach in more complex scenarios, in which several 

sources may contribute to the environmental noise levels. 
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