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ABSTRACT

The Column Type Electric Power Steering (C-EPS)
system consists of a motor, a reduction gear, and bearings
that ensure structural stability and minimize friction. Noise
in rotating systems mainly arises from motor noise,
component defects, and frictional sounds caused by
rotational dynamics.

Operational noise defects are typically managed within
regulatory thresholds. Recently, machine learning-based
anomaly detection models have gained popularity, often
relying on labeled datasets for training. However, this
process demands substantial human and time resources for
labeling, and distinguishing between noise types remains a
significant challenge.

In response to these challenges, this study introduces a
method that preprocesses noise input data using Short-Time
Fourier Transform (STFT), utilizes unsupervised learning
for data encoding, and applies clustering to generate labels.
The effectiveness of the proposed approach is demonstrated
through a validation process.

Commonly Mel-spectrogram and MFCC transformations
are used for Al noise input, but bearing noise often exhibits
distinct high-frequency features. STFT was chosen to
preserve high-frequency characteristic without attenuation.
Various unsupervised learning techniques were utilized to
encode the noise data effectively. As the goal was clustering
rather than generation, and C-EPS noise shows limited
temporal variation, experiments identified Convolutional
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Autoencoder as the effective unsupervised learning method
for mapping noise.
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1. INTRODUCTION

As shown Fig. 1, the steering system required to steer in a
vehicle is divided into three main parts: the steering gear
system that changes the rotational force into linear force, the
Column Type Electric Power Steering system (C-EPS) [1]
that helps the driver to steer with the power of motor [2]
and the universal joint that connects the steering gear
system and C-EPS. Among them, as shown Fig. 2, the C-
EPS which consist of motor and the reducing gear system
causes a lot of noise problems. In general, these noises
cause emotional quality degradation to customers who drive
the vehicle, which incurs steady field claim costs to
companies. [3] One of the consistently problematic noise
issues in C-EPS originates from the bearings in the worm
shaft system. This bearing-induced noise can be broadly
classified into frictional noise and rotational noise. However,
there are limitations in detecting it using conventional
quantitative noise indicators such as overall level and order
noise level. Recently, supervised learning-based machine
learning models have been introduced for anomaly
detection. However, these methods still rely on subjective
human evaluations, and there are ambiguous cases where
classification based on subjective assessment is challenging.
As a result, the accuracy of labeling inherently suffers, and
a significant human resource is required. In addition,
conventional quantification methods such as overall level
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and order-based filtering are limited in effectively analyzing
bearing noise in C-EPS systems.

Consequently, this study aims to identify an optimized
model for detecting bearing noise defects in C-EPS using an
unsupervised learning approach. In addition, the labeling of
bearing noise based on unsupervised learning can be further
utilized in combination with supervised learning and
explainable Al (XAIl) to establish new criteria. In other
words, it enables the development of an end-to-end model
capable of generating noise specifications even in the
absence of prior knowledge about the noise characteristics.
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Figure 1. Composition of steering system of vehicle
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Figure 2. C-EPS Structure Diagram

2. EVALUATION OF NOISE AND VIBRATION

2.1 Evaluation Method

To measure the operational noise of the C-EPS, tests are
conducted under constant velocity or constant acceleration
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conditions using equipment that controls the torque while
considering the real vehicle conditions of the input and
output, as shown in Fig. 3. As shown in the STFT colormap
of the C-EPS operational noise in Fig.4, the advantage of
constant acceleration evaluation is that it enables the
identification of frequency characteristics across a range of
rotational speeds in a single test. Reflecting this advantage,
constant acceleration evaluation is commonly selected for
assessing abnormal noise in rotating systems.

For the evaluation, both a microphone and multiple
accelerometers were used to capture noise and vibration
signals. The accelerometers were attached to the motor
center, the motor lower area near the defective bearing, and
the worm shaft. The reason for including accelerometer
measurements was to ensure the applicability of the model
not only during development but also in the production
stage, where microphone-based measurements are often not
feasible in End-of-Line environments.

Figure 3. Evaluation setup for operational noise
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2.2 Description and analysis of noise

The bearing located at the upper end of the worm shaft,
which is in contact with the motor, is subjected to a high
load. Therefore, even minor defects can cause noise issues,
which are generally classified into friction noise and
rotational noise. Friction noise typically occurs when
foreign substances such as aluminum particles or grease
enter the bearing, whereas rotational noise is generated
when there is damage to the raceway surface. Friction noise
is characterized by broad-band frequency components that
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are independent of rotational speed. In contrast, rotational
noise exhibits prominent order components that vary with
speed.

In general, noise regulation is based on problematic order
components and overall level, and the operational noise of
C-EPS systems is also quantified using these two criteria.
As shown in Table 1, the detection performance based on
the overall level indicates that the microphone sensor failed
to capture more than 50% of the bearing noise cases. The
accelerometer attached to the motor lower section detected
rotational noise with an accuracy of 61%, but was less
effective for frictional noise, detecting only around 34%.
Notably, the accelerometer placed at the motor center
detected less than 15%, which is likely due to strong
reflections of motor-specific characteristics. Theses results
suggest that proper sensor placement is critical for
effectively detecting bearing noise. Additionally, detection
rates based solely on order components were extremely low
and therefore not included in the table.

Table 1. Detection performance according to Noise type
based on overall RMS thresholding (O/A)

detection rate [%]
Sensor type and Location | Rotation | Friction
MIC O/A 54.3 33.1
Motor Center Acc O/A 20.4 9.2
Motor Lower Acc O/A 67.7 44.2
Worm Shaft Acc O/A 59.1 39.9

2.3 Data preprocessing

Although the STFT is commonly used for preprocessing
bearing operational noise, various preprocessing techniques
including Mel spectrogram, Mel Frequency Cepstral
Coefficients (MFCC), and Continuous Wavelet Transform
(CWT) were applied in this study to prepare the data as
input for machine learning models.

Mel Spectrograms and MFCC are widely used feature
representations in audio signal processing, particularly in
machine learning-based approaches. Mel spectrograms
provide a time-frequency representation based on Mel scale,
which reflects the non-linear perception of pitch.[4] MFCC,
in contrast, captures perceptually relevant characteristics by
modelling the human auditory system and is effective for
extracting timbral features.[5] Both techniques have been
extensively applied in speech recognition, acoustic scene
analysis, and environmental noise classification, serving as
standard input features for various learning models.[6] As
shown in Figure 5, the average colormaps of MFCC and
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Mel spectrogram for each noise type indicate that MFCC
fails to reflect the timbral differences of bearing noise, and
the Mel spectrogram similarly does not sufficiently
highlight distinctive frequency characteristics compared to
STFT. This is likely because both preprocessing methods
apply scaling in the high-frequency range, resulting in
dimensionality reduction that diminishes the high-frequency
characteristics of bearing noise. Therefore, it was concluded
that these methods offer no clear advantage over STFT in
preserving the high-frequency characteristics of bearing
noise.

And CWT is effective for preprocessing impulsive or
transient signals due to its ability to capture localized time-
frequency characteristics with high resolution. This makes it
a suitable choice for fault detection tasks where short-
duration, high-frequency components are critical.[7] As
shown in the CWT colormaps for each noise type in Figure
5, the characteristic order components of rotational noise
appear too be suppressed by the CWT representation.
Considering these characteristics of CWT, it was concluded
that STFT is more effective in capturing the features of both
rotational and frictional noise.

Frictional Noise

Normal Rotational Noise

Mel-Spectrogram STFT

MFCC

Figure 5. Average cdlormaps of each preprocessing
method according to bearing noise defect types

3. UNSUPERVISED LEARNING

3.1 Unsupervised Learning

To embed the input data preprocessed using STFT through
unsupervised learning, several models were employed,
including Convolutional Autoencoder (CAE), Cluster
GANSs, Variational Autoencoder (VAE), ResNet-18 and
LSTM-CNN Autoencoder. Since the primary objective of
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this study is clustering rather than generation, and the
rotational noise signals exhibit minimal temporal variation,
the experimental results suggest that the CAE is the most
suitable architecture for unsupervised mapping of
operational noise in C-EPS bearing.[8]

3.2 Clustering

For clustering the latent features extracted by the
convolutional autoencoder (CAE), we utilized Gaussian
Mixture Models (GMM), K-means, and Agglomerative
Clustering (AGG). Among the clustering methods applied
to the CAE-extracted embeddings, as shown Fig.6, the
GMM and AGG achieved notably better separation of
frictional and rotational anomalies compared to K-means.
The improved performance of GMM and AGG can be
attributed to their flexibility in modeling non-spherical
clusters, robustness to boundary ambiguities, and ability to
capture complex structure in high-dimensional acoustic
feature spaces.[9] Furthermore, it was observed that

classified as defective products through clustering, rather
than as normal ones. Although the detection performance of
unsupervised learning does not surpass that of supervised
approaches, it offers greater potential in capturing
previously unseen frictional or rotational noise. This is
particularly important in real-world applications, where
ambiguous acoustic anomalies often lack clear boundaries,
and the initial labeling process is prone to subjectivity.
Therefore, the level of detection performance achieved in
this study is considered highly meaningful and practically
valuable. Accordingly, in situations where no alternative
indicators beyond overall level or order level are available,
the proposed model can be recommended for detecting
bearing-related noise.

Table 2. Detection performance by noise type based on
overall RMS thresholding (O/A) versus CAE-PCA-
GMM (C.P.M)

applying Principal Component Analysis (PCA) to the latent Detection rate [%]
representations extracted by the CAE further improved the Sensor Method Rotation | Friction
detection performance when combined with GMM MIC O/A 54.3 33.1
clustering.[10] These results are considered to stem from C.P.M 81.1 76.1
PCA’s ability to reduce noise and redundancy in the CAE- M. Center O/A 20.4 9.2
derived embeddings, thereby improving the separability of (Acc) C.P.M 78.5 54.6
clusters in the GMM process. In conclusion, the results in M. Lower O/A 67.7 44.2
Table 2 demonstrate that GMM clustering, when applied (Acc) C.P.M 774 63.8
after sequential embedding via CAE and PCA, substantially Shv¥t0r,rAn Oé AM 99.1 32'9
improves the detection rate compared to the baseline HCE) Lo 68.8 5238
approach based on overall level. The calculated value
represents the proportion assigned to the two clusters
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Figure 6. Detection rates for rotational and frictional noises using unsupervised learning with different clustering

3.3 End-to-End model for feature extraction

In addition to performing anomaly detection using
unsupervised learning and clustering, the label sets obtained
through these unsupervised approaches can further be
utilized to enable supervised learning and XAl. This allows
for the extraction of class-specific feature maps
corresponding to different types of bearing noise. The
overall framework can thus be the end-to-end model for
extracting discriminative feature maps of bearing noise. As
shown in Fig. 7, the process begins with STFT-based time
frequency transformation, followed by dimensionality
reduction through CAE and PCA. Unsupervised learning
with GMM clustering yields label sets, which are then
utilized to train a supervised classification model. Finally,
XAl methods are applied to interpret the learned
representations and extract feature maps associated with
each noise type. Initially, both the ResNet18 and ResNet18
with Self-Attention models were applied for supervised
learning. [11-12] Due to the lack of significant differences
between the two, a classification model was developed
using ResNet18. Subsequently, XAl tools such as Smooth
Grad, Gradient-weighted Class Activation Mapping (Grad
CAM), Score-Weighted  Visual Explanations for
Convolutional Neural Networks (Score CAM), and Local
Interpretable Model-agnostic Explanations (LIME) were
utilized to obtain the average heatmap of feature maps for
each noise type. [13-15]
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Figure 7. Diagram of end-to-end model

As shown Fig.8, the heatmaps generated by each XAl tool
revealed that rotational noise primarily identifies the
diagonal components of the order elements as key factors,
while frictional noise is characterized by broad bands
regardless of speed. In conclusion, an end-to-end process is
established where labeling is performed through
unsupervised learning and clustering. Subsequently, a
classification model is developed based on the labeled data
using unsupervised learning. Finally, XAl tools are
employed to automatically extract features according to the
characteristics of each noise type. If additional noise types
are anticipated, unsupervised learning can be employed to
add new classes. These feature maps can then be utilized as
weighted filters for the specifications of noise and vibration.
We believe that recalculating the noise using such feature
maps and managing it through thresholding is significantly
more effective than conventional overall-level-based
approaches.
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according to bearing noise defect types

4. CONCLUSIONS

This study demonstrates the effectiveness of anomaly
detection in diagnosing bearing defects in C-EPS systems
by optimizing unsupervised learning and clustering
methodologies. To preprocess the input data, STFT was
employed to retain the high-frequency characteristics of
bearing noise.

Unsupervised learning was conducted using CAE, with
PCA applied to improve performance. The embedded
features were clustered using GMM, resulting in superior
detection capabilities compared to the traditional overall
level metric for noise and vibration. Although both noise
and vibration were analyzed, vibration was prioritized due
to limitations of noise measurement in EOL environments.

Additionally, a classification model was developed using
supervised learning based on noise-type labels derived from
optimized unsupervised learning and clustering. This model
integrates XAl to extract feature maps for each noise type,
enabling identification of the speed and frequency at which
anomalies occur. While the end-to-end model does not
guarantee perfect detection, it offers a fast and practical
auxiliary tool for EOL and early-stage development.
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