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ABSTRACT* 

The Column Type Electric Power Steering (C-EPS) 

system consists of a motor, a reduction gear, and bearings 

that ensure structural stability and minimize friction. Noise 

in rotating systems mainly arises from motor noise, 

component defects, and frictional sounds caused by 

rotational dynamics. 

 Operational noise defects are typically managed within 

regulatory thresholds. Recently, machine learning-based 

anomaly detection models have gained popularity, often 

relying on labeled datasets for training. However, this 

process demands substantial human and time resources for 

labeling, and distinguishing between noise types remains a 

significant challenge. 

 In response to these challenges, this study introduces a 

method that preprocesses noise input data using Short-Time 

Fourier Transform (STFT), utilizes unsupervised learning 

for data encoding, and applies clustering to generate labels. 

The effectiveness of the proposed approach is demonstrated 

through a validation process. 

Commonly Mel-spectrogram and MFCC transformations 

are used for AI noise input, but bearing noise often exhibits 

distinct high-frequency features. STFT was chosen to 

preserve high-frequency characteristic without attenuation. 

Various unsupervised learning techniques were utilized to 

encode the noise data effectively. As the goal was clustering 

rather than generation, and C-EPS noise shows limited 

temporal variation, experiments identified Convolutional 
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1. INTRODUCTION 

As shown Fig. 1, the steering system required to steer in a 

vehicle is divided into three main parts: the steering gear 

system that changes the rotational force into linear force, the 

Column Type Electric Power Steering system (C-EPS) [1] 

that helps the driver to steer with the power of motor [2] 

and the universal joint that connects the steering gear 

system and C-EPS.  Among them, as shown Fig. 2, the C-

EPS which consist of motor and the reducing gear system 

causes a lot of noise problems. In general, these noises 

cause emotional quality degradation to customers who drive 

the vehicle, which incurs steady field claim costs to 

companies. [3] One of the consistently problematic noise 

issues in C-EPS originates from the bearings in the worm 

shaft system. This bearing-induced noise can be broadly 

classified into frictional noise and rotational noise. However, 

there are limitations in detecting it using conventional 

quantitative noise indicators such as overall level and order 

noise level. Recently, supervised learning-based machine 

learning models have been introduced for anomaly 

detection. However, these methods still rely on subjective 

human evaluations, and there are ambiguous cases where 

classification based on subjective assessment is challenging. 

As a result, the accuracy of labeling inherently suffers, and 

a significant human resource is required. In addition, 

conventional quantification methods such as overall level 
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and order-based filtering are limited in effectively analyzing 

bearing noise in C-EPS systems. 

Consequently, this study aims to identify an optimized 

model for detecting bearing noise defects in C-EPS using an 

unsupervised learning approach. In addition, the labeling of 

bearing noise based on unsupervised learning can be further 

utilized in combination with supervised learning and 

explainable AI (XAI) to establish new criteria. In other 

words, it enables the development of an end-to-end model 

capable of generating noise specifications even in the 

absence of prior knowledge about the noise characteristics. 

 

 

 
Figure 1. Composition of steering system of vehicle 
 

 

Figure 2. C-EPS Structure Diagram 

 

2. EVALUATION OF NOISE AND VIBRATION 

2.1 Evaluation Method 

To measure the operational noise of the C-EPS, tests are 

conducted under constant velocity or constant acceleration 

conditions using equipment that controls the torque while 

considering the real vehicle conditions of the input and 

output, as shown in Fig. 3. As shown in the STFT colormap 

of the C-EPS operational noise in Fig.4, the advantage of 

constant acceleration evaluation is that it enables the 

identification of frequency characteristics across a range of 

rotational speeds in a single test. Reflecting this advantage, 

constant acceleration evaluation is commonly selected for 

assessing abnormal noise in rotating systems.  

 For the evaluation, both a microphone and multiple 

accelerometers were used to capture noise and vibration 

signals. The accelerometers were attached to the motor 

center, the motor lower area near the defective bearing, and 

the worm shaft. The reason for including accelerometer 

measurements was to ensure the applicability of the model 

not only during development but also in the production 

stage, where microphone-based measurements are often not 

feasible in End-of-Line environments. 

 

 
Figure 3. Evaluation setup for operational noise 
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Figure 4. Colormap of the STFT Spectrogram  

 

2.2 Description and analysis of noise  

The bearing located at the upper end of the worm shaft, 

which is in contact with the motor, is subjected to a high 

load. Therefore, even minor defects can cause noise issues, 

which are generally classified into friction noise and 

rotational noise. Friction noise typically occurs when 

foreign substances such as aluminum particles or grease 

enter the bearing, whereas rotational noise is generated 

when there is damage to the raceway surface. Friction noise 

is characterized by broad-band frequency components that 
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are independent of rotational speed. In contrast, rotational 

noise exhibits prominent order components that vary with 

speed.  

In general, noise regulation is based on problematic order 

components and overall level, and the operational noise of 

C-EPS systems is also quantified using these two criteria. 

As shown in Table 1, the detection performance based on 

the overall level indicates that the microphone sensor failed 

to capture more than 50% of the bearing noise cases. The 

accelerometer attached to the motor lower section detected 

rotational noise with an accuracy of 61%, but was less 

effective for frictional noise, detecting only around 34%. 

Notably, the accelerometer placed at the motor center 

detected less than 15%, which is likely due to strong 

reflections of motor-specific characteristics. Theses results 

suggest that proper sensor placement is critical for 

effectively detecting bearing noise. Additionally, detection 

rates based solely on order components were extremely low 

and therefore not included in the table. 

 

Table 1. Detection performance according to Noise type 

based on overall RMS thresholding (O/A) 

 

 detection rate [%] 

Sensor type and Location Rotation Friction 

MIC O/A 54.3 33.1 

Motor Center Acc O/A 20.4 9.2 

Motor Lower Acc O/A 67.7 44.2 

Worm Shaft Acc O/A 59.1 39.9 

 

2.3 Data preprocessing 

Although the STFT is commonly used for preprocessing 

bearing operational noise, various preprocessing techniques 

including Mel spectrogram, Mel Frequency Cepstral 

Coefficients (MFCC), and Continuous Wavelet Transform 

(CWT) were applied in this study to prepare the data as 

input for machine learning models.  

Mel Spectrograms and MFCC are widely used feature 

representations in audio signal processing, particularly in 

machine learning-based approaches. Mel spectrograms 

provide a time-frequency representation based on Mel scale, 

which reflects the non-linear perception of pitch.[4] MFCC, 

in contrast, captures perceptually relevant characteristics by 

modelling the human auditory system and is effective for 

extracting timbral features.[5] Both techniques have been 

extensively applied in speech recognition, acoustic scene 

analysis, and environmental noise classification, serving as 

standard input features for various learning models.[6] As 

shown in Figure 5, the average colormaps of MFCC and 

Mel spectrogram for each noise type indicate that MFCC 

fails to reflect the timbral differences of bearing noise, and 

the Mel spectrogram similarly does not sufficiently 

highlight distinctive frequency characteristics compared to 

STFT. This is likely because both preprocessing methods 

apply scaling in the high-frequency range, resulting in 

dimensionality reduction that diminishes the high-frequency 

characteristics of bearing noise. Therefore, it was concluded 

that these methods offer no clear advantage over STFT in 

preserving the high-frequency characteristics of bearing 

noise. 

And CWT is effective for preprocessing impulsive or 

transient signals due to its ability to capture localized time-

frequency characteristics with high resolution. This makes it 

a suitable choice for fault detection tasks where short-

duration, high-frequency components are critical.[7] As 

shown in the CWT colormaps for each noise type in Figure 

5, the characteristic order components of rotational noise 

appear too be suppressed by the CWT representation. 

Considering these characteristics of CWT, it was concluded 

that STFT is more effective in capturing the features of both 

rotational and frictional noise. 

 

 
Figure 5. Average colormaps of each preprocessing 

method according to bearing noise defect types 
 

3. UNSUPERVISED LEARNING  

3.1 Unsupervised Learning 

To embed the input data preprocessed using STFT through 

unsupervised learning, several models were employed, 

including Convolutional Autoencoder (CAE), Cluster 

GANs, Variational Autoencoder (VAE), ResNet-18 and 

LSTM-CNN Autoencoder. Since the primary objective of 
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this study is clustering rather than generation, and the 

rotational noise signals exhibit minimal temporal variation, 

the experimental results suggest that the CAE is the most 

suitable architecture for unsupervised mapping of 

operational noise in C-EPS bearing.[8] 

3.2 Clustering 

For clustering the latent features extracted by the 

convolutional autoencoder (CAE), we utilized Gaussian 

Mixture Models (GMM), K-means, and Agglomerative 

Clustering (AGG). Among the clustering methods applied 

to the CAE-extracted embeddings, as shown Fig.6, the 

GMM and AGG achieved notably better separation of 

frictional and rotational anomalies compared to K-means. 

The improved performance of GMM and AGG can be 

attributed to their flexibility in modeling non-spherical 

clusters, robustness to boundary ambiguities, and ability to 

capture complex structure in high-dimensional acoustic 

feature spaces.[9] Furthermore, it was observed that 

applying Principal Component Analysis (PCA) to the latent 

representations extracted by the CAE further improved the 

detection performance when combined with GMM 

clustering.[10] These results are considered to stem from 

PCA’s ability to reduce noise and redundancy in the CAE-

derived embeddings, thereby improving the separability of 

clusters in the GMM process. In conclusion, the results in 

Table 2 demonstrate that GMM clustering, when applied 

after sequential embedding via CAE and PCA, substantially 

improves the detection rate compared to the baseline 

approach based on overall level. The calculated value 

represents the proportion assigned to the two clusters 

classified as defective products through clustering, rather 

than as normal ones. Although the detection performance of 

unsupervised learning does not surpass that of supervised 

approaches, it offers greater potential in capturing 

previously unseen frictional or rotational noise. This is 

particularly important in real-world applications, where 

ambiguous acoustic anomalies often lack clear boundaries, 

and the initial labeling process is prone to subjectivity. 

Therefore, the level of detection performance achieved in 

this study is considered highly meaningful and practically 

valuable. Accordingly, in situations where no alternative 

indicators beyond overall level or order level are available, 

the proposed model can be recommended for detecting 

bearing-related noise. 

 

Table 2. Detection performance by noise type based on 

overall RMS thresholding (O/A) versus CAE-PCA-

GMM (C.P.M) 

 

 Detection rate [%] 

Sensor  Method Rotation Friction 

MIC 
O/A 54.3 33.1 

C.P.M 81.1 76.1 

M. Center 

(Acc) 

O/A 20.4 9.2 

C.P.M 78.5 54.6 

M. Lower 

(Acc)  

O/A 67.7 44.2 

C.P.M 77.4 63.8 

Worm 

Shaft (Acc)  

O/A 59.1 39.9 

C.P.M 68.8 52.8 
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Figure 6. Detection rates for rotational and frictional noises using unsupervised learning with different clustering 

  

3.3 End-to-End model for feature extraction 

In addition to performing anomaly detection using 

unsupervised learning and clustering, the label sets obtained 

through these unsupervised approaches can further be 

utilized to enable supervised learning and XAI. This allows 

for the extraction of class-specific feature maps 

corresponding to different types of bearing noise. The 

overall framework can thus be the end-to-end model for 

extracting discriminative feature maps of bearing noise. As 

shown in Fig. 7, the process begins with STFT-based time 

frequency transformation, followed by dimensionality 

reduction through CAE and PCA. Unsupervised learning 

with GMM clustering yields label sets, which are then 

utilized to train a supervised classification model. Finally, 

XAI methods are applied to interpret the learned 

representations and extract feature maps associated with 

each noise type. Initially, both the ResNet18 and ResNet18 

with Self-Attention models were applied for supervised 

learning. [11-12] Due to the lack of significant differences 

between the two, a classification model was developed 

using ResNet18. Subsequently, XAI tools such as Smooth 

Grad, Gradient-weighted Class Activation Mapping (Grad 

CAM), Score-Weighted Visual Explanations for 

Convolutional Neural Networks (Score CAM), and Local 

Interpretable Model-agnostic Explanations (LIME) were 

utilized to obtain the average heatmap of feature maps for 

each noise type. [13-15]  

 

 
Figure 7. Diagram of end-to-end model 

 

As shown Fig.8, the heatmaps generated by each XAI tool 

revealed that rotational noise primarily identifies the 

diagonal components of the order elements as key factors, 

while frictional noise is characterized by broad bands 

regardless of speed. In conclusion, an end-to-end process is 

established where labeling is performed through 

unsupervised learning and clustering. Subsequently, a 

classification model is developed based on the labeled data 

using unsupervised learning. Finally, XAI tools are 

employed to automatically extract features according to the 

characteristics of each noise type. If additional noise types 

are anticipated, unsupervised learning can be employed to 

add new classes. These feature maps can then be utilized as 

weighted filters for the specifications of noise and vibration. 

We believe that recalculating the noise using such feature 

maps and managing it through thresholding is significantly 

more effective than conventional overall-level-based 

approaches. 
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Figure 8. Average heatmaps of each XAI method 

according to bearing noise defect types 

4. CONCLUSIONS 

This study demonstrates the effectiveness of anomaly 

detection in diagnosing bearing defects in C-EPS systems 

by optimizing unsupervised learning and clustering 

methodologies. To preprocess the input data, STFT was 

employed to retain the high-frequency characteristics of 

bearing noise.  

Unsupervised learning was conducted using CAE, with 

PCA applied to improve performance. The embedded 

features were clustered using GMM, resulting in superior 

detection capabilities compared to the traditional overall 

level metric for noise and vibration. Although both noise 

and vibration were analyzed, vibration was prioritized due 

to limitations of noise measurement in EOL environments.  

Additionally, a classification model was developed using 

supervised learning based on noise-type labels derived from 

optimized unsupervised learning and clustering. This model 

integrates XAI to extract feature maps for each noise type, 

enabling identification of the speed and frequency at which 

anomalies occur. While the end-to-end model does not 

guarantee perfect detection, it offers a fast and practical 

auxiliary tool for EOL and early-stage development. 
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