
11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

GENERATION OF SOUND WAVES BY NONLINEARLY EVOLVING
TWO-DIMENSIONAL COHERENT STRUCTURES ON A TURBULENT

SUBSONIC MIXING LAYER

Zhongyu Zhang1 Weixun Ji1 Xuesong Wu2,3 ∗

1 Department of Mechanics, Tianjin University, Tianjin, P.R. China
2 Department of Mathematics, Imperial College London, London, U.K.

3 School of Mechanical Engineering, Nantong University, Nantong, P.R. China

ABSTRACT

Coherent structures (CS) are present on a subsonic tur-
bulent mixing layer or a wing wake and are known to
constitute an important source of aircraft noise. With
these structures being treated as wavepackets of instability
modes supported by the mean flow, two acoustic radiation
mechanisms have been identified. The first, referred to as
generalised Mach-wave radiation (GMWR), is associated
with the fact that a CS undergoing amplification and atten-
uation consists of supersonic components in its spectral
tail, which radiate to the far field as sound waves. On the
other hand, the nonlinear interaction of the CS generates a
temporally and spatially modulated mean-flow distortion,
which emits low-frequency sound waves. This second
mechanism is referred to as envelope radiation (ER). We
investigate, in a common mathematical setting, these two
radiation processes for nonlinearly evolving CS of planar
modes, which are described by strongly nonlinear critical-
layer theory. The emitted noise for each mechanism is
predicted on the basis of first principles. Nonlinear effects
are found to induce jittering, which enhances the GMWR
significantly but suppresses ER slightly. The two mecha-
nisms are both viable for CS of moderate amplitude, with
GMWR and ER being dominant in the near downstream
and sideline regions respectively.
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1. AEROACOUSTICS THEORY ON THE BASIS
OF FIRST PRINCIPLES

Generation of sound waves by turbulent aerodynamic mo-
tions remains a topic not only of fundamental scientific
interest, but also of technological relevance for effective
reduction of noise. Earlier experiments and theoretical
studies indicated that coherent structures (CS) in a free
shear flow such as a mixing layer can be represented by
instability modes on the turbulent mean flow ([1–3]), and
recent work has led to general acceptance of this notion
([4–6]). This understanding opened a promising prospect
of elucidating the mechanisms of sound generation as
well as modelling noise, in terms of instability waves or
wavepackets ([7, 8]). There has been resurgence of re-
search activities in this area ([9–11]). Experiments showed
that the generation of noise is primarily associated with
interactions and breakdown of CS ([12–14]) and at lower
Reynolds numbers with vortex pairing ([13, 15]). The in-
termittent nature of such events was found to be respon-
sible for strong acoustic emission ([16–19]). Since these
events and the intermittency are caused by nonlinearity,
nonlinear dynamics of CS must be taken into account if
the acoustic radiation is to be predicted correctly.

Unsteady fluctuations within a shear flow (termed as
the ‘near field’) almost always radiate sound waves to
large distances (referred to as the ‘acoustic field’). Al-
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though in the shear region the fluctuations are usually
complex and energetic, they acquire a simple character of
sound waves of much reduced intensity in the far field,
where the shear almost vanishes. The main aim of aeroa-
coustics is to predict far-field sound waves thereby help-
ing find effective means to reduce noise or mitigate its im-
pact. For that purpose, it is necessary to understand ade-
quately sound generation mechanisms. There are mainly
three types of methods to obtain the sound field, includ-
ing (a) solving the full compressible N–S equations in
a sufficiently large domain, (b) acoustic analogy and (c)
aeroacoustic theory on the basis of asymptotic analysis
( [20]); relatively detailed surveys on these approaches
were given by [21–23]. In the present investigation, we
adopt the approach (c) that views the sound waves radi-
ated to the far field as ‘ripples’ of the near-field hydro-
dynamic/aerodynamic fluctuations. Mathematically, the
acoustic field corresponds to the far-field asymptote of
the latter. By analysing the large-distance asymptotic be-
haviours of the unsteady fluctuations, the true physical
sources may be determined without the arbitrariness as-
sociated with pre-designation of ‘source’ and ‘sound’ in
acoustic analogy. This amounts to probing into the pre-
cise process of acoustic radiation, through which the fun-
damental questions of why and how CS emit sound waves
can be addressed, and the sound waves are predicted on
the basis of first principles. The present paper is mainly
a theoretic investigation so that we will illustrate in detail
the mathematical derivations and the physical insights; the
numerical results and parametric studies will be presented
at the Conference.

Dynamically, the triple decomposition is adopted to
decompose an instantaneous flow field into the time-
averaged mean field, coherent motion and fine-scale tur-
bulence. Of these, CS are separated from the instanta-
neous flow field by the (Favre) time and phase averages.
The effect of small-scale turbulent fluctuations on CS is
modelled by a gradient model with possible time delays.
A CS, represented by a wavepacket of instability modes,
undergoes amplification in the upstream region, which is
well described by linear stability theory. Our focus is on
the streamwise region where the CS is nearly neutral and
thus prone to nonlinear effects ([24]). Near the neutral
position, a CS in the main part of shear layer can be rep-
resented as a modulated travelling wave, namely,

q̃(τ, x̄; t, x, y) = ϵA†(τ, x̄)q̂0(y) e
i(αNx−ωN t) +c.c.

+O(ϵ3/2), (1)

where q represents any of velocity components, tempera-
ture, density and pressure; αN , ωN ∈ R are the wavenum-
ber and frequency of the locally neutral mode respec-
tively; ϵ ≪ 1 is a measure of its magnitude, and q̂0(y)
characterises its transverse distribution; A† is an ampli-
tude function of the slow temporal and spatial variables,

τ = ϵ1/2t, x̄ = ϵ1/2x/cN , (2)

with cN = ωN/αN being the phase speed of the neu-
tral mode. Note that the origins of coordinates x and
x̄ are both chosen to be the neutral position of CS. The
amplitude of CS, A†, is governed by the dynamical sys-
tem derived by the critical layer theory based on the high-
Reynolds-number assumption. Furthermore, a modulated
wavetrain may consist of discrete or a continuum of side-
band modes to describe which A† is Fourier expanded
with respect to τ . This dynamical theory successfully de-
scribes the roll-up and break-up of CS, the spectral broad-
ening, the wavepacket modulation and the amplitude jit-
tering. The reader is referred to [21] for the detail.

2. HIGH-FREQUENCY SOUND WAVES:
GENERALISED MACH-WAVE RADIATION (A

LINEAR MECHANISM)

The question of great importance is the physical mech-
anisms and processes by which instability modes or CS
emit sound waves. As will be discussed in detail in the
following, there are two kinds of mechanisms of mixing
noise and both can be described on the basis of first princi-
ples. In supersonic mixing layers, a supersonic-mode CS
can emit sound directly in the form of Mach-wave radia-
tion (e.g.[7,25–28]), which stands as an efficient radiation
mechanism.

In subsonic flows, the radiation mechanism is com-
plex because instability modes propagate subsonically rel-
ative to the ambient flow, and their eigenfunctions decay
exponentially in the transverse direction. Consequently
these modes do not radiate directly if their amplification–
attenuation is neglected ([21–23, 29, 30]). However, when
the amplification–attenuation of a subsonic mode is taken
into account, the tail of its envelope spectrum contains
supersonic components, which radiate to the far field a
sound wave with the same frequency as that of the insta-
bility mode, as was first shown by [31]. Strictly speaking,
the amplitude of the emitted sound wave is exponentially
small, but in practice may be significant in small angles
to the downstream direction. This radiation mechanism
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may be viewed as a generalisation of the Mach-wave ra-
diation, and hence is termed as ‘generalised Mach-wave
radiation (GMWR)’ hereafter. It was studied in a simpli-
fied mathematical model by [32], who showed that for a
wavepacket with Gaussian envelope, the directivity of the
acoustic field exhibits an exponential dependence on the
cosine of the polar angle, a feature referred to as ‘superdi-
rectivity’. This distinctive feature was observed in [33].
Employing Lighthill acoustic analogy and modelling the
linear source term by a wavepacket of linearly evolving in-
stability modes, [33] calculated the sound, and the predic-
tion was found to be in agreement with the measurement
for a range of radiation angles ([33, 34]). Recently, lin-
earised Euler equations were solved to predict the sound
radiated by a modulated mode ([35]). A simplified ap-
proach of one-way linear Euler or N–S equations, which
retain non-parallel-flow effect at leading order, was pro-
posed. This approach predicts simultaneously the linear
development of an instability mode and the acoustic field
radiated due to the non-parallelism induced modulation
([36]). While the GMWR itself is linear, nonlinearity in-
fluences amplitude evolution, inducing jittering and en-
hancing the acoustic emission. Indeed studies accounting
for jittering in an ad hoc manner suggest that this radiation
efficiency is increased ([34]) since the ‘supersonic-mode
spectral tail’ is significantly amplified. With jittering be-
ing appropriately taken into account, which requires an
investigation of nonlinear dynamics of CS, the GMWR is
likely to be a viable noise generating mechanism in sub-
sonic jets ([37, 38]). The mechanism is supported by the
experimental finding that when a jet is subject to a har-
monic excitation, a rather sharp peak at the excitation fre-
quency appears in the far-field acoustic spectrum ([39]).

When the amplification–attenuation of an instability
mode or CS is accounted for, supersonic components are
present in the spectral tail of the amplitude function and
so would emit sound waves with the same frequency as
that of the fundamental. This is somewhat similar to the
Mach-wave radiation of supersonic modes and is thus re-
ferred to as GMWR. Strictly speaking, however, the sound
intensity is exponentially small with respect to the ra-
tio of the wavelength of the carrier wave to the envelope
length. Nevertheless, noise generated by vortical struc-
tures of a subsonic mixing layer was largely attributed to
emission of this kind, to which much attention has been
paid ([33, 40, 41]).

The leading-order pressure of the CS, (1), is dual-
Fourier transformed with respect to (t, x) and denoting the
transformed quantity in spectral space (ω, α) by a wide-

hat ‘ •̂ ’,

̂̃p(ω, α, y) ∼ cN p̂0(y)

[
Â†

(
ω − ωN

ϵ1/2
, cN

α− αN

ϵ1/2

)
+Â†∗

(
ωN − ω

ϵ1/2
, cN

αN − α

ϵ1/2

)]
. (3)

In the transverse region outside the main shear layer
(|y| ≫ 1, but we do not specify the exact asymptotic scal-
ing), the mean flow is uniform. The eigenfunction p̂0(y)
decays exponentially and has the asymptotes

p̂0

∣∣∣
y→±∞

→ P±∞ e
∓αy

√
1−Ma2(Ū±−cN)

2
/
T̄±

, (4)

where P±∞ are two constants to be determined glob-
ally. The perturbation in this region can be expressed
as

(
Ũ±
M , Ṽ ±

M , T̃±
M , P̃±

M

)
, and it follows that the governing

equations can be reduced to a two-dimensional convected
wave equation for P̃±

M ,

Ma2
(

∂

∂t
+ Ū±

∂

∂x

)2

P̃±
M = T̄±

(
∂2

∂x2
+

∂2

∂y2

)
P̃±
M ,

(5)
which implies that the perturbation is possible to acquire
the character of sound waves.

Equation (5) is solved in the frequency–wavenumber
(ω–α) space, where the system is converted to[

∂2

∂y2
+K2

±(ω, α)

] ̂̃P±
M (ω, α, y) = 0 (6)

with

K±(ω, α) =

√
Ma2

(
Ū±α− ω

)2 /
T̄± − α2 . (7)

The solution is found to be

̂̃P±
M (ω, α, y) = Ĉ±(ω, α) e± iK±(ω,α)y, (8)

where Ĉ±(ω, α) are to be determined by matching with
(3) as |y| ≫ 1, the far-field asymptote of the wavepacket.
Taking into account the fact that the ‘eigenfunction’,
p̂0(y), is obtained for a near-neutral mode, we substitute

ω = ωN + ϵ1/2ω̄, α = αN + ϵ1/2κ̄/cN , (9)

with ω̄, κ̄ = O(1), into (8) to match with (3). The function
K± is purely imaginary, which is the same as the far-field
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asymptote of p̂0(y). The matching for α close to αN gives

Ĉ±(ω, α) =P±∞cN

[
Â†

(
ω − ωN

ϵ1/2
, cN

α− αN

ϵ1/2

)
+ Â†∗

(
ωN − ω

ϵ1/2
, cN

αN − α

ϵ1/2

)]
. (10)

The function Ĉ±(ω, α) can be viewed as the analytic con-
tinuation of the known function Â† onto the entire α plane.
Equations (7)–(8) and (10) indicate that in the spectral tail
of the amplitude function, a spectral component with a
certain wavenumber α satisfying |c(α)| = |ω/α| > a±
(a± being the sound speeds of the two ambient flows)
propagates supersonically in the ambient flow and radiates
Mach waves. Equation (6) and solution (8) have been used
to extrapolate the acoustic field in previous studies, where
Ĉ±(ω, α) were determined either by imposing a bound-
ary condition ([31]) or by numerically ‘patching’ with the
near-field solution ( [42]) at a suitably chosen (but still ad
hoc) transverse location. The present approach of asymp-
totic matching and analytic continuation avoids introduc-
ing such an artificial transverse location, and may be con-
sidered more satisfying.

Furthermore, the higher-order pressure in the expan-
sion (1) contains all nonlinearly excited harmonics. These
components have the similar far-field behaviours as that
of the fundamental, and will also radiate sound waves via
GMWR as the fundamental does.

3. LOW-FREQUENCY SOUND WAVES:
ENVELOPE RADIATION (A NONLINEAR

MECHANISM)

A spatially and temporally modulated wavepacket, which
consists of frequency sideband components, is a more re-
alistic representation of a CS. The nonlinear interaction of
the wavepacket generates a mean-flow distortion, which is
also modulated slowly with respect to time and space, and
acts as an emitter to radiate low-frequency sound waves
on the scale of the wavepacket envelope. This mecha-
nism, referred to as ‘envelope radiation (ER)’ hereafter,
was described by [21–23, 29]. Using asymptotic tech-
niques, they described the physical process of radiation,
whereby the physical sources are identified and the rela-
tion to the equivalent source is established. In the spe-
cial and simplest case of a wavepacket consisting of two
modes with frequencies that differ by a small amount, the
emitter is the nonlinearly forced difference mode. The ER
mechanism is nonlinear in the sense that the interactions

leading to emission take place in the phase of nonlinear
amplification and attenuation of the CS, and that the in-
tensity of the radiated sound waves is proportional to the
wavepacket amplitude squared. Such an experiment was
performed, and strong sound was found to radiate at the
difference frequency ([43]), supporting the present ER
mechanism. It is also suggested by the noticeable feature
that the dominant far-field noise concentrates in a spectral
band with its peak frequency being just about 1

10 of the
frequency of the most unstable modes in the near nozzle
region ([44, 45]) and the spectral peak of hydrodynamic
fluctuations within the entire jet flow.

The mean-flow distortion caused by the nonlinear in-
teractions is a part of the CS, corresponding to the mod-
ulated components without the fast-varying carrier wave
factor. In the main layer, the expansion of the leading or-
der takes the form ϵ2(uM , ϵ1/2vM , TM , pM + ϵ1/2pM2

).
The transverse velocity at this order is governed by

the long-wavelength Rayleigh equation,(
∂

∂τ
+

Ū

cN

∂

∂x̄

)
∂vM
∂y

− Ū ′

cN

∂vM
∂x̄

= −S(τ, x̄, y), (11)

where the forcing S on the right-hand side is produced by
the nonlinear interactions (Reynolds stresses).

Noting S → 0 as y → ±∞, we have the complemen-
tary solution to (11) in physical space,

vM (y → ±∞) → vM,c =

(
∂

∂τ
+

Ū

cN

∂

∂x̄

)
a±M (τ, x̄),

(12)
where a±M (τ, x̄) are arbitrary functions and may take dif-
ferent values for y ≷ yc.

The determination of a±M (τ, x̄), or its transformed

â±M (ω̄, κ̄), needed two conditions that are (a) the continu-
ous condition across the generalised inflectional point and
(b) the matching condition with the far-field sound fields.
The detailed derivations can be found in [21].

A two-dimensional CS with initial amplitude of O(ϵ)
induces the sound fluctuations ϵ5/2(Ũ±

E , Ṽ ±
E , T̃±

E , P̃±
E ) on

the scale of (τ, x̄, ȳ) with

ȳ = ϵ1/2(y − yc)/cN = O(1) (13)

being the slow transverse variable to describe the sound
field. The low-frequency sound fields, in spectral space,
are governed by[

∂2

∂ȳ2
+ K 2

± (ω, κ)

]̂̃P±
E (ω, κ, ȳ) = 0, (14)
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subject to the Neumann boundary condition

∂̂̃P±
E

∂ȳ

∣∣∣∣∣
ȳ=0±

=
1

cN T̄±

(
Ū±κ− cN ω

)2
â±M (ω, κ), (15)

where

K±(ω, κ) =

√
Ma2

(
Ū±κ− cN ω

)2
/T̄± − κ2. (16)

The solution can be written as

̂̃P±
E (ω, κ, ȳ) = ∓Ê±(ω, κ)â±M (ω, κ) e± iK±(ω,κ)ȳ, (17)

where Ê±(ω, κ) are determined by the boundary condi-
tions (15) as

Ê±(ω, κ) = i
(
Ū±κ− cN ω

)2
/
[
cN T̄±K±(ω, κ)

]
. (18)

4. RELEVANT IMPORTANCE OF THE TWO
MECHANICS

For a wavepacket of subsonic modes, which undergo non-
linear amplification and decay, the GMWR and ER mech-
anisms operate simultaneously. However, they were in-
vestigated separately in previous studies using different
mathematical approaches with the presumed sources be-
ing modelled differently. As a result, the relative impor-
tance of the two mechanisms cannot be elucidated prop-
erly. Moreover, with a few exceptions the majority of the
work employed linear wavepackets while it is now becom-
ing increasingly clear that nonlinear development influ-
ences radiation significantly. In this presentation, we will
carry out a comparative investigation of the two mecha-
nisms by which nonlinearly evolving CS on a turbulent
mixing layer radiate sound waves, with the aim to as-
sess (a) the effects of nonlinearity on the two mechanisms
respectively, and (b) the relative importance of the two.
Similar to [34] that investigated this topic on a subsonic
circular jet, the main differences are present on (a) the
flow structures, (b) the far-field behaviours of the eigen-
function and low-frequency components, and (c) the di-
rectivity of ER. In detail, on a mixing layer, on the one
hand, there are upper and lower sound fields for both
GMWR and ER rather than just an outer one on a jet. On
the other hand, the eigenfunction is lack of a r−1/2 factor
(with r being the radial variable) and the low-frequency
transverse velocity keeps constant in the far-field rather
than decaying algebraically on a jet . These two aspects
give the ER directivity to behave like a ‘quadrupole’ rather

than a ‘monopole’ or a ‘dipole’ on a jet (see [21] and [22]
respectively).

Taking the dual-Fourier inversions of (8) and (17),
we have the sound pressures in physical space. Of in-
terest are the acoustic waves in the far field (|y| ≫ 1 and
ȳ = O(1)), for which the polar coordinates (R,φ) are
introduced, where

R =
√

x2 + y2, tanφ = y/x (−π ⩽ φ ⩽ π).
(19)

Noting the definitions of x̄ and ȳ, (2) and (13), the po-
lar coordinates (R,φ) are also proper to describe ER by
rescaling R and keeping φ. The integrals of α and κ̄ can
be approximated by the stationary-point method.

The overall intensity of the acoustic pressure is mea-
sured by the root–mean–square values of P̃±

M and P̃±
E

according to Parseval’s theorem, from which the overall
directivity functions DM (φ) and DE(φ) are defined as
the superposition of the corresponding spectrum functions
SM (ω, φ), SE(ω̄, φ), namely,{

DM (φ), DE(φ)
}

=

√∫ ∞

−∞

{ ∣∣SM (ωN + ϵ1/2ω̄, φ)
∣∣2 , |SE(ω̄, φ)|2

}
dω̄.

(20)

Note that we have substituted ω by ωN + ϵ1/2ω̄ for
GMWR, where ω̄ = O(1) is the scaled frequency corre-
sponding to the slow temporal variable τ , and the different
asymptotic magnitudes are also included.

The physical dimensionless pressure generated by the
GMWR and ER are thus found as,[

P̃±
M (R,φ), P̃±

E (R,φ)
]
=

1√
R

[DM (φ), DE(φ)] .

(21)
Finally, the sound pressure level (SPL) functions of the
two mechanisms, SPLM and SPLE , are defined as

(SPLM , SPLE)

= 20 log10

[
ρ∗0U

∗2
0

(
P̃±
M,rms, P̃

±
E,rms

)
/p∗ref

]
, (22)

where p∗ref = 2.0× 10−5 Pa is the reference pressure, ρ∗0
is the reference density chosen to be the dimensional fast-
stream density and U∗

0 is the reference velocity chosen to
be the half of velocity difference of the two ambient flows.
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5. NUMERICAL RESULTS

These theories are applied to a streamwise-slowly-varying
compressible mixing layer, which is formed by two
streams with velocities U∗

1 and U∗
2 < U∗

1 . The mean
streamwise-velocity profile is chosen to be an empirical
one, e.g. a hyperbolic tangent profiled modified by a hy-
perbolic secant function. The mean temperature profile is
related to the velocity profile via Crocco’s relation.

Supported by the non-parallel mean-flow profile, we
firstly calculated the eigenvalue and eigenfunction of the
neutral mode to describe the linear feature of CS. Fol-
lowing a linear upstream condition, the CS enters the
nonlinear regime, for which the coupled amplitude equa-
tion and critical-layer velocity–temperature equations are
solved to obtain the nonlinear development of the ampli-
tude of CS. Using the obtained amplitude function and
some other near-flow hydrodynamical behaviours of CS,
the equivalent sound sources of the two radiation mecha-
nisms are determined. In the same mathematical and nu-
merical frameworks, the sound spectrum, directivity and
sound pressure level of the two mechanisms are calcu-
lated.

Due to the length limitations of the paper, the numer-
ical results will be presented at the Conference.

6. CONCLUSION

In this presentation, we have carried out a theoretical
investigation of two fundamental mechanisms by which
nonlinearly evolving CS on a subsonic mixing layer
generate sound waves. With a CS being represented
as a wavepacket of instability modes, which undergo
amplification–attenuation in the streamwise direction, the
first mechanism is GMWR: each mode in the wavepacket
consists of supersonic components in the high-frequency
tail of its amplitude spectrum, which radiate sound waves
with the same frequencies as those of the mode and its
harmonics. The second mechanism is ER: the nonlin-
ear interactions of the modes generate a slowly breathing
mean-flow distortion, which emits low-frequency long-
wavelength sound waves on the scales of the wavepacket
envelope. The two mechanisms operate simultaneously
for a CS (wavepacket) consisting of sideband components.
In the present study, the two mechanisms are considered
together in a common mathematical framework so that
their relative importance can be clarified. Nonlinearity
was found to reduce the amplitude but cause oscillatory
attenuation, which is a form of jittering; these have im-

portant implications for the effects on the ER and GMWR
respectively. By analysing the large-transverse-distance
asymptotic behaviours of relevant hydrodynamic fluctu-
ations, the emitted sound waves as well as their physi-
cal process and sources are all determined on the basis of
first principles using the high-Reynolds-number asymp-
totic framework. For a CS of wavepacket form with a
moderate amplitude, the sound waves emitted through the
two mechanisms are comparable but exhibit different fea-
tures. Nonlinearity enhances the GMWR dramatically,
but suppresses the ER moderately. The opposite effects
were attributed respectively to the jittering and attenuation
mentioned earlier: the former amplifies the components in
high-wavenumber tail of the amplitude spectrum whereby
strengthening the GMWR, while the latter weakens the
mean-flow distortion and hence the ER. The present study
suggests strongly that nonlinear evolution of CS plays a
crucial role and must be included in the prediction of
noise. For a wavepacket with a continuum of sidebands,
the GMWR is suppressed but the ER is enhanced with the
increase of bandwidth. The GMWR takes place primar-
ily in the region making small angles to the axis, beyond
which the ER dominates.
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