DOI: 10.61782/fa.2025.0426

FORUM ACUSTICUM
ails EURONOISE

HARDWARE ACCELERATION OF CONVOLUTIONAL NEURAL
NETWORK FOR LUNG ULTRASOUND SEGMENTATION

A. Rubio!**

M. Muiioz'?

G. Cosarinsky!

J. F. Cruza'
! Institute for Physical and Information Technologies, Spanish National Research Council,
28006 Madrid, Spain
2 Electronic Department, Universidad de Alcald, 28805 Alcal4 de Henares, Spain

ABSTRACT

Lung Ultrasound (LUS) imaging is a valuable diagnostic
technique for lung condition evaluation, due to its
non-ionizing and portable nature. However, its complex
interpretation can be enhanced by Machine Learning
(ML) tools, yet traditional solutions often fail to meet
the speed demands of real-time applications. This paper
presents a Field Programmable Gate Array (FPGA)-based
hardware solution for real-time segmentation of lung
ultrasound images using a Convolutional Neural Network
(CNN), achieving a throughput of 80 inferences per
second.
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1. INTRODUCTION

Artificial Intelligence (AI) has revolutionized many sci-
entific fields. In medicine, Al tools have aided healthcare
professionals in more accurate and effective patient
diagnoses [1,2].

LUS is a non-invasive imaging technique increasingly
used for evaluating respiratory diseases [3]. Although its
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acquisition is fast, LUS interpretation requires expertise
and can result challenging for less experienced clini-
cians [4] .

Muiioz et al. [5] developed a Machine Learning (ML)
model based in the U-NET architecture [6], trained on
a video dataset from 30 patients, acquired and labeled
at video level by an expert physician. That manual
tagging was extended to frame level by a semiautomatic
labeling tool developed in the same work. The model
processes the B-Scans and generates four outputs (pleura,
consolidation, B-line, and A-line) representing the prob-
ability of each artifact per pixel. While achieving high
performance, its GPU implementation (Mini-PC with
integrated GTX-2060) limits its usability in low-power
consumption portable devices and clinical enviroments.
Field Programmable Gate Arrays (FPGAs) are integrated
circuits that can be reprogrammed after manufacturing,
showing promising results in accelerating ML models [7],
due to their versatility, low power consumption, and small
size.

This work proposes a high-throughput implementa-
tion using Vitis-Al, an open source framework that
provides the tools to implement Al models it a cost-
effective FPGA real-time solution, demonstrating its
viability for ML hardware acceleration.

2. METHODS
2.1 Neural Network

Convolutional Neural Networks (CNNs) are widely used
for segmentation tasks due to their ability to identify both
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local features and global patterns. The U-Net architecture
has skip connections that incorporate spatial information
at different scales, thus preserving structural details. In
this work, attention gates, used in the skip connections
of [5] were removed from the implemented model due
to limitations with Vitis-Al on FPGA fabric. One of the
objectives of this work is to analyze how the performace
is affected by this modification.

A simplified version of the architecture is shown in
Fig. 1. The 256x128 input image first goes through
the encoder, where increasingly abstract information
is extracted, while spatial resolution is reduced. The
decoder processes and upsamples the extracted features
thanks to skip-connections, which help maintain crucial
spatial information. This results in four 256x128 output
images, each segmenting a relevant artifact (Pleura,
consolidations, B-lines and A-lines).

This model underwent the same training as the original
and serves as the baseline for comparing subsequent
modifications.

Python implementations of ML are typically optimized
for CPU or GPU architectures, which differ significantly
from the architecture of FPGAs. The original model
needs to go through some transformations to make it
compatible with FPGA constraints. As a consequence,
both model size and inference time decrease. The
processes required to implement the model in FPGA are
pruning (removal of weights with values close to zero
and retraining to recover accuracy) and quantization
(conversion of model parameters from floating-point to
fixed-point representations). For this specific implemen-
tation only quantization was required.
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Figure 1. U-NET architecture. The first half encodes
and reduces the dimensionality of the input, while the
second half decodes and expands.

2.1.1 Training

The Python model was trained with 9624 images (70 %
train, 30 % validation), using a learning rate of 0.0005.
The loss function employed was binary cross-entropy,
with a batch size of 64 images. Training was conducted
for a maximum of 100 epochs, with early stopping
activated if the validation loss did not decrease for 6
consecutive epochs. Upon completion of the training
process, the model was prepared for quantization.

2.1.2 Quantization

FPGAs are not well-suited for the 32-bit floating-point
precision commonly used in Python models. Instead, their
computational capabilities are optimized for 8-bit fixed-
point operations. This process, known as quantization,
involves retraining the original model with a subset of
the dataset, readjusting parameters and activations, and
rounding decimals beyond a specific point (Fig. 2). The
quantized model weighs less than a quarter of the original
model.
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Figure 2. Quantization simple example.

2.2 FPGA architecture

The model is implemented on the Kria KV260 Vision Al
Starter Kit, an FPGA particularly well-suited for real-time
computer vision and edge computing applications. Its low
cost and limited power consumption make it a suitable so-
lution for a portable IA-assisted diagnosis tool.

The Deep Learning Processing Unit (DPU) is a pro-
grammable core for AMD FPGAs optimized for accelerat-
ing neural network computations through a specialized in-
struction set. The DPU processes the input data, provided
with the correct dimensionality, performs the necessary
computations (such as convolutions), and stores the seg-
mentation results in the FPGA memory for further use.
Vitis-Al was used to retrain, modify, quantize, and tune
the parameters of the model in an intuitive manner.
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After successfully creating the hardware project, includ-
ing the DPU and its bus connections with the embed-
ded microprocessor and system memory, we generated a
PetalLinux image configured to load the trained ML model
and perform the segmentation process.

A dataset of 1358 validation images is transferred to the
board. A Python script executed on the board processes
the images to generate the segmentation masks. These
masks are then transferred back to the host computer for
analysis.

3. RESULTS

Fig. 3 and Fig. 4 show two segmentation examples. In
each figure, the left image represents the tagged segmen-
tation (ground truth) of the LUS artifacts, color-coded as
follows: pleura (blue), consolidations (yellow), B-lines
(red), and A-lines (green). The middle image shows the
output of the original U-NET model (thresholded at 0.5),
using the same color scheme. The right image shows the
output of the FPGA-implemented model with the same
threshold. Visually, the FPGA results are almost identical
to the original model’s.

Comparing the segmentations indicates that the
model’s performance was not significantly affected by the
modifications required for FPGA implementation. Tab. 1
presents three evaluation metrics, calculated for all arti-
facts across the test dataset: the Dice coefficient (mea-
suring the overlap between two sets), precision (the per-
centage of correctly identified positive pixels), and recall
(the percentage of retrieved positive pixels). The FPGA-
implemented model shows very similar performance to
the original model in detecting all artifacts.

The model achieves a throughput of more than 80 in-
ferences per second, compared to the the 50 per second
reached in the previous GPU implementation.

4. DISCUSSION

This study successfully implemented a LUS segmentation
model, originally developed in Python, onto an FPGA.
The necessary modifications for FPGA compatibility
were achieved with minimal impact on the model’s
performance. The results demonstrate that the FPGA-
implemented model closely replicates the behavior of the
original software model, as shown in Tab. 1.
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Figure 3. Pleura, B-line and Consolidation output
example.

Table 1. Metrics for all artifacts and the two different
models.

Metric | Original | FPGA

Pleura DICE 0.86 0.86
Precision 0.85 0.88

Recall 0.89 0.85

Consolidation DICE 0.97 0.97
Precision 0.97 0.98

Recall 0.99 0.99

B-line DICE 0.77 0.76
Precision 0.90 0.90

Recall 0.82 0.82

Aline DICE 0.73 0.71
Precision 0.78 0.77

Recall 0.80 0.79

The achieved latency (12.5 ms), throughput, and

power consumption demonstrate that FPGAs offer a
viable alternative to traditional GPUs for hardware
acceleration of Al-assisted LUS diagnostic tools. The
compact size of the FPGA makes it particularly suitable
for integration into small, portable ultrasound scanners.

The KV260 evaluation board (14cmx12cmx3.5¢cm)
is smaller than the mini-PC with an integrated GPU
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Figure 4. Pleura and A-line output example.

(21cmx19cmx5Scm) employed in [5], and its use would
eliminate the bottleneck caused by transferring the raw
data to the PC for inference. Energy-wise, following
the literature [8] FPGAs are more energy-efficient than
GPUs, but a detailed study needs to be carried out to
conclude that.

While the results are promising, this study was con-
ducted using an offline test, processing all images in
batch. Future work will focus on implementing frame-by-
frame segmentation, integrating the neural network into
the real-time data acquisition pipeline, and displaying the
results to the physician on a screen.

5. CONCLUSIONS

Our findings demonstrate the suitability of FPGA ac-
celeration for real-time LUS diagnosis due to its high
inference speed, small size, and low power consumption
with a cost-effective device. A key finding is that the
quantization process bears almost no appreciable effect
in the model performance, while reducing the size to a
quarter of the original. Similarly, the removal of attention
gates had neglible impact on the model’s effectiveness.

The developed pipeline has been optimized for the
specific characteristics of LUS segmentation. However,
its core steps—model modification, quantization, and
implementation—are adaptable and can be applied to
other ML models and FPGA platforms. This underscores
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the potential of FPGAs in edge-computing by enabling
rapid inference directly at the point of data acquisition.

6. ACKNOWLEDGEMENTS

Supported by the European Commission + NextGen-
erationEU, through Momentum CSIC Programme:
Develop Your Digital Talent. The funding for these
actions/grants and contracts comes from the European
Union’s Recovery and Resilience Facility-Next Gener-
ation, in the framework of the General Invitation of the
Spanish Government’s public business entity Red.es to
participate in talent attraction and retention programmes
within Investment 4 of Component 19 of the Recovery,
Transformation and Resilience Plan. G. Cosarinsky staff
is hired under the Generation D initiative, promoted
by Red.es, an organisation attached to the Ministry for
Digital Transformation and the Civil Service, for the
attraction and retention of talent through grants and train-
ing contracts, financed by the Recovery, Transformation
and Resilience Plan through the European Union’s Next
Generation funds.

Supported by the project PID2022-1432710B-100,
funded by MCIN/AEI /10.13039/501100011033/FEDER,
UE.

7. REFERENCES

[1] M. L. Marinovich, E. Wylie, W. Lotter, H. Lund,
A. Waddell, C. Madeley, G. Pereira, and N. Houssami,
“Artificial intelligence (ai) for breast cancer screening:
Breastscreen population-based cohort study of cancer
detection,” eBioMedicine, vol. 90, Apr 2023.

[2] J. Liao, X. Li, Y. Gan, S. Han, P. Rong, W. Wang,
W. Li, and L. Zhou, “Artificial intelligence assists pre-
cision medicine in cancer treatment,” Frontiers in On-

cology, vol. 12, 2023.

M. Beshara, E. A. Bittner, A. Goffi, L. Berra, and
M. G. Chang, “Nuts and bolts of lung ultrasound: util-
ity, scanning techniques, protocols, and findings in
common pathologies,” Critical Care, vol. 28, p. 328,
Oct 2024.

J. L. Herraiz, C. Freijo, J. Camacho, M. Muiioz,
R. Gonzalez, R. Alonso-Roca, J. Alvarez-Troncoso,
L. M. Beltran-Romero, M. Bernabeu-Wittel, R. Blan-
cas, et al., “Inter-rater variability in the evaluation of

(4]

11™* Convention of the European Acoustics Association
Mailaga, Spain « 23" — 26™ June 2025 »

IEDAD ESPAROLA
SEA DE ACUSTICA



(5]

(6]

(7]

(8]

FORUM ACUSTICUM

ale EURONOISE

lung ultrasound in videos acquired from covid-19 pa-
tients,” Applied Sciences, vol. 13, no. 3, p. 1321, 2023.

M. Muiioz, A. Rubio, G. Cosarinsky, J. F. Cruza,
and J. Camacho, “Deep learning-based algorithms for
real-time lung ultrasound assisted diagnosis,” Applied
Sciences, vol. 14, no. 24, 2024.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Con-
volutional networks for biomedical image segmenta-
tion,” 2015.

A. Nechi, L. Groth, S. Mulhem, F. Merchant,
R. Buchty, and M. Berekovic, “Fpga-based deep
learning inference accelerators: Where are we stand-
ing?” ACM Trans. Reconfigurable Technol. Syst.,
vol. 16, Oct. 2023.

A. Reuther, P. Michaleas, M. Jones, V. Gadepally,
S. Samsi, and J. Kepner, “Survey and benchmark-
ing of machine learning accelerators,” in 2019 IEEE

High Performance Extreme Computing Conference
(HPEC), pp. 1-9, 2019.

2183

11" Convention of the Eurodpean Acoustics Association
Milaga, Spain * 23"

26" June 2025 *

AD ESPAROLA
ACUSTICA

SEA”



