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ABSTRACT

Hearing protection is crucial in heavy industries to prevent
auditory injuries from prolonged noise exposure. However,
regulations limit noise isolation to ensure workers can hear
critical sounds like alarms and warnings, creating a trade-
off between protection and situational awareness. We
propose an intelligent hearing protection system that
combines passive noise isolation with Al-based sound
processing. The device integrates external microphones and
deep learning models to detect and localize important
sounds, allowing workers to stay aware of their
surroundings while receiving robust auditory protection.
The system uses MEMS microphones on the earmuffs and
headband to capture ambient sounds, processed by a central
control board. The Al models, designed for emergency
sound detection and localization, utilize Transformers and
Convolutional architectures to accurately identify and locate
critical sounds. Preliminary testing of the hardware
prototype shows effective detection and localization of
essential sounds in complex environments. As a first
approach, this proposal focuses on sound capture, detection,
and localization components. Many additional parts are
needed for a fully functional system. This innovative
approach offers a promising solution for improving
workplace safety without compromising auditory health or
regulatory compliance.
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1. INTRODUCTION

In industrial environments and those with high noise
exposure, hearing protection is a critical element for
ensuring the safety and health of workers. Prolonged
exposure to elevated noise levels can lead to noise-induced
hearing loss, stress, fatigue, and other adverse health effects
[1-3]. For this reason, occupational safety regulations
mandate the use of hearing protection devices in certain
work environments [4—6].

However, in some cases, the use of conventional hearing
protectors can result in a phenomenon known as
overprotection. This occurs when the sound insulation is so
effective that the worker fails to perceive important sounds
for their safety and job performance, such as emergency
alarms, moving vehicle signals, or critical verbal
instructions [7]. This situation creates a dilemma: protecting
the worker from excessive noise without compromising
their ability to react to relevant events [8,9].

In the industry, a common approach to mitigating this issue
is to mandate the use of different types of hearing protectors
depending on the specific noise conditions of each task.
This requires companies to provide a range of protective
devices tailored to varying levels and types of noise
exposure. However, as demonstrated in [8], approximately
85% of workers experience auditory overprotection, which
significantly impacts their ability to perceive critical sounds
in their environment. This phenomenon leads to reduced
situational awareness, increasing safety risks and hindering
effective communication in noisy workplaces.

Another widely implemented solution is the integration of
communication systems into hearing protection devices.
These systems, typically incorporated into protective
helmets or earmuffs, enable voice transmission and
reception, helping workers maintain verbal communication
despite high noise levels. However, while this approach
mitigates the overprotection issue regarding speech
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perception, it does not address the broader problem of
detecting other critical environmental sounds, such as
alarms, approaching vehicles, or machinery malfunctions.
The selective enhancement of speech alone is insufficient to
ensure comprehensive auditory situational awareness,
particularly in complex industrial settings where multiple
auditory cues contribute to safety and efficiency.

These limitations highlight the need for more adaptive and
intelligent hearing protection solutions capable of
distinguishing between harmful noise and essential auditory
signals. Developing systems that dynamically adjust sound
attenuation while preserving critical auditory information is
essential for improving both worker safety and operational
performance in high-noise environments.

In this context, the integration of artificial intelligence into
hearing protection devices opens new possibilities. By
utilizing signal processing algorithms and machine learning,
it is possible to develop systems that differentiate between
harmful noise and sounds of interest, enabling selective
attenuation in real-time. This approach aims to provide
effective protection without compromising the perception
of essential acoustic signals for safety and communication
in the workplace environment.

This paper presents an intelligent hearing protection system
that employs artificial intelligence and advanced audio
processing techniques to address the problem of
overprotection. The following sections outline the
principles of operation of the system as follows: Section 2
will introduce the proposed hardware model. Section 3 will
describe the experiments conducted for data acquisition.
Section 4 will focus on data processing and the artificial
intelligence structures used for detection and localization.
Section 5 will present the obtained results, and Section 6
will discuss potential future research directions for the
project.

2. PROPOSED HARDWARE APPROACH

To mitigate the issue of hearing overprotection without
compromising the worker's safety, a system is proposed that
allows for the capture of external sounds through
microphones placed on the outside of the protective
earmuffs. In this way, the goal is to preserve the high
passive attenuation of ambient noise while offering the user
a selection of relevant sounds from the environment.

The proposed approach involves the use of strategically
positioned microphones to capture ambient sound and send
it to a processing system that would determine which
signals should be transmitted to the user. In this sense, the
structure of the earmuffs would maximize their passive
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isolation capacity, minimizing the entry of unwanted noise,
while the microphones would provide an alternative audio
input that is fully controlled.

Figure 1. MEMS microphone placed in the earmuff
of the hearing protection headset.

As part of the experimental development, a prototype has
been built based on this proposal using four MEMS
MP34DT01-M microphones [10], strategically positioned
on the headset: two in each earmuff, as shown in Figure 1
and two on the bridge, as shown in Figure 2.

The incorporation of microphones on the bridge of the
headset provides significant advantages concerning sound
spatial localization. By placing the microphones in an
elevated position, the ability to localize sound in elevation is
notably improved. This is because the microphones capture
intensity (ILD) and time (ITD) differences between signals
received from different elevations more accurately. In
configurations where microphones are only placed in the
earmuffs, information about the elevation of the sound is
limited and more prone to errors, leading to perceptual
ambiguities in this axis.

Additionally, the placement of microphones on the bridge
helps eliminate the well-known "cone of confusion" and the
front/back confusion [11] that occurs when microphones
are only used in the earmuffs. This issue arises because two
microphones placed on the sides of the head cannot
accurately distinguish whether a sound source is located in
front or behind the user. Under normal conditions, the
human ear can resolve these ambiguities due to the small
sound reflections in the folds of the ear [12], which create
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unique patterns for each direction of the sound source.
However, when using hearing protectors, the two
microphones on the earmuffs are unable to discriminate
their position.

Figure 2. MEMS microphones placed on the
headband of the hearing protection headset

The inclusion of microphones on the bridge allows for
better differentiation of these signals, significantly
improving directional localization capabilities.

The four microphones are connected to a central control
board, the XMOS XVF-3000 [13], which enables
synchronized signal acquisition. The control board features
a USB output that sends the data directly to a PC for
processing. This setup ensures that all microphones operate
on the same clock, maintaining proper temporal alignment
of the captured signals and enabling coherent analysis of the
acoustic scene.

In terms of integration, the microphones and the control
board are designed to capture and transmit ambient sound in
a synchronized manner. The processing unit on the PC
receives these signals in real-time, enabling their analysis
and subsequent use according to the system's needs.

This approach would allow for the development of an
adaptable and robust system, offering effective hearing
protection without compromising the perception of essential
acoustic events.
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3. DATA ACQUISITION AND COLLECTION

The data collection process was carried out in a laboratory
equipped with Wave-Field Synthesis (WFS) technology in
an acoustically treated environment [14]. This space has
been designed to minimize external interference and
reflections from walls and ceilings, thus ensuring the
accuracy of the measurements. Previous studies have
validated and tested the effectiveness of this system in
generating highly realistic sound fields, allowing the precise
replication of real-world conditions [15].
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Figure 3. WES system layout diagram

The sound generation system featured a matrix of 96
speakers arranged in an expanded octagonal configuration,
as shown in Figure 3, enabling the creation of complex and
controlled sound fields. This setup allowed for the faithful
simulation of sound incidence from multiple directions,
thereby evaluating the system's performance in various
acoustic scenarios.

Since this research represents an initial approach to a
functional prototype, the present study focused on the
simulation and detection of emergency alerts, such as sirens
and horns. To this end, emergency signals and background
noise representative of industrial and urban environments
were incorporated. The background noise was obtained
from recordings made in real-world environments and
played through planar waves, ensuring a homogeneous
distribution of the acoustic field in all directions. This
approach avoided unwanted localization effects and
allowed for a realistic replication of a diffuse acoustic
environment.

For the simulation of emergency signals, recordings of
sirens and horns from two previously validated databases
[16,17] were used. Additionally, to assess the system's
ability to discriminate between signals of interest and
environmental noise, point sources of industrial noise were
included in specific locations within the test space. These
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sources represented characteristic sounds from tools and
machinery, such as chainsaws, running engines, handheld
saws, pneumatic hammers, vacuums, and washing
machines, among others, extracted from the UrbanSound8K
[16] and ESC-50 [18] databases. The inclusion of these
point noise sources in the simulated environment allowed
for the creation of complex acoustic conditions, with the
aim of challenging the artificial intelligence algorithms to
differentiate between critical alerts and non-priority noise
sources.

Figure 4. Experimental setup for data collection.

The experimental methodology involved positioning a head
and torso simulator for sound quality applications, Model
4100 by Briiel & Kjaer [19], with the headphone prototype
placed at the center of the WFS system, as shown in Figure
4. Interest signals were emitted from various directions in
the horizontal plane, covering a full 360° range, with the
measurement divided into arcs of randomly selected
degrees (e.g., every 6°, 8°, 10°, etc.). Once the arc value was
defined, the full 360° range was simulated with the
respective degree difference. Simultaneously, the industrial
background environment was played through planar waves,
accompanied by point noise sources placed in specific
locations. This approach allowed the system's ability to
discriminate relevant signals in a complex acoustic
environment to be assessed, challenging the artificial
intelligence algorithms to differentiate between emergency
signals and non-priority point and non-point noise sources.
Upon completion of the measurement process, 12.900
synchronized four-channel samples were obtained, one for
each microphone installed in the measurement prototype.
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4. SIGNAL PROCESSING AND AI SYSTEM
DEVELOPMENT

4.1 Signal Processing and Model Structure for

Emergency Signal Detection

The first step in the proposed system is sound detection, as
this process triggers the subsequent stages of processing.
Accurate detection of relevant signals is crucial, as it
activates the following modules and ensures that only
events of interest are processed. As an initial approach, the
focus has been placed on identifying emergency sounds,
such as sirens and horns, as outlined in Section 3.
The methodology adopted in this work is based on
strategies presented in previous studies [14], where a deep
learning-based approach is employed for the detection of
emergency sound events. Specifically, the system analyzes
four-second audio segments using a sliding window,
allowing continuous updates of sound information without
compromising computational efficiency.

Mel Spectrogram

Frequency (Hz)

Time (s)

Figure 5. Mel Spectrogram of Siren Sample

For the representation of audio data, Mel spectrograms are
used, as this representation preserves both the temporal and
spectral information of the signal, facilitating the capture of
distinctive features of emergency sounds. The configuration
used in this work employs 128 Mel filters, a 32 ms analysis
window for the Short-Time Fourier Transform, and a hop
length of 10 ms, ensuring an adequate balance between
temporal and spectral resolution, as shown in Figure 5.

Once the spectral representation of the audio is obtained, an
artificial intelligence model based on Transformers [20] is
employed, specifically the Audio Spectrogram Transformer
(AST) [21], which has demonstrated superior performance
in emergency signal detection compared to other deep
learning architectures. Previous studies [22] have tested
various configurations, including Convolutional Neural
Networks (CNN) such as ResNet and VGG, Recurrent
Neural Networks (RNN) such as LSTM, and hybrid
architectures that combine CNN for spectral pattern
extraction and LSTM for temporal dynamic analysis.
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However, transformer-based models have shown greater
generalization ability and improved accuracy in classifying
emergency sounds.

The AST model has been specifically adapted for this task,
modifying its final layers for classification into three
categories: siren, horn, and other sounds or noise. To
achieve this, the weights of the Multihead Attention blocks
have been frozen, and custom classification layers have
been added, as studied in [22].

This approach allows the system to differentiate between
critical sounds and environmental noise, preventing the
unnecessary activation of subsequent modules. Once an
emergency signal is detected, the system generates an alert,
providing the necessary information for a quick and precise
response, thus triggering the activation of the following
blocks of the system.

4.2 Signal Processing and Model Structure for Sound
Localization

Once the emergency signal is detected, its localization is
performed using an artificial intelligence-based system. To
achieve this, information extracted from the Generalized
Cross-Correlation with Phase Transform (GCC-PHAT)
[23,24] is used, a parameter that allows the calculation of
time delays between microphones. This parameter is crucial
for estimating the direction of arrival (DOA) of the sound,
as it provides information about the time difference at
which the signal reaches each microphone in the array, as
shown in Figure 6.
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Figure 6. Example of windowed GCC-PHAT
between two microphone pairs.
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GCC-PHAT is particularly useful in noisy environments, as
it applies phase normalization, which enhances the
robustness of the time delay estimation by minimizing the
impact of interferences and reflections. Additionally, since
the microphone separation is relatively small, the time
delays are also reduced. As explored in [15], to optimize
processing and reduce computational load, a segmentation
process of the GCC-PHAT is applied using analysis
windows, which allows improving system efficiency
without compromising the accuracy of the estimation.

As explored in [22], this parameter is used as input to a
convolutional neural network based on ResNet-18, which
has been modified for the task of angular localization.
The extracted features are then processed by two
independent branches, each consisting of a fully connected
layer with 512 neurons and PReLU activation, followed by
a final layer with Tanh activation. This configuration
ensures that the output values are in the range of [-1, 1],
which is consistent with the trigonometric values of an
angle.

Finally, the direction of arrival of the signal is obtained
using the arctangent function, which combines the sine and
cosine values to calculate an angle in the range of 0° to
359°. As demonstrated in [22], this method enables precise
localization of the sound source without ambiguity.

5. RESULTS

5.1 Detection Performance Results

Given the promising results obtained in [14], an attempt
was made to replicate the same detection system with the
aim of evaluating its performance in classifying emergency
sounds. To this end, advanced Transformer architectures
were employed, which have proven highly effective in
capturing complex relationships in sequential data such as
audio. However, these architectures require substantial
computational capacity, presenting an additional challenge
when working with large datasets such as AudioSet [25],
which consists of over 2.2 million audio samples.

To address this computational demand, the transfer learning
strategy presented in [22] was replicated, using a pre-trained
model on the AudioSet dataset, covering 527 classes. This
technique allowed the wuse of general acoustic
representations without the need to fully retrain the model
from scratch, significantly reducing training times and
computational resource consumption without
compromising classification accuracy.

Following the methodology described in [14], a fine-tuning
process was applied in which the weights of the model's
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multi-head attention layers were frozen, and only the final
classification  layers were retrained wusing the
UrbanSound8K dataset [16].

In addition, the classes not corresponding to emergency
sounds were grouped under the category "nothing" to
simplify the classification task. The 10-fold cross-
validation, as recommended in [16], allowed for evaluating
the robustness of the model and minimizing the risk of
overfitting.

The model training replicated the setup presented in [22],
using the cross-entropy loss function and the ADAM
optimizer. Furthermore, an adaptive learning rate and early
stopping strategy were implemented improving the model's
convergence and training efficiency.

During the training phase, the model achieved an average
accuracy of 98.23%, reflecting its ability to detect
emergency events with high precision. Key metrics such as
precision (98.02%), recall (96.32%), and F1-Score
(97.16%) corroborate the effectiveness of the replicated
approach in distinguishing siren sounds from other
environmental noises.

To validate the system, we evaluated its performance using
the ESC-50 dataset [18]. The results showed a correct
identification rate of 97.5%, confirming the system's
effectiveness in detecting emergency sounds across
different conditions.

5.2 Localization Performance Results

The localization model was trained using a dataset of
12.900 samples, obtained from the measurements detailed
in Section 3. These measurements, conducted in an
acoustically controlled environment with Wave-Field
Synthesis (WFS) technology, allowed for the precise
recreation of realistic scenarios, including emergency
signals and background noise representative of industrial
and urban environments. The fidelity of the system ensured
that the model was exposed to varied and challenging
conditions, essential for robust localization.

To maximize the representativeness of the dataset, a split of
80% for training, 10% for validation, and 10% for testing
was established. The data partitioning was performed in a
stratified manner, ensuring that all incident directions were
well represented and avoiding biases in the distribution of
angles.

The model training was conducted using the ADAM
optimizer, chosen for its ability to handle large volumes of
data and stabilize the learning process. Strategies such as
early stopping were implemented to halt training when the
loss on the validation set ceased to improve, thus preventing
overfitting. Additionally, an adaptive learning rate was used
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to dynamically adjust the magnitude of weight changes,
optimizing convergence.

Given that the localization task involves circular regression,
the circular cosine loss function [22] was employed,
specifically designed for problems where values at the
extremes of the range (0° and 359°) are equivalent. This
approach allowed for a more accurate evaluation of angular
error and avoided inconsistencies that could arise with
traditional loss functions.

The model's performance was evaluated in terms of the
mean angular error in degrees on the test set, obtaining a
value of 7.593°. These results reflect the model's ability to
accurately estimate the direction of sound arrival in
acoustically complex environments, replicating realistic
conditions as described in Section 3.

6. FUTURE DIRECTIONS AND ENHANCEMENTS
FOR SYSTEM FUNCTIONALITY

As mentioned at the beginning of this document, the
described system is still in an early development phase,
presenting a viable prototype of an acoustic protection
system with emergency sound detection and localization.
However, for this prototype to reach its full potential and
become fully functional, a series of improvements and
expansions are essential.

One of the first areas to develop in order to enhance the
system is the representation of 3D audio. While the system
already provides basic localization of detected sounds, it is
necessary to refine how this information is presented to the
user. Precision in the spatial representation of sounds is
crucial for the user to clearly identify the exact location of
sounds of interest, even in noisy environments with
multiple sound sources. It is essential that the intensity,
location, and direction of sounds be intuitive, allowing for a
smooth experience that does not overwhelm the user,
particularly in high-noise situations.

Another fundamental aspect to address is the
implementation of sound cleaning algorithms. While the
system is capable of detecting and localizing sounds of
interest, an effective process for eliminating unwanted noise
that interferes with the signal quality has not yet been
developed. Filtering techniques are needed to isolate
relevant sounds from interference, ensuring that the user
only receives important alerts or sounds, without
distractions or confusion. This step is key for the system to
be truly useful in noisy industrial environments, where
sound clarity and precision are essential.
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Additionally, the system must expand its detection
capabilities to include a wider variety of sounds of interest.
While it primarily focuses on emergency sounds, detecting
other types of noises, such as human speech, would make
the system more versatile and effective in various situations.
To achieve this, it will be necessary to train the system with
a broader and more diverse dataset, enhancing the model's
ability to classify and localize a wider range of sounds in
different contexts.

Testing in real-world high-noise environments is also a
crucial step for the system's development. Although the
prototype has shown promising results under controlled
conditions, real industrial environments present additional
challenges. Constant noise and the presence of multiple
acoustic sources in these environments require the system
to be even more precise and adaptable. Testing in these
scenarios will allow for adjustments to the detection and
localization algorithms, ensuring the system maintains its
reliability and accuracy even in intense noise conditions.

7. CONCLUSIONES

This study introduces an innovative intelligent hearing
protection system designed to protect users while avoiding
the problem of acoustic overprotection, which can occur
when users are completely isolated from their environment.
The proposed system combines passive noise isolation with
Al-based sound processing to balance auditory protection
and situational awareness in industrial environments. By
employing MEMS microphones and deep learning models,
the system detects and localizes critical sounds, ensuring
that workers remain aware of their surroundings while
receiving robust auditory protection.

The findings demonstrate that the hardware prototype
effectively detects and localizes essential sounds in
complex environments, validating the system's capability to
distinguish between harmful noise and important auditory
signals. The Al models, particularly those based on
transformer architectures, exhibited superior performance in
emergency sound detection, achieving high accuracy and
robustness across various acoustic scenarios. For sound
localization, the system utilizes a modified ResNetl8
architecture, which significantly enhances the accuracy of
spatial localization. Preliminary testing in a controlled
environment confirmed the system's potential to improve
workplace safety without compromising auditory health or
regulatory compliance.

While the current prototype shows promising results,
further work is needed to refine the 3D audio
representation, implement sound cleaning algorithms, and
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expand detection capabilities to include a broader variety of
sounds. Additionally, testing the system in real-world high-
noise environments will be essential to ensure its reliability
and effectiveness. This innovative approach offers a
promising solution for enhancing workplace safety by
providing a balance between effective hearing protection
and the ability to perceive critical sounds, thereby
improving overall worker safety and performance.
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