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ABSTRACT* 

Hearing protection is crucial in heavy industries to prevent 

auditory injuries from prolonged noise exposure. However, 

regulations limit noise isolation to ensure workers can hear 

critical sounds like alarms and warnings, creating a trade-

off between protection and situational awareness. We 

propose an intelligent hearing protection system that 

combines passive noise isolation with AI-based sound 

processing. The device integrates external microphones and 

deep learning models to detect and localize important 

sounds, allowing workers to stay aware of their 

surroundings while receiving robust auditory protection. 

The system uses MEMS microphones on the earmuffs and 

headband to capture ambient sounds, processed by a central 

control board. The AI models, designed for emergency 

sound detection and localization, utilize Transformers and 

Convolutional architectures to accurately identify and locate 

critical sounds. Preliminary testing of the hardware 

prototype shows effective detection and localization of 

essential sounds in complex environments. As a first 

approach, this proposal focuses on sound capture, detection, 

and localization components. Many additional parts are 

needed for a fully functional system. This innovative 

approach offers a promising solution for improving 

workplace safety without compromising auditory health or 

regulatory compliance. 
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1. INTRODUCTION 

In industrial environments and those with high noise 

exposure, hearing protection is a critical element for 

ensuring the safety and health of workers. Prolonged 

exposure to elevated noise levels can lead to noise-induced 

hearing loss, stress, fatigue, and other adverse health effects 

[1–3]. For this reason, occupational safety regulations 

mandate the use of hearing protection devices in certain 

work environments [4–6]. 

However, in some cases, the use of conventional hearing 

protectors can result in a phenomenon known as 

overprotection. This occurs when the sound insulation is so 

effective that the worker fails to perceive important sounds 

for their safety and job performance, such as emergency 

alarms, moving vehicle signals, or critical verbal 

instructions [7]. This situation creates a dilemma: protecting 

the worker from excessive noise without compromising 

their ability to react to relevant events [8,9]. 

In the industry, a common approach to mitigating this issue 

is to mandate the use of different types of hearing protectors 

depending on the specific noise conditions of each task. 

This requires companies to provide a range of protective 

devices tailored to varying levels and types of noise 

exposure. However, as demonstrated in [8], approximately 

85% of workers experience auditory overprotection, which 

significantly impacts their ability to perceive critical sounds 

in their environment. This phenomenon leads to reduced 

situational awareness, increasing safety risks and hindering 

effective communication in noisy workplaces. 

Another widely implemented solution is the integration of 

communication systems into hearing protection devices. 

These systems, typically incorporated into protective 

helmets or earmuffs, enable voice transmission and 

reception, helping workers maintain verbal communication 

despite high noise levels. However, while this approach 

mitigates the overprotection issue regarding speech 
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perception, it does not address the broader problem of 

detecting other critical environmental sounds, such as 

alarms, approaching vehicles, or machinery malfunctions. 

The selective enhancement of speech alone is insufficient to 

ensure comprehensive auditory situational awareness, 

particularly in complex industrial settings where multiple 

auditory cues contribute to safety and efficiency. 

These limitations highlight the need for more adaptive and 

intelligent hearing protection solutions capable of 

distinguishing between harmful noise and essential auditory 

signals. Developing systems that dynamically adjust sound 

attenuation while preserving critical auditory information is 

essential for improving both worker safety and operational 

performance in high-noise environments. 

In this context, the integration of artificial intelligence into 

hearing protection devices opens new possibilities. By 

utilizing signal processing algorithms and machine learning, 

it is possible to develop systems that differentiate between 

harmful noise and sounds of interest, enabling selective 

attenuation in real-time. This approach aims to provide 

effective protection without compromising the perception 

of essential acoustic signals for safety and communication 

in the workplace environment. 

This paper presents an intelligent hearing protection system 

that employs artificial intelligence and advanced audio 

processing techniques to address the problem of 

overprotection. The following sections outline the 

principles of operation of the system as follows: Section 2 

will introduce the proposed hardware model. Section 3 will 

describe the experiments conducted for data acquisition. 

Section 4 will focus on data processing and the artificial 

intelligence structures used for detection and localization. 

Section 5 will present the obtained results, and Section 6 

will discuss potential future research directions for the 

project. 

2. PROPOSED HARDWARE APPROACH 

To mitigate the issue of hearing overprotection without 

compromising the worker's safety, a system is proposed that 

allows for the capture of external sounds through 

microphones placed on the outside of the protective 

earmuffs. In this way, the goal is to preserve the high 

passive attenuation of ambient noise while offering the user 

a selection of relevant sounds from the environment. 

The proposed approach involves the use of strategically 

positioned microphones to capture ambient sound and send 

it to a processing system that would determine which 

signals should be transmitted to the user. In this sense, the 

structure of the earmuffs would maximize their passive 

isolation capacity, minimizing the entry of unwanted noise, 

while the microphones would provide an alternative audio 

input that is fully controlled. 

 

 

 

Figure 1. MEMS microphone placed in the earmuff 

of the hearing protection headset. 

As part of the experimental development, a prototype has 

been built based on this proposal using four MEMS 

MP34DT01-M microphones [10], strategically positioned 

on the headset: two in each earmuff, as shown in Figure 1 

and two on the bridge, as shown in Figure 2. 

The incorporation of microphones on the bridge of the 

headset provides significant advantages concerning sound 

spatial localization. By placing the microphones in an 

elevated position, the ability to localize sound in elevation is 

notably improved. This is because the microphones capture 

intensity (ILD) and time (ITD) differences between signals 

received from different elevations more accurately. In 

configurations where microphones are only placed in the 

earmuffs, information about the elevation of the sound is 

limited and more prone to errors, leading to perceptual 

ambiguities in this axis. 

Additionally, the placement of microphones on the bridge 

helps eliminate the well-known "cone of confusion" and the 

front/back confusion [11] that occurs when microphones 

are only used in the earmuffs. This issue arises because two 

microphones placed on the sides of the head cannot 

accurately distinguish whether a sound source is located in 

front or behind the user. Under normal conditions, the 

human ear can resolve these ambiguities due to the small 

sound reflections in the folds of the ear [12], which create 
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unique patterns for each direction of the sound source. 

However, when using hearing protectors, the two 

microphones on the earmuffs are unable to discriminate 

their position. 

 

Figure 2. MEMS microphones placed on the 

headband of the hearing protection headset 

The inclusion of microphones on the bridge allows for 

better differentiation of these signals, significantly 

improving directional localization capabilities. 

The four microphones are connected to a central control 

board, the XMOS XVF-3000 [13], which enables 

synchronized signal acquisition. The control board features 

a USB output that sends the data directly to a PC for 

processing. This setup ensures that all microphones operate 

on the same clock, maintaining proper temporal alignment 

of the captured signals and enabling coherent analysis of the 

acoustic scene. 

In terms of integration, the microphones and the control 

board are designed to capture and transmit ambient sound in 

a synchronized manner. The processing unit on the PC 

receives these signals in real-time, enabling their analysis 

and subsequent use according to the system's needs. 

This approach would allow for the development of an 

adaptable and robust system, offering effective hearing 

protection without compromising the perception of essential 

acoustic events. 

 

3. DATA ACQUISITION AND COLLECTION 

The data collection process was carried out in a laboratory 

equipped with Wave-Field Synthesis (WFS) technology in 

an acoustically treated environment [14]. This space has 

been designed to minimize external interference and 

reflections from walls and ceilings, thus ensuring the 

accuracy of the measurements. Previous studies have 

validated and tested the effectiveness of this system in 

generating highly realistic sound fields, allowing the precise 

replication of real-world conditions [15]. 

 

Figure 3. WFS system layout diagram 

The sound generation system featured a matrix of 96 

speakers arranged in an expanded octagonal configuration, 

as shown in Figure 3, enabling the creation of complex and 

controlled sound fields. This setup allowed for the faithful 

simulation of sound incidence from multiple directions, 

thereby evaluating the system's performance in various 

acoustic scenarios. 

Since this research represents an initial approach to a 

functional prototype, the present study focused on the 

simulation and detection of emergency alerts, such as sirens 

and horns. To this end, emergency signals and background 

noise representative of industrial and urban environments 

were incorporated. The background noise was obtained 

from recordings made in real-world environments and 

played through planar waves, ensuring a homogeneous 

distribution of the acoustic field in all directions. This 

approach avoided unwanted localization effects and 

allowed for a realistic replication of a diffuse acoustic 

environment. 

For the simulation of emergency signals, recordings of 

sirens and horns from two previously validated databases 

[16,17] were used. Additionally, to assess the system's 

ability to discriminate between signals of interest and 

environmental noise, point sources of industrial noise were 

included in specific locations within the test space. These 
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sources represented characteristic sounds from tools and 

machinery, such as chainsaws, running engines, handheld 

saws, pneumatic hammers, vacuums, and washing 

machines, among others, extracted from the UrbanSound8K 

[16] and ESC-50 [18] databases. The inclusion of these 

point noise sources in the simulated environment allowed 

for the creation of complex acoustic conditions, with the 

aim of challenging the artificial intelligence algorithms to 

differentiate between critical alerts and non-priority noise 

sources. 

 

 

Figure 4. Experimental setup for data collection. 

The experimental methodology involved positioning a head 

and torso simulator for sound quality applications, Model 

4100 by Brüel & Kjaer [19], with the headphone prototype 

placed at the center of the WFS system, as shown in Figure 

4. Interest signals were emitted from various directions in 

the horizontal plane, covering a full 360º range, with the 

measurement divided into arcs of randomly selected 

degrees (e.g., every 6º, 8º, 10º, etc.). Once the arc value was 

defined, the full 360º range was simulated with the 

respective degree difference. Simultaneously, the industrial 

background environment was played through planar waves, 

accompanied by point noise sources placed in specific 

locations. This approach allowed the system's ability to 

discriminate relevant signals in a complex acoustic 

environment to be assessed, challenging the artificial 

intelligence algorithms to differentiate between emergency 

signals and non-priority point and non-point noise sources. 

Upon completion of the measurement process, 12.900 

synchronized four-channel samples were obtained, one for 

each microphone installed in the measurement prototype. 

4. SIGNAL PROCESSING AND AI SYSTEM 

DEVELOPMENT 

4.1 Signal Processing and Model Structure for 

Emergency Signal Detection 

The first step in the proposed system is sound detection, as 

this process triggers the subsequent stages of processing. 

Accurate detection of relevant signals is crucial, as it 

activates the following modules and ensures that only 

events of interest are processed. As an initial approach, the 

focus has been placed on identifying emergency sounds, 

such as sirens and horns, as outlined in Section 3.  

The methodology adopted in this work is based on 

strategies presented in previous studies [14], where a deep 

learning-based approach is employed for the detection of 

emergency sound events. Specifically, the system analyzes 

four-second audio segments using a sliding window, 

allowing continuous updates of sound information without 

compromising computational efficiency. 

 

Figure 5. Mel Spectrogram of Siren Sample 

For the representation of audio data, Mel spectrograms are 

used, as this representation preserves both the temporal and 

spectral information of the signal, facilitating the capture of 

distinctive features of emergency sounds. The configuration 

used in this work employs 128 Mel filters, a 32 ms analysis 

window for the Short-Time Fourier Transform, and a hop 

length of 10 ms, ensuring an adequate balance between 

temporal and spectral resolution, as shown in Figure 5. 

Once the spectral representation of the audio is obtained, an 

artificial intelligence model based on Transformers [20] is 

employed, specifically the Audio Spectrogram Transformer 

(AST) [21], which has demonstrated superior performance 

in emergency signal detection compared to other deep 

learning architectures. Previous studies [22] have tested 

various configurations, including Convolutional Neural 

Networks (CNN) such as ResNet and VGG, Recurrent 

Neural Networks (RNN) such as LSTM, and hybrid 

architectures that combine CNN for spectral pattern 

extraction and LSTM for temporal dynamic analysis. 
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However, transformer-based models have shown greater 

generalization ability and improved accuracy in classifying 

emergency sounds. 

The AST model has been specifically adapted for this task, 

modifying its final layers for classification into three 

categories: siren, horn, and other sounds or noise. To 

achieve this, the weights of the Multihead Attention blocks 

have been frozen, and custom classification layers have 

been added, as studied in [22]. 

This approach allows the system to differentiate between 

critical sounds and environmental noise, preventing the 

unnecessary activation of subsequent modules. Once an 

emergency signal is detected, the system generates an alert, 

providing the necessary information for a quick and precise 

response, thus triggering the activation of the following 

blocks of the system. 

 

4.2 Signal Processing and Model Structure for Sound 

Localization 

Once the emergency signal is detected, its localization is 

performed using an artificial intelligence-based system. To 

achieve this, information extracted from the Generalized 

Cross-Correlation with Phase Transform (GCC-PHAT) 

[23,24] is used, a parameter that allows the calculation of 

time delays between microphones. This parameter is crucial 

for estimating the direction of arrival (DOA) of the sound, 

as it provides information about the time difference at 

which the signal reaches each microphone in the array, as 

shown in Figure 6. 

 

Figure 6. Example of windowed GCC-PHAT 

between two microphone pairs. 

GCC-PHAT is particularly useful in noisy environments, as 

it applies phase normalization, which enhances the 

robustness of the time delay estimation by minimizing the 

impact of interferences and reflections. Additionally, since 

the microphone separation is relatively small, the time 

delays are also reduced. As explored in [15], to optimize 

processing and reduce computational load, a segmentation 

process of the GCC-PHAT is applied using analysis 

windows, which allows improving system efficiency 

without compromising the accuracy of the estimation. 

As explored in [22], this parameter is used as input to a 

convolutional neural network based on ResNet-18, which 

has been modified for the task of angular localization. 

The extracted features are then processed by two 

independent branches, each consisting of a fully connected 

layer with 512 neurons and PReLU activation, followed by 

a final layer with Tanh activation. This configuration 

ensures that the output values are in the range of [-1, 1], 

which is consistent with the trigonometric values of an 

angle. 

Finally, the direction of arrival of the signal is obtained 

using the arctangent function, which combines the sine and 

cosine values to calculate an angle in the range of 0° to 

359°. As demonstrated in [22], this method enables precise 

localization of the sound source without ambiguity. 

 

5. RESULTS 

5.1 Detection Performance Results 

Given the promising results obtained in [14], an attempt 

was made to replicate the same detection system with the 

aim of evaluating its performance in classifying emergency 

sounds. To this end, advanced Transformer architectures 

were employed, which have proven highly effective in 

capturing complex relationships in sequential data such as 

audio. However, these architectures require substantial 

computational capacity, presenting an additional challenge 

when working with large datasets such as AudioSet [25], 

which consists of over 2.2 million audio samples. 

To address this computational demand, the transfer learning 

strategy presented in [22] was replicated, using a pre-trained 

model on the AudioSet dataset, covering 527 classes. This 

technique allowed the use of general acoustic 

representations without the need to fully retrain the model 

from scratch, significantly reducing training times and 

computational resource consumption without 

compromising classification accuracy. 

Following the methodology described in [14], a fine-tuning 

process was applied in which the weights of the model's 
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multi-head attention layers were frozen, and only the final 

classification layers were retrained using the 

UrbanSound8K dataset [16]. 

In addition, the classes not corresponding to emergency 

sounds were grouped under the category "nothing" to 

simplify the classification task. The 10-fold cross-

validation, as recommended in [16], allowed for evaluating 

the robustness of the model and minimizing the risk of 

overfitting. 

The model training replicated the setup presented in [22], 

using the cross-entropy loss function and the ADAM 

optimizer. Furthermore, an adaptive learning rate and early 

stopping strategy were implemented improving the model's 

convergence and training efficiency. 

During the training phase, the model achieved an average 

accuracy of 98.23%, reflecting its ability to detect 

emergency events with high precision. Key metrics such as 

precision (98.02%), recall (96.32%), and F1-Score 

(97.16%) corroborate the effectiveness of the replicated 

approach in distinguishing siren sounds from other 

environmental noises. 

To validate the system, we evaluated its performance using 

the ESC-50 dataset [18]. The results showed a correct 

identification rate of 97.5%, confirming the system's 

effectiveness in detecting emergency sounds across 

different conditions. 

5.2 Localization Performance Results 

The localization model was trained using a dataset of 

12.900 samples, obtained from the measurements detailed 

in Section 3. These measurements, conducted in an 

acoustically controlled environment with Wave-Field 

Synthesis (WFS) technology, allowed for the precise 

recreation of realistic scenarios, including emergency 

signals and background noise representative of industrial 

and urban environments. The fidelity of the system ensured 

that the model was exposed to varied and challenging 

conditions, essential for robust localization. 

To maximize the representativeness of the dataset, a split of 

80% for training, 10% for validation, and 10% for testing 

was established. The data partitioning was performed in a 

stratified manner, ensuring that all incident directions were 

well represented and avoiding biases in the distribution of 

angles. 

The model training was conducted using the ADAM 

optimizer, chosen for its ability to handle large volumes of 

data and stabilize the learning process. Strategies such as 

early stopping were implemented to halt training when the 

loss on the validation set ceased to improve, thus preventing 

overfitting. Additionally, an adaptive learning rate was used 

to dynamically adjust the magnitude of weight changes, 

optimizing convergence. 

Given that the localization task involves circular regression, 

the circular cosine loss function [22] was employed, 

specifically designed for problems where values at the 

extremes of the range (0° and 359°) are equivalent. This 

approach allowed for a more accurate evaluation of angular 

error and avoided inconsistencies that could arise with 

traditional loss functions. 

The model's performance was evaluated in terms of the 

mean angular error in degrees on the test set, obtaining a 

value of 7.593°. These results reflect the model's ability to 

accurately estimate the direction of sound arrival in 

acoustically complex environments, replicating realistic 

conditions as described in Section 3. 

 

6. FUTURE DIRECTIONS AND ENHANCEMENTS 

FOR SYSTEM FUNCTIONALITY 

As mentioned at the beginning of this document, the 

described system is still in an early development phase, 

presenting a viable prototype of an acoustic protection 

system with emergency sound detection and localization. 

However, for this prototype to reach its full potential and 

become fully functional, a series of improvements and 

expansions are essential. 

One of the first areas to develop in order to enhance the 

system is the representation of 3D audio. While the system 

already provides basic localization of detected sounds, it is 

necessary to refine how this information is presented to the 

user. Precision in the spatial representation of sounds is 

crucial for the user to clearly identify the exact location of 

sounds of interest, even in noisy environments with 

multiple sound sources. It is essential that the intensity, 

location, and direction of sounds be intuitive, allowing for a 

smooth experience that does not overwhelm the user, 

particularly in high-noise situations. 

Another fundamental aspect to address is the 

implementation of sound cleaning algorithms. While the 

system is capable of detecting and localizing sounds of 

interest, an effective process for eliminating unwanted noise 

that interferes with the signal quality has not yet been 

developed. Filtering techniques are needed to isolate 

relevant sounds from interference, ensuring that the user 

only receives important alerts or sounds, without 

distractions or confusion. This step is key for the system to 

be truly useful in noisy industrial environments, where 

sound clarity and precision are essential. 
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Additionally, the system must expand its detection 

capabilities to include a wider variety of sounds of interest. 

While it primarily focuses on emergency sounds, detecting 

other types of noises, such as human speech, would make 

the system more versatile and effective in various situations. 

To achieve this, it will be necessary to train the system with 

a broader and more diverse dataset, enhancing the model's 

ability to classify and localize a wider range of sounds in 

different contexts. 

Testing in real-world high-noise environments is also a 

crucial step for the system's development. Although the 

prototype has shown promising results under controlled 

conditions, real industrial environments present additional 

challenges. Constant noise and the presence of multiple 

acoustic sources in these environments require the system 

to be even more precise and adaptable. Testing in these 

scenarios will allow for adjustments to the detection and 

localization algorithms, ensuring the system maintains its 

reliability and accuracy even in intense noise conditions. 

7. CONCLUSIONES 

This study introduces an innovative intelligent hearing 

protection system designed to protect users while avoiding 

the problem of acoustic overprotection, which can occur 

when users are completely isolated from their environment. 

The proposed system combines passive noise isolation with 

AI-based sound processing to balance auditory protection 

and situational awareness in industrial environments. By 

employing MEMS microphones and deep learning models, 

the system detects and localizes critical sounds, ensuring 

that workers remain aware of their surroundings while 

receiving robust auditory protection. 

The findings demonstrate that the hardware prototype 

effectively detects and localizes essential sounds in 

complex environments, validating the system's capability to 

distinguish between harmful noise and important auditory 

signals. The AI models, particularly those based on 

transformer architectures, exhibited superior performance in 

emergency sound detection, achieving high accuracy and 

robustness across various acoustic scenarios. For sound 

localization, the system utilizes a modified ResNet18 

architecture, which significantly enhances the accuracy of 

spatial localization. Preliminary testing in a controlled 

environment confirmed the system's potential to improve 

workplace safety without compromising auditory health or 

regulatory compliance. 

While the current prototype shows promising results, 

further work is needed to refine the 3D audio 

representation, implement sound cleaning algorithms, and 

expand detection capabilities to include a broader variety of 

sounds. Additionally, testing the system in real-world high-

noise environments will be essential to ensure its reliability 

and effectiveness. This innovative approach offers a 

promising solution for enhancing workplace safety by 

providing a balance between effective hearing protection 

and the ability to perceive critical sounds, thereby 

improving overall worker safety and performance. 
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