
11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

HRTF DATABASE MATCHING FOR LOCALIZATION ACCURACY
APPLICATIONS

Eleni Tavelidou Konstantinos Bakogiannis Areti Andreopoulou∗

Laboratory of Music Acoustics and Technology (LabMAT)
National and Kapodistrian University of Athens, Greece

ABSTRACT

This study investigates HRTF database matching as a
means for creating an individualized spatial user expe-
rience, optimized for specific application needs. Focus-
ing on localization accuracy, a procedure is designed as-
sisting the effective navigation, evaluation, and selection
of the optimal dataset for each user from a large HRTF
repository. The navigation within this HRTF collection is
achieved by means of clustering and the identification of
representative datasets, to be evaluated in a binaural lo-
calization test, developed in Unity using the 3DTI toolkit.
The winning HRTF in each localization test guides further
clustering and refinement, iteratively narrowing the op-
tions to a few optimal datasets. The dataset pool was con-
structed using Barumerli’s model and assessed using met-
rics derived from the localizationerror function in the Au-
ditory Modelling Toolbox. Principal Component Analysis
(PCA) reduced redundancy and noise, enabling more co-
herent clustering with the k-means technique. The effec-
tiveness of the proposed methodology is assessed through
a preliminary study featuring an HRTF pool of 84 datasets
from five databases, and seven participants. This paper de-
tails the methodology, presents findings, and explores the
evaluation, limitations, and potential applications of this
technique.
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1. INTRODUCTION

Immersion and spatial accuracy are essential for creating
a realistic and seamless binaural listening experience, par-
ticularly in extended reality (XR) environments. Achiev-
ing a personalized auditory experience that closely repli-
cates natural sound field exposure in a physical space is
a key objective in spatial audio research. A listener’s
ability to perceive spatial properties of sound is primar-
ily determined by their Head-Related Transfer Functions
(HRTFs)—individualized filters that encode directional
and spectral cues based on the shape of the head, ears,
and torso. HRTFs are fundamental to binaural rendering
and spatial hearing, making their personalization crucial
for accurate sound localization and an enhanced sense of
presence in virtual and augmented environments.

Nevertheless, obtaining personally measured or indi-
vidualized HRTFs for each user is challenging, as it is a
time-consuming and costly process that requires special-
ized equipment. To address this limitation two main ap-
proaches for acquiring individualized HRTFs have been
proposed, as noted in [1]: the first involves numerical sim-
ulations using 3D models of the head, pinnae and torso
(e.g., [2, 3]); the second relies on transformation of, or se-
lection from, existing HRTF datasets (e.g., [4, 5]). As an
alternative, a survey of machine learning techniques for
HRTF personalization is presented in [6].

This study focuses on another such approach:
database matching [7], an HRTF individualization proce-
dure which can be based on objective [8] or subjective
criteria [9]. The work aims to identify the best-matching
HRTF for a user from a repository of datasets, constructed
through the aggregation of publicly available databases.
The proposed technique is based on the premise that an
effective HRTF matching should be tailored to the appli-
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cation type, meaning it should consider the importance of
spatial perception for specific applications. For example,
certain applications may need improved localization ac-
curacy while for others spectral smoothness might be the
goal.

Navigation through the repository is achieved by
gradually focusing on the region of the collection around
which one’s best match is located. To achieve this, the
HRTF repository is clustered into regions, each repre-
sented by the cluster’s centroid, and assessed through tai-
lored tasks, based on the application type. Upon selection,
the winning cluster is re-clustered into smaller zones and
the procedure is repeated iteratively until no further clus-
tering is possible and the best matching HRTF is identi-
fied.

This paper focuses on applications that would benefit
from individualized binaural renderings to enhance local-
ization accuracy. To achieve this, relative metrics are em-
ployed to construct the dataset space (Section 2.1) and an
approach is proposed for handling the multi-objective na-
ture of problems involving multiple metrics (Section 2.2).
HRTF evaluation is conducted through a Virtual Reality
(VR)-based listening test (Section 3), and results of the
pilot implementation of this method are presented and dis-
cussed (Section 4).

2. METHODOLOGY

2.1 Building an HRTF Repository

HRTF datasets are available in various formats, such
as free or diffuse-field compensated, full or minimum
phase, full-range through low-frequency extension or
band limited, etc. To ensure consistency across the HRTF
pool, general-purpose free-field equalized HRTFs from
the SOFA repository [10] were collected. When multi-
ple formats were available for a single dataset, the least
processed version was selected, prioritizing datasets with
minimal processing. Simulated datasets were also ex-
cluded, leading to a collection of exclusively recorded
data obtained from humans and mannequins.

The following databases were selected based on
their spatial resolution, number of available datasets,
and widespread approval within the research community:
SONICOM [11], RIEC [12], ARI [13], HUTUBS [14],
and BiLi [15]. To ensure comparability and enable fair
metric calculations across databases, a uniform selection
criterion for spatial positions was applied. In terms of el-
evation, positions corresponding to -30◦, -20◦, -10◦, 0◦,

10◦, 20◦, 30◦, 40◦, and 60◦were retained, provided they
were available, and the preferred azimuthal resolution was
set to 5◦. When a specific position was missing, the clos-
est available position was identified, ensuring the angular
deviation did not exceed 5◦.

2.1.1 HRTF Post-Processing

To ensure consistency across datasets, a comprehensive
post-processing pipeline was applied, following the steps
outlined in [16, 17]. All datasets were converted to Direc-
tional Transfer Functions (DTFs) and downsampled to the
lowest common sampling rate across the HRTF pool. A
custom low-pass cutoff frequency of 8 kHz was selected to
retain essential spatial cues, including pinna-related spec-
tral information, while eliminating high-frequency noise
introduced by the recording equipment. Additionally, a
high-pass filter with a cutoff of 200 Hz was applied to
eliminate low-frequency artifacts, before the DC offset
was removed.

A rectangular window was applied to truncate the im-
pulse responses (IRs) to a uniform length, based on the
shortest IR duration (5.3 ms, corresponding roughly to
234 samples). For computational efficiency, a uniform
length of 256 samples was applied across all data. A con-
sistent starting point for truncation was established at 20
samples before the first detected onset, defined as the point
where the signal first exceeded 10 dB relative to the peak
value.

Variations in stimulus amplitude and loudspeaker dis-
tance across setups was accounted for through the appli-
cation of dataset-specific scaling. The measurement with
the highest RMS value for both ears was identified within
each dataset, and was used to calculate the median global
RMS across datasets. Subsequently, each HRTF dataset
was adjusted to match this common median RMS value,
ensuring consistent loudness across all data in the reposi-
tory. As a last processing step, the first and last sample of
each impulse response were set to zero.

2.1.2 HRTF Space Construction

Upon creation of the standardized HRTF pool, the next
step involved the calculation of key metrics for data com-
parison. Barumerli’s Bayesian Spherical Sound Localiza-
tion model [18] was applied on the data, and its output was
fed to the localizationerror function within the Auditory
Modeling Toolbox (AMT) for the computation of a com-
prehensive set of metrics. The resulting HRTF space was
constructed using the 35 metrics, derived from the output
of the said function.
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To reduce dimensionality of the output metric data,
while preserving essential information, Principal Com-
ponent Analysis (PCA), a method widely employed in
HRTF-related studies (e.g., [19–21]), was applied with
a target of 95% variance retention. The PCs served as
the basis for k-means clustering of the data. The result-
ing clusters consisted of HRTFs sharing similar spatial-
ization characteristics. Each cluster was represented by its
centroid, identified as the most characteristic set for each
group.

2.2 HRTF database matching procedure

Since the goal of this work is the development of an HRTF
database matching procedure targeted at localization ac-
curacy applications, the selection criteria should be based
on corresponding metrics. The methodology is defined as
follows. Users navigate through the standardized HRTF
repository by means of a localization test. In each test
round users evaluate the most representative dataset of
each cluster —that closest to the cluster centroid. To de-
termine the optimal dataset, which guides the selection of
the cluster explored in the subsequent round, a selection
process based on three key performance metrics was im-
plemented, based on [22] and available through the AMT
localization error function:

1. Lateral RMS Error (rmsL): This metric quantifies
the average lateral error by computing the root
mean square (RMS) of lateral deviations, measured
in degrees.

2. Local Polar RMS Error (rmsPmedianlocal): This
metric assesses the precision of polar localization
while excluding responses with large quadrant er-
rors (i.e., errors exceeding 90°). It is computed as
the RMS of polar errors for targets positioned near
the median plane (lateral angles within ±30◦).

3. Quadrant Error Rate (querrMiddlebrooks): This
metric calculates the percentage of gross polar mis-
judgments, defined as cases where the response
falls outside the correct quadrant (i.e., absolute po-
lar errors > 90◦).

Since the winner determination relies on multiple per-
formance metrics, the problem falls under the multiobjec-
tive optimization category, in which no single dataset can
simultaneously minimize all metrics. To address this, the
Pareto front technique [23] was applied to identify non-
dominated solutions —i.e., datasets that cannot be im-
proved in one metric without worsening another. In this

context, the Pareto front consists of datasets that exhibit
the most favorable trade-offs among the evaluated metrics.
From the tested datasets in each round, only those belong-
ing to the Pareto front are considered potential winners.
To determine the final winner from this set, the Euclidean
distance of each Pareto-optimal dataset from an ideal per-
formance point -defined as zero error across all metrics-
is calculated. Since all three metrics in the study are min-
imization criteria, the dataset with the smallest Euclidean
distance to the origin is selected as the winner, hence en-
suring the best overall localization performance.

3. EVALUATION

The evaluation procedure of the above implementations
involved the localization of invisible sound sources in a
VR environment. The overall task included a training ses-
sion, used to enhance user familiarization with hardware,
interface, and VR interactions, as well as the main listen-
ing task, and was set to be completed on a single day.

The coordinates considered for the listening test, es-
tablished as a general reference for the localization task,
are shown in table 1 and illustrated in figure 1. However,
the actual positions used in the test were slightly adjusted,
within reported JND values, to match the specific spatial
grid of each dataset. This approach eliminated the need
for interpolation of positions that did not exist within the
different HRTF grids considered. As a last step, in order
to minimize the impact of the non-symmetric test grid on
the localization task, two sets of coordinates were utilized
in the test with each set being a left-right mirror of the
other. The potential impact of each grid on the subjects’
test performance and localization accuracy was assessed
during the analysis of the responses.

3.1 Test Corpus

To reduce the duration of the localization test, an opti-
mizer was developed to refine the original dataset space
of 822 HRTFs, while preserving its representativeness.
The reduction process involved outlier removal using the
z-score method, followed by PCA for dimensionality re-
duction, and partitioning the space into grid cells from
which representative datasets were selected. The opti-
mizer evaluated multiple configurations by testing differ-
ent parameters and discarding those that resulted in either
uneven dataset representation or excessive test durations.
The final configuration included 84 HRTF datasets (41 for
SONICOM, 1 for RIEC, 25 for ARI, 5 for BiLi, 12 for
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Table 1. General Azimuth (Azi) and elevation (Ele)
angles of the 22 positions used for the localization
test.

No. Azi Ele No. Azi Ele

1 0 -30 12 150 0
2 180 -30 13 -150 0
3 20 -30 14 0 30
4 -160 -30 15 180 30
5 0 0 16 30 30
6 180 0 17 -150 30
7 80 0 18 0 60
8 -100 0 19 180 60
9 -20 0 20 -30 60

10 40 0 21 150 60
11 -60 0 22 -40 -30

HUTUBS), ensuring that the average estimated test time
remained under one hour.

3.2 Experimental Protocol

The training session consisted of 20 trials of audio-visual
stimuli, projected at 20 distinct positions on the surface
of a four-meter radius virtual sphere. The structure of
the main listening task adhered to the principles of the
database matching method as described in section 1. As
such, it comprised of a number of Rounds which were di-
vided into Sessions of 44 Trials each. The listening task
trials included the presentation of the selected audio stim-
ulus at 22 distinct locations; hence, each position was re-
peated once within the session. The stimulus used was
a 260 ms audio of White Gaussian Noise Bursts, three
60 ms of noise separated by 40 ms of silence.

Seven adults (six female), aged 21 to 43, participated
in the localization task. All participants self-reported nor-
mal hearing, no visual impairments, as well as no prior ex-
perience with VR equipment. Participants were equipped
with an Oculus Quest 2 head-mounted display, hand-
tracked controllers, and open-back Sennheiser HD 650
headphones for binaural listening. The experiment was
carried out on PCs running 64-bit Windows 11 using a
Steinberg UR22 USB audio interface. The virtual test en-
vironment was developed in Unity v2020.3 integrating the
3D-Tune-In Toolkit for anechoic binaural rendering [24],
which allows for the individualization of Interaural Time
Differences (ITDs) for each participant.

Figure 1. Visualization of the 22 positions used in
the localization task.

Participant performance using each HRTF, was as-
sessed at the end of each Round using the Auditory Mod-
eling Toolbox (AMT) in Matlab. The winning HRTF was
used to further refine the clustering of the HRTF universe,
gradually refining the selection until the user-specific op-
timal HRTF was identified (see Sec. 2.2).

More specifically, following the assessment of the
participant’s performance using the initial HRTFs charac-
terizing the clusters of the first database matching Round,
the process advances to the next Round, which is deter-
mined by the winning HRTF. From the second round on-
ward, the set of HRTFs under evaluation includes not only
the HRTF candidates from a more refined region of the
HRTF universe but also an additional ’escape’ HRTF. This
escape dataset represents a cluster of the previous Round
and is included in the process to detect potential incon-
sistencies in the participant’s responses. The number of
HRTFs presented in each Round is predetermined by the
clustering process. At this stage, based on performance
evaluation using the AMT, the procedure either progresses
to the third Round — further narrowing the selection to-
ward the optimal dataset — or returns to the previous
Round if the escape HRTF yields better performance. The
process is repeated until the Final HRTF Winner is ide-
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Figure 2. Overview of the database matching proto-
col.

tified. A detailed representation of the experimental se-
quence can be found in figure 2.

4. RESULTS

General observations from the pilot localization test are
first presented. All participants successfully completed
the test in three rounds, with no instances of an escape
winner (i.e., no participant reverted to a previous round).
The average test duration was 64 min (std: 19 min), in-
cluding breaks. A comparison between the average per-
formance in the first and final rounds shows a clear trend
of improvement across all three evaluated metrics. For
the rmsL metric, the average error of the winning HRTF
decreased by 5◦, with a reduction in standard deviation
from 4◦to 3◦, indicating both improved accuracy and con-
sistency. Similarly, for the querrMiddlebrooks metric, the
average error dropped by 4% and the corresponding stan-
dard deviation reduced was reduced by 2%. While the
average winning performance for rmsPmedianLocal re-
mained steady, the decrease in variability (std from 6◦to
5◦) suggests increased stability. Notably, in the final
round, the selected HRTFs outperformed the master es-
cape dataset across all three metrics by 2◦in rmsL, 3◦in
rmsPmedianLocal, and 7% in querrMiddlebrooks, further

supporting the effectiveness of the selection process.
Participant responses are presented with a focus on

the rmsL metric as a representative example, due to space
constraints. The remaining two metrics used for clus-
ter selection and test evaluation —rmsPmedianlocal and
querrMiddlebrooks— exhibited similar trends. Figure 3
summarizes the average localization performance across
all participants with respect to the rmsL error metric. For
each round, the average localization performance of the
winning HRTF is shown alongside the average perfor-
mance across all HRTFs in that round (excluding the lo-
calization results of the escape HRTF). The average rmsL
error of the master escape HRTF —defined as the dataset
most distant from the initial winning cluster— is also in-
cluded as a control reference to evaluate localization per-
formance changes.

As can be seen, across all rounds the average local-
ization error of the non-winning HRTFs is consistently
higher than that yielded by the winning set. When fo-
cusing on the error distribution between the three experi-
ment rounds the following pattern emerges. Responses of
the first round exhibit higher data variability (wider box-
plots) compared to those in the other two rounds whose
boxplots are more compact, reflecting a higher concentra-
tion of values around the median, and hence more com-
parable localization performance between HRTFs. This
result is consistent with expectations, as the initial test-
round included HRTFs of very different spatial qualities,
occasionally resulting in incidental good and bad matches
for users. In contrast, the second round operates on a
more constrained dataset space, which may have intro-
duced suboptimal HRTFs prior to further refinement. By
the third and final test-round, performance shows con-
sistent improvement (lower rmsL error), indicating that
the selected winning HRTFs yielded higher localization
accuracy than those in earlier rounds. Furthermore, re-
sponses to the final round’s winning HRTFs demonstrate a
greater performance gap relative to the master escape, un-
derscoring the effectiveness of the iterative selection pro-
cess. Similar trends were observed across all evaluated
performance metrics.

The overall performance of each winning HRTF was
evaluated relative to the remaining datasets within the
same round by computing the signed difference between
the round’s average performance (excluding the localiza-
tion results of the escape HRTF) and the performance of
the winning dataset (Figure 4). A positive difference in-
dicates that the winner outperformed the remaining sets,
leading to lower localization error. As can be seen, in the
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Figure 3. Average localization error (rmsL) across
all participants for each round’s winning HRTF,
alongside the round’s average (excluding escape
HRTFs). The Master Escape HRTF is also shown
as a control reference.

majority of cases, positive values are observed, supporting
the effectiveness of the selection process in enhancing lo-
calization performance with respect to that metric. Similar
observations were made across all three evaluated metrics.

Figure 4. Signed difference between each round’s
average localization error and the winning HRTF’s
error (rmsL metric).

5. CONCLUSIONS AND FUTURE WORK

This work investigated HRTF database matching as a
method for creating individualized spatial audio experi-
ences optimized for specific application needs. A method-
ology was developed to support the selection and evalu-

ation of the matched HRTFs through iterative clustering
and localization testing using a Unity-based VR environ-
ment. The proposed method was validated in a pilot study
involving 84 HRTF datasets from five databases and seven
participants.

The key findings from the pilot localization test re-
vealed a general improvement trend, according to which
the final round consistently outperformed the Master Es-
cape condition. Moreover, the winning HRTFs generally
outperformed the other datasets in the same round across
participants. The incorporation of evaluation dimensions
such as those proposed in [25] may enhance the robust-
ness and relevance of the assessment framework.

Future work will focus on the robust re-design of the
experimental protocol. The previously discussed repos-
itory of 84 HRTFs constrains the range of possible out-
comes and the depth of analysis across test rounds. The
expansion of the HRTF data collection is expected to fa-
cilitate trend identification. Similarly, an increase in the
number of test participants will strengthen the statistical
power and generalizability of the findings. To support
this expansion, improvements in test efficiency are re-
quired. Efforts will focus on developing a faster and more
streamlined testing procedure that reduces overall dura-
tion without compromising the effectiveness and quality
of the match.
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