
11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

INCREASING THE SPATIAL ALIASING FREQUENCY OF CIRCULAR
ARRAYS VIA BEAMFORMER ORDER REDUCTION

Filippo Maria Fazi and Nara Hahn
Institue of Sound and Vibration Research

University of Southapton, U.K.

ABSTRACT
Spatial aliasing may occur when the wavelength of a
sound becomes smaller than twice the distance between
neighbouring transducers, limiting the directivity of loud-
speaker or microphone arrays at high frequencies. This
paper focuses on uniform circular arrays and investigates
how the spatial aliasing frequency can be increased by
reducing the beamformer order. By leveraging the spe-
cial structure of the circular harmonic orthogonality ma-
trix, derived from Discrete Fourier Transform theory, it is
shown that spatial aliasing of a given high-order harmonic
impacts only one specific lower-order harmonic. Based on
this property, a strategy is proposed to increase the spatial
aliasing frequency by creating beamformers with an order
smaller than the maximum possible for the given number
of transducers. These theoretical findings are validated
through simulations, demonstrating the trade-off between
spatial aliasing frequency and beamformer directivity.

Keywords: microphone arrays, loudspeaker arrays, spa-
tial aliasing, 3D audio, sound field reproduction.

1. INTRODUCTION

It is well known that loudspeaker and microphone arrays
suffer from spatial aliasing at high frequencies, where the
spacing between neighbouring transducers is more than
half of the wavelength under consideration. In beam-
forming applications, spatial aliasing typically generates
grating lobes in the directivity pattern of the array, whose
magnitude and width are comparable to that of the main
beam [1–3].

Various strategies have been proposed in an attempt
to mitigate the effect of spatial aliasing [4–6].

In the specific case of circular or spherical arrays, the
sound field is usually represented by means of a (gener-
alised) Fourier series with circular or spherical harmonics

and the array usually attempts to measure or reproduce the
sound field up to a given Fourier order N , which depends
on the number of transducers. When using this Fourier
representation, the effect of spatial aliasing is that the es-
timation or reproduction of the sound field Fourier coef-
ficients of order N or lower is degraded by the energy of
higher order coefficients being folded back into the lower
order.

In this work we exploit the special structure of spa-
tial aliasing of uniform circular array, which is directly re-
lated to the DFT periodicity, to propose a strategy to mit-
igate the effect of spatial aliasing. More specifically, we
exploit the fact that, given an array with maximum order
N and assuming an odd number of loudspeakers L, the
energy of the coefficients of order N + 1 is folder to co-
efficient −N , that of coefficient N +2 is folder to coeffi-
cient −(N−1) and so on. At low frequencies, the Fourier
representation of the sound field is dominated by low or-
ders. The energy of coefficients of higher order becomes
progressively more significant with increasing frequency.
The usual rule-of-thumb is that a coefficient is negligible
if its order |n| > kr, where k is the wavenumber and r the
radius of the array. Above a given frequency, the coeffi-
cients of the order ±(N + 1), which cannot be captured
or reproduced by the array, become relevant and, because
of spatial aliasing, their energy is folded to the coefficient
∓N . The considerations above suggest that reducing the
order of the array to N − 1, that is deliberately removing
the coefficients of order ∓N from the sound field mea-
sured or reproduced by the array, will reject the spatial
aliasing effect caused by coefficients ±(N + 1). At an
even higher frequency, the energy of orders ±(N+2) will
become significant, but its aliasing effect can be rejected
by reducing the array order to N − 2, and so on. This
array order reduction, however, causes a reduction of the
array’s spatial resolution, and a broadening of the main
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lobe in beamforming applications.
Spatial aliasing reduction methods that rely on very

similar reasoning were previously proposed in the litera-
ture, for example in [5].

The relevant theory of Fourier representation is re-
viewed in the next section, followed by theoretical re-
sults that are specific for microphone arrays and for loud-
speaker arrays, in Section 3 and 4 respectively. The pro-
posed strategy to mitigate spatial aliasing is presented in
Section 5, and the results are validated by numerical sim-
ulations described in Section 6.

2. THEORY

For a given wave number k, the expression of single plane
wave in 2D, with direction of arrival ϕT , unitary ampli-
tude and zero phase at the origin is given by

p(r, ϕ) = ejkr cos(ϕ−ϕT ) (1)

where (r, ϕ) are the polar coordinate of a point in R2 .
The assumed time dependency is ejωt . Any sound field
satisfying the homogeneous Helmholtz equation in R2 can
be represented by the plane wave superposition

p(r, ϕ) =

∫ 2π

0

a(θ)ejkr cos(ϕ−θ)dθ (2)

= 2π

∞∑
n=−∞

jnJn(kr)e
jnϕAn (3)

where Jn are is the n-th order Bessel function. The last
equality is due to the Jacobi-Anger expansion

ejkr cos(ϕ−θ) =

∞∑
n=−∞

jnJn(kr)e
jn(ϕ−θ) (4)

a(θ) is the plane wave density (PWD) function, with
Fourier coefficients An. For a single plane wave ϕT we
have that a(θ) = δ(θ − ϕT ) =

∑∞
n=−∞ ejn(θ−ϕT )/(2π)

and, consequently, An = e−jnϕT /(2π).
This result can be extended to the case when an in-

finite rigid cylinder (perpendicular to the plane where the
sound field is defined) is included. As shown, for example,
in references [7] and [8] the formula of a sound field with
PWD Fourier coefficients An at position (r, ϕ), either in
free field or on the surface of an infinite rigid cylinder of
radius r, is given by

p(r, ϕ) =

∞∑
n=−∞

Pne
jnϕ = 2π

∞∑
n=−∞

Anbn(kr)e
jnϕ

(5)

bn(kr) are the radial functions defined as 1

bn(kr) =

{
jnJn(kr) free-field

−2jn+1

πkrH′
n(kr)

rigid cylinder
(6)

j is the imaginary unity, Jn(kr) is the n-th order Bessel
function, and H ′

n(kr) is the derivative of the n-th or-
der Hankel function of the second kind. Note that, be-
cause j−n = (−1)njn, J−n = (−1)nJn, and H ′

−n =
(−1)nH ′

n , we have that b−n = bn.

Figure 1. Magnitude of the radial functions bn for
different orders n, for the rigid cylinder case (top)
and free-field case (bottom).

The radial functions are reported in Figure 1. It can
be observed that high-order radial functions are negligi-
ble at low frequencies and their energetic contribution to
the microphone signals becomes more significant with in-
creasing frequency. This means that the radial functions
act as high-pass filters for the Fourier coefficients An.

For both the case of the free field and the rigid
cylinder, the magnitude of bn increases monotonically
in the low-frequency region, approximately where kr <
|n|. This behaviour can be approximated with the small-
argument approximation of Bessel and Hankel functions

1 The definition of bn has been adapted from [8], accounting
for the different time convention used here (ejωt).
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[7], yielding

b|n|(kr) ≈
ϵ|n|

|n|!

(
j
kr

2

)|n|

for kr ≪ |n| (7)

with

ϵn =


1 free-field
1 rigid cylinder with n = 0

2 rigid cylinder with n ̸= 0

(8)

It is interesting that the free-field and rigid-cylinder radial
functions exhibit an almost identical low-frequency be-
haviour, with the difference that the rigid cylinder boosts
all radial functions of order |n| > 0 by 6 dB.

As shown in the Appendix, the high-frequencies ap-
proximation of the radial functions is [7]

b|n|(kr)| ≈
√

2

πkr
d|n|(kr) for kr ≫ |n| (9)

d|n|(kr) =

{
j|n| cos(kr − π/4− |n|π/2) free-field,
j|n|ej(kr−π/4−|n|π/2) rigid cylinder

Note that the |d|n|| = 1 for the rigid-cylinder case, and
the radial function approximation decays monotonically
and corresponds to the high-frequency approximation of
|H0(kr)|, for all orders n. Not surprisingly, this im-
plies that all bn have the same far-field decay as a line
source. The cosine term in the free-field case represents
the notches corresponding to the zeros of the Bessel func-
tions, visible in Figure 1.

3. MICROPHONE ARRAYS

We consider now an array with L uniformly spaced mi-
crophones with angular coordinates ϕℓ = 2πℓ/L, ℓ =
0, 1, . . . L − 1. The Fourier coefficients Pn can be esti-
mated with the discrete inverse Fourier series as

P̃n =
1

L

L−1∑
ℓ=0

pℓe
−jnℓ 2π

L (10)

Substituting pℓ with equation (5) yields

P̃n =

∞∑
m=−∞

Pm
1

L

L−1∑
ℓ=0

ej(m−n)ℓ 2π
L

=

∞∑
m=−∞

Pm

∞∑
z=−∞

δn−m+zL

=

∞∑
z=−∞

Pn+zL (11)

where δn is the Kronecker delta. This central result, which
is a direct consequence of the periodicity of the Fourier co-
efficients of discrete signals (or, equivalently, of the DFT),
indicates that the estimation of the n-th order is contami-
nated by all coefficients with orders n+ zL, for any inte-
ger number z. This is indeed the artefact caused by spatial
aliasing .

The sound field coefficients An are estimated by in-
verting the radial functions bn, namely

Ãn =
P̃n

2πbn
=

∞∑
z=−∞

bn+zL

bn
An+zL (12)

Note that a regularisation scheme is usually applied to the
inversion of the coefficients bn to avoid instability, but this
is not included here for the sake of simplicity [9].

Finally, the estimated plane wave density is

ã(θ) =

N∑
n=−N

Ãne
jnθ

=

N∑
n=−N

∞∑
z=−∞

bn+zL

bn
An+zLe

jnθ (13)

Note that the estimated PWD function ã(θ) is, by
construction, limited to order N ≤ (L − 1)/2, but the
2N + 1 coefficients Ãn will, in general, be different from
the target coefficients An. Indeed, the two equations
above clearly indicate that spatial aliasing causes the es-
timation of the coefficient An to be degraded by the en-
ergy shifting of the higher-order coefficients An+zL. This
degradation, however, is mitigated by the ratio bn+zL/bn
, whose magnitude is small at low frequencies. To show
this, we observe that, in the frequency range where kr ≪
|n|, |n+zL|, the radial function ratio can be approximated
using eq. (7) as

b|n+zL|

b|n|
≈

ϵ|n+zL| |n|!
ϵ|n| |n+ zL|!

(
j
kr

2

)|n+zL|−|n|

(14)

This ratio has a frequency dependency of the form
κn(kr)

α. Assuming |zL| > |n|, the exponent α =
|n+ zL| − |n| is either |zL| or |zL| − 2|n| , depending on
the sign of n ·z. If we also assume that L > 2|n|, which is
consistent with the usual requirement that L ≥ 2N + 1
[10], we have that α ≥ 1, and the radial function ra-
tio above will decrease with decreasing frequency, with
a slope of 20α dB/decade .

At high frequencies, the ratio |bn+zL|/|bn| will tend
to 1, as the magnitude of all radial functions has the same
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asymptotic behaviour, as shown by eq. (9) (neglecting the
notches due to the Bessel functions for the free-field radial
functions).

4. LOUDSPEAKER ARRAYS

We want to synthesise a target, complex-valued directiv-
ity pattern D(θ) with a loudspeaker array consisting of
infinite line sources arranged either on a circle or on the
surface of an infinite cylinder.

Because of acoustical reciprocity, the far-field radia-
tion pattern at a given direction θ due to a single infinite
line source with unitary amplitude and located at point
(r, ϕ), either in free-field or or on the surface of an infinite
rigid cylinder, is the same as the sound field due to a plane
wave from direction θ and measured by a microphone at
(r, ϕ), given by equation (5) with An = e−jnθ/(2π) ,
namely

D(θ − ϕ) =

∞∑
n=−∞

bn(kr)e
jn(θ−ϕ) (15)

Considering now a continuos distribution of line sources
on a circle with strength density function q(ϕ), the repro-
duced radiation patter is

D(θ) =

∫ 2π

0

D(θ − ϕ)q(ϕ)dϕ

=

∞∑
n=−∞

bn(kr)e
jnθ

∫ 2π

0

q(ϕ)e−jnϕdϕ

= 2π

∞∑
n=−∞

Qnbn(kr)e
jnθ (16)

The coefficients Qn that reconstruct a given target radi-
ation pattern with Fourier coefficients Dn are therefore
Qn = Dn/(2πbn) . A common choice in beamform-
ing applications is the target directivity pattern D(θ) =∑N

n=−N ejn(θ−ϕT ) , which is a a circular sinc function
[10], also referred to as Dirichlet function. In this case,
the coefficients Qn = e−jnϕT /(2πbn) for |n| ≤ N and 0
otherwise.

We now consider a uniform circular array of L
sources at angular positions ϕℓ = ℓ2π/L, ℓ =
0, 1, . . . L − 1. The driving signals qℓ are given by the

uniform spatial sampling of q(ϕ), namely

qℓ =
2π

L

∫ 2π

0

δ(ϕ− ϕℓ)q(ϕ)dϕ (17)

=
1

L

N∑
n=−N

Dn

bn
ejnℓ

2π
L (18)

The corresponding source strength density function is

q̃(ϕ) =
2π

L

L−1∑
ℓ=0

q(ϕ)δ

(
ϕ− ℓ

2π

L

)
(19)

The Fourier coefficients of this train of delta functions is

Q̃n =
1

2π

∫ 2π

0

q̃(ϕ)e−jnϕdϕ

=

∞∑
m=−∞

Qm
1

L

L−1∑
ℓ=0

ej(m−n)ℓ 2π
L

=

∞∑
z=−∞

Qn+zL (20)

The mathematical manipulation used to obtain this re-
sult is analogous to that in the previous section. The
Fourier coefficients of the reproduced directivity function
are therefore

D̃n = 2πbnQ̃n = 2πbn

∞∑
z=−∞

Qn+zL

=

∞∑
z=−∞

bn
bn+zL

Dn+zL (21)

Note that this equation is similar to eq. (12) , but the roles
of bn and bn+zL are swapped.

We assume in this work that the Fourier series of the
target pattern is limited to order N ≤ (L − 1)/2 (i.e.,
Dn = 0 for |n| > N ). With this assumption the equation
above reduces to

D̃n =
bn

bζ(n)
Dζ(n), with ζ(n) = [(n+N) mod L]−N

and the reproduced directivity pattern is

D̃(θ) =

∞∑
n=−∞

Dζ(n)
bn

bζ(n)
ejnθ (22)

An alternative formulation, based on eq. (21), is

D̃(θ) =

N∑
m=−N

Dm

∞∑
z=−∞

bm+zL

bm
ej(m+zL)θ (23)
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This result indicates that even if the target directivity D(θ)
is limited to a given Fourier order N , the reproduced di-
rectivity function D̃(θ) will not be order-limited because
of the occurrence of spatial aliasing. More specifically,
the energy of each given order m of the target pattern is
shifted to higher orders m+ zL, with a modulation factor
bm+zL/bm, which behaves similarly to a high-pass filter
with a slope of 20α = 20(|m+ zL| − |m|) dB/decade, as
shown above.

Note that the eq. (23) is similar but not identical to
eq.(13). The main difference is that the estimated PWD
Ã(θ) is order-limited, but its Fourier coefficients are cor-
rupted by higher order. Conversely, the reproduced direc-
tivity pattern D̃(θ) is not order-limited, even if the target
D(θ) is. The non-zero higher order coefficients Dm+zL

are artefacts caused by spatial aliasing.

5. STRATEGY FOR SPATIAL ALIASING
REDUCTION

We have established that the amount of spatial aliasing for
a given order n is controlled by the ratio of radial functions
bn+zL/bn . These radial function ratios are reported in
Figure 2.

We observe that, as frequency increases, the order of
the first unwanted coefficient Dn′ that will appear in the
radiation pattern of a circular loudspeaker array as a con-
sequence of the aliasing of Dn is n′ = −sgn(n)(L−|n|),
with |n′| > |n|. Equivalently, for a microphone array the
first sound field coefficient An′ with order n′ > N whose
energy is folded into that of the measured coefficient An

is, again, n′ = −sgn(n)(L− |n|) .
In what follows the case of a loudspeaker array is

analysed, but analogous considerations and results can be
extended to microphone arrays.

The strategy proposed here is to attenuate the target
coefficients D|n| above the frequency where the energy of
the first aliased coefficient DL−|n| becomes significant.
With increasing frequency, the highest order coefficeint
DN will be attenuated first, then the coefficient DN−1 and
so on, down to a minimum order Nmin below which a
further order reduction is not desirable.

We will refer to these order-dependent low-pass fil-
ters as anti-spatial aliasing (ASA) filters , indicated by the
symbol Fn(kr). In practice, these filters will be integrated
into the inverse radial filters b(inv)n , namely

b(inv)n (kr) =
bn(kr)

∗

|bn(kr)|2 + β
Fn(kr) (24)

where we have now also applied Tikhonov regularisation
with parameter β. The resulting source strength and re-
produced beampattern will therefore be (see eq. (18) and
(23) )

qℓ =
1

L

N∑
n=−N

|bn|2

|bn|2 + β
Fn Dn ejnℓ

2π
L (25)

D̃(θ) =

N∑
n=−N

DnFn

∞∑
z=−∞

bn+zLb
∗
n

|bn|2 + β
ej(n+zL)θ (26)

In the case of a beamformer, with Dn = e−jnϕT , at
frequencies where the coefficients are attenuated by the
ASA filters the resulting beampattern will have a broader
main lobe, but reduced grating lobes. Unfortunately, this
aliasing reduction effect will appear only for a relatively
restricted frequency range: it will no longer possible to
mitigate the effect of spatial aliasing when the energy of
the coefficient D̃L−Nmin

becomes significant, as this co-
efficient is not attenuated by the ASA filters. Note that
Nmin > 0, and setting Nmin = 1 corresponds to request-
ing an omnidirectional target pattern when all ASA filters
are active.

We shall now discuss the criteria for the ASA filter
design. In this work, we design the ASA filters as zero-
phase filters with the magnitude response of a Linkwitz-
Riley highpass filter (consisting of two Butterworth filter
is series), that is

Fn(kr) =
1

1 +
(

kr
krn

)µn
for n ≥ Nmin (27)

Fn(kr) = 1 for n < Nmin . Note that kr is used here
as a single, dimensionless variable, as opposed to consid-
ering k and r separately. krn represents the cut-off fre-
quency of the filters, and µn the filter order. The choice
of zero-phase filters has the advantage of maintaining the
phase-relation between coefficients of different orders, but
with the significant practical disadvantage that the filters
will be non-causal. Other filter type options are certainly
possible, but this is left for future investigations.

The cut-off frequency krn can be defined by as the
frequency where the radial function ratio has reached a
desired threshold η:

krn = argmin
kr

∣∣∣∣ |bL−|n||
|b|n||

− η

∣∣∣∣ (28)

A closed form solution of the equation above can be found
using the low-frequency approximation eq. (14) only
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when kr ≪ |n|, but this is generally true only for very
small values of η. It may therefore be preferable to solve
eq. (28) numerically.

The filter order µn may be chosen, for example, by
imposing the filter slope to be the inverse of the slope of
bL−|n|(kr) at low frequencies. Hence, in view of eq. (7)
we define

µn = L− |n| (29)

Other options for µn are possible and their investigation
is left for future work.

6. SIMULATIONS

The effectiveness of the proposed method has been vali-
dated with numerical simulations. To that end, the model
of an ideal cylindrical loudspeaker array consisting of
L = 11 line sources uniformly arranged on the surface
of a rigid cylinder was created. The target directivity pat-
tern was an N = 5 -order circular sinc function centred at
ϕT = 0:

D(θ) =

N∑
n=−N

ejnθ (30)

Its Fourier coefficients are therefore 1 for n ≤ N and
0 otherwise. Based on equation (18), the source driving
functions were

qℓ(kr) =
1

L

N∑
n=−N

Fn(kr)
bn(kr)

∗

|bn(kr)|2 + β
ejnϕℓ (31)

with β = 10−3.5.
The threshold value that defines the ASA filter cut-off

frequencies, on the basis of eq. (28), was set to η = 0.5
(−6 dB). The lowest order to which the ASA filters were
applied was Nmin = 3. Figure 2 shows the magnitude
of the radial function ratios bL−|n|/b|n|, for 0 ≤ n ≤ 5.
The plot confirms that these functions have a high-pass
characteristic. The horizontal dashed red line is η (-6
dB), and the vertical black dashed line, corresponding to
|bL−|n||/|b|n|| = η , define the filter cut-off frequencies
krn. The ASA filters are reported in Figure 3. Note that
|F0| = |F1| = |F2| = 1 because Nmin = 3

Figure 4 depicts the inverse filters b
(inv)
n (kr), as de-

fined by eq. (24). The dashed lines are the magnitude of
the inverse filters without ASA filter (i.e. Fn = 1, ∀n),
whereas the continuous line are the inverse filters with
ASA filters. The low frequency boost is due to the inver-
sion of the low frequency roll-off of bn(kr), approximated

Figure 2. Radial filter ratios of for different orders
n. The vertical dashed lines represent the filter cut-
off frequencies krn. The horizontal dashed line is η.

Figure 3. Magnitude of the ASA filters for different
orders n. Note that |F0| = |F1| = |F2| = 0dB.
The vertical dashed lines represent the filter cut-off
frequencies krn.

by eq. (7). The growth of b
(inv)
5 is limited to approxi-

mately 30 dB by the Tikhonov regularisation, whose ef-
fect is negligible at higher frequencies or for lower orders.
The high frequency roll-off of b

(inv)
3 ,b(inv)4 , and b

(inv)
5 is

due to the ASA filters. Apart from this roll-off, the mag-
nitude of all other inverse filters has the same asymptotic
behaviour, corresponding to the inverse of eq. (9 ).

Figure 5 depicts the magnitude of the reproduced ra-
diation pattern D̃(kr, θ), with and without ASA filters.
The red vertical dashed corresponds to kr6 , which is the
frequency above which the energy of the first aliased co-
efficients b6 becomes significant and it is provides an in-
dication of the frequency above which spatial aliasing oc-
curs if no ASA filter are applied. More rigorously, kr6 is
the frequency at which |b6(kr)|/|b5(kr)| = η. Recall that
N = (L−1)/2 = 5 and n = 6 is the first order that cannot
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Figure 4. Magnitude of the inverse filters b(inv)n (kr)
for different orders n. The dashed lines correspond to
the inverse filters without ASA filter, the continuous
lines with the ASA filters. The vertical dashed lines
represent the filter cut-off frequencies krn.

be controlled by the array. The green vertical corresponds
to kr9, which provides an indication of the frequency be-
yond which spatial aliasing occurs if the ASA filters are
applied. This is because n = 9 = L − (Nmin − 1) is the
first aliased order that is not attenuated by the ASA filters.

The two radiation patterns are almost identical for
kr < kr6. The expected effect of the ASA filters is clearly
visible in the range kr6 < kr < kr9. The width of the
main lobe progressively increases as a consequence of the
order reduction caused by the ASA filters, and the grat-
ing lobes are significantly attenuated. This effect can be
observed even more clearly in Figure 6, which reports the
reproduced radiation pattern at kr = 6 (the black vertical
dashed line in Figure 5), with and without ASA filters.

Above kr9 the ASA filters are no longer effective. In
fact, the reproduced pattern with ASA filters is not prefer-
able to the pattern without those filters. This suggests that
the proposed method provides an advantage only in the
vicinity of the spatial aliasing frequency (corresponding
to kr6 in this example).

Finally, Figure 7 reports the Fourier coefficients
D̃n(kr) of the reproduced pattern, for 0 ≤ n ≤ 11, with
(continuous lines) and without (dashed lines) ASA filters.
It is clearly visible that beyond the cut-off frequencies krn
of the ASA filters (black vertical dashed lines) the en-
ergy of the coefficients D̃5, D̃4 and then D̃3 is attenuated,
which is the causes of the broadening of the beamformer’s
main lobe observed in Figure 6. At the same time, the en-
ergy of the coefficients D6, D7 and D8 is attenuated (see
the difference between the continuous and dashed line),

Figure 5. Reproduced radiation patter with (top
plot) and without (bottom plot) ASA filters. The
colour scale represents dB. The red and green dashed
lines represent kr6 and kr9, respectively. The black
dashed line corresponds to kr = 6 , used in the single
frequency plot in Figure 6.

thus mitigating the effect of spatial aliasing in this fre-
quency range. The dashed vertical green line identifies
kr9, beyond which the energy of D9 is greater than -6 dB
and the effect of spatial aliasing becomes significant also
when using the ASA filters. The low frequency roll-off of
D̃5 and D̃4 (the latter is barely visible) is due to Tikhonov
regularisation.

7. APPENDIX

High-frequency approximation of the radial functions, for
kr ≫ n. The derivation is based on results in reference
[7]. For the rigid cylinder:

H ′
n(x) =

1

2
(Hn−1(x)−Hn+1) ≈

√
2

πx
jn−1e−j(x−π/4)
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Figure 6. Normalised magnitude of the reproduced
radiation pattern D̃(θ) for kr = 6. The dashed line
corresponds to the inverse filters without ASA filters,
the continuous lines with the ASA filters.

bn(kr) ≈
√

πkr

2

−2jn+1

πkrjn−1e−j(kr−π/4)

=

√
2

πkr
ej(kr−π/4)[jne−nπ/2]

=

√
2

πkr
jnej(kr−π/4−nπ/2)

≈ H0(kr)

For free field:

bn(kr) = jnJn(kr) ≈ jn
√

2

πkr
cos(kr − nπ/2− π4)
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