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ABSTRACT

When playing the clarinet, opening the register hole al-
lows for a transition from the first to the second register,
producing a twelfth interval. On an artificial mouth, the
blowing pressure range where the second register remains
stable can be determined by gradually varying the blowing
pressure while keeping the register hole open. However,
when the register hole is opened while the instrument is
already producing the first register, the range of blowing
pressures that lead to a stable second register is narrower
than the full stability zone of the second register.

This phenomenon is investigated numerically by perform-
ing multiple hole openings at different times for each
blowing pressure value. The evolution of the probability
of reaching the second register is computed, and its rela-
tionship with the structure of the basin of attraction of the
second register is analyzed.

Keywords: clarinet, multistability, basins of attraction,
nonlinear losses, phase tipping

1. INTRODUCTION

When characterizing a clarinet fingering, one of the first
steps consists in measuring the minimum and maximum
blowing pressure that play a note, for a fixed embouchure.
The artificial mouth [1-4] is commonly used to deter-
mine these limits, known as the oscillation and extinc-
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tion thresholds [5-7], by gradually increasing the blow-
ing pressure. Above the extinction threshold, the reed is
pressed against the mouthpiece and stops vibrating. When
the pressure is then reduced, the reed starts oscillating
again at a lower pressure, sometimes called the “inverse
threshold” [6]. This difference between the extinction and
inverse thresholds creates a hysteresis cycle, where the
equilibrium (no sound) and the oscillating regime are mul-
tistable [8,9].

The basin of attraction of a regime defines the set of
initial conditions that lead to it. In a multistable system,
knowing these basins helps predict which regime a mu-
sician is most likely to play [10]. However, calculating
the full basin of attraction is highly time-consuming due
to the high dimension of the phase space. Additionally,
it is unclear whether a chosen initial condition accurately
represents a musician’s playing.

This study addresses these challenges by focusing on
transitions between two notes. In this case, all initial con-
ditions lie on the limit cycle of the regime of the first note.

A well-known transition on the clarinet happens when
pressing the register key, which shifts from the first regis-
ter to the second by an ascending interval of a twelfth. For
beginner clarinetists, practicing this transition is important
to avoid unintended notes when opening the hole.

This paper investigates a physical model of a cylin-
drical clarinet with a register hole. To allow the model
to reproduce the register transition, nonlinear losses in the
register hole are included [11, 12]. The model is intro-
duced in Section 2. Time-domain simulations, similar to

m.

artificial mouth experiments, are then conducted. First,
blowing pressure ramps are tested with the register hole
both closed and open (Section 3.1) to identify stable and
multistable regions. Next, for blowing pressure values in
the multistability range between the second register and
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Figure 1. Definition of the digital resonators studied.

the equilibrium, several hole openings are performed to
observe how the first register’s limit cycle interacts with
the attraction basins of the two competing regimes (Sec-
tion 3.2). Finally, basin stability is investigated by intro-
ducing random perturbations when opening the register
hole [13].

2. NUMERICAL MODEL
2.1 Digital resonators

The digital resonator is presented on Figure 1. It is com-
posed of a first tube of length L; = 132 mm, radius
R = 7.5 mm and cross-section S = wR2. The char-
acteristic impedance of plane waves propagating through
the tube is Z. = poco/S where py = 1.23 kg - m~3 and
¢o = 343 m -s~!. The acoustic field in the first tube is
described by the pressure at the left extremity p;,, and at
the right extremity p; .

The tube is branched to a side hole of length
Ly = 12.7 mm, radius Ry, 1.5 mm, cross-section
Sh = WR%L, and characteristic impedance Z.,, = poco/Sh.
The acoustic field in the side hole is described by the pres-
sure at the bottom of the hole py;, and at the top of the hole
Pht-

A second tube of length Ly = 166 mm and cross-
section S is branched downstream from the side hole. The
acoustic field in this tube is described by the pressure at
the left extremity po and by the pressure at the right ex-
tremity pend-

2.2 Viscothermal losses

Viscothermal losses are introduced through the complex
wavenumber I';(s), where s is the Laplace variable and
i = {1,2, h} refers to the index of the tube considered.
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The function G;(s) is defined, such that

Gi(s) = e Tl i = ) e €iVieTTis,
with
N = e(atoy/re ol 26 L
o R; o " e
where oy = 1.044, oy = 1.080, and ¢, = 4 - 1078 m

(Chap. 5.5 of [14]).

In practice, G;(s) are approximated by a first-order
low-pass filter and a delay G; (s), following the work from
[15]. Fractional delays are also accounted for through the
order 1 filters proposed by [16].

2.3 Forward and backward-propagating pressure
waves

In the following, time-domain variables are written in
small letters (e.g. p5 (t)), and frequency-domain variables
are written in capital letters (e.g. Py' (s)).

The propagation of the acoustic waves in the res-
onator is described through the forward and backward-
propagating acoustic pressures p and p~. They are re-
lated to the acoustic pressure and flow (p,u) through the
relationships:

p=pt+p,

where Z = Z. in the main tube of cross-section S, and
Z = Z_p, in the side hole.

Since the tubes Ly, Ly and Ly, are all cylindrical, the
acoustic field can be described as transmission lines equa-
tions in the frequency domain. For the tube of length L:

Pt =GP}, Po=GiP[. (1)
For the tube of length Ls:

Pt =GPy, Py =GP, . 2)
For the tube of length Ly,:

Pl =GLP, Py, =GypPy,. 3)

2.4 Boundary conditions

The boundary conditions in the tube are described here-
after.
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2.4.1 Radiation
First, radiation from the open end is neglected: the pres-
sure Pepq is written consequently as

Pend = 0. (4)

2.4.2 Hole junction

Secondly, since the register hole has a small diameter and
a long chimney length, the series impedances of the hole
can be neglected (section 3.3.2.2 of [17]). The boundary
conditions at the bottom of the hole are therefore given by:

P1 = P2, (5)
D2 = Db, (6)
U = U2 + Upp- @)

2.4.3 Flow crossing the reed channel

The next boundary condition involves p;,, and comes from
the nonlinear characteristics of the flow entering the res-
onator. In this relationship, the acoustic flow u,,, depends
on the difference between the blowing pressure of the mu-
sician p,, and the pressure at the input of the instrument
Pin. By assuming that the jet experiences total turbulent
dissipation [18] and modeling the reed as a massless, un-
damped spring [19], the nonlinear characteristics is de-
fined as [20]:

i = C[Pin — 7 + 1T sgn(y — pin) VIV — Dinl,

where the function [z]T returns the positive-part of z, i.e.
[z]T = (z + |z])/2. The dimensionless blowing pres-
sure is given by v = p,,/Pas, where Py is the mini-
mum pressure needed to close the reed channel in a quasi-
static regime. Typical values of P,; are in the range
Py € [4, 8] kPa, according to [6,7]. The parameter  rep-
resents the embouchure, with common values for the clar-
inet between 0.05 and 0.4 [6]. The dimensionless quanti-
ties are defined as

®)

In Eq. (8), the dynamics of the reed are neglected to
obtain a direct relationship between p;'; and p;,,. This re-
lationship is given in [21] and is detailed in the Appendix
of [22]. It is expressed as:

©))

where the function X is defined in Appendix A of [21].

b = Fye(Bi) = — X[y = 2b;,,] — i
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2.4.4 Localized nonlinear losses in the register hole

Localized nonlinear losses in the register hole are modeled
using the following boundary condition for pp;:

Pht(t) = poCrivne (t)|vne (1), (10)

where C,; > 0 is the nonlinear losses coefficient, which
depends on the roundness of the edges of the hole [7], and
vpe 1s the acoustic speed at the top of the side hole. An
explicit relationship between p;, and p;, is given in [12]:

Pre(t) = 11 [P (8)] (11
where
@)=z (l- ————— |, (12)
(@) ( 1+ 1+Kn1|x|>
with K1 = 8Cn/(pocd). For K, = 0, we get

rn1(2) = —x, which corresponds to an open hole bound-
ary condition. As K — 00, ry(x) = z, meaning the
hole is closed.

In a dimensionless form,
Pre = Tnl [ﬁ;t]’ where

rn 1S rewritten as

4

1+4/1+ Kylz|

with Knl = Py Ky = 0.2, assuming a moderate Py, and
a hole with sharp edges.

Pu(z) = | 1- (13)

2.5 Extraction of the modal acoustic pressure

Modal acoustic pressures are useful to visualize the limit
cycles of the different oscillating regimes. However, they
are not directly accessible through waveguide modeling.
Filtering is applied a posteriori, using the modal decom-
position of the input impedance Z;,, = Py, /U;p:

C, conj(C,
Z=2.Y Sy )

s — conj(sy)’
where C,, and s,, are the complex residues and poles,
computed through the residues theorem from the analytic
definition of the input impedance. In particular, the modal
frequencies are given by f, S(sp)/(27). The n-th
modal acoustic pressure at the input p,, is defined through
the following ODE:

pn(t) = ZCCnuin(t) + Snpn(t), (15)

where p, = Oip, and u;, = (pj;I — p;n)/Ze. Modal
acoustic pressures can then be computed by filtering w;,,
with an IIR filter.

(14)
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3. SIMULATIONS

Blowing pressure ramps are first carried out to find the
ranges for which the first register is stable when the hole
is closed, as well as the range for which the second register
is stable when the hole is open.

Multiple hole openings are then performed for con-
stant control parameters to assess the playability of the
register jumps.

3.1 Blowing pressure ramps

The embouchure parameter is fixed at ( = 0.3 (average
value for clarinet playing [6]) throughout the simulations.
First, two blowing pressure ramps (crescendi) are per-
formed: one for the hole closed (Knl — o0), one for the
hole open (Knl = 0.2). For both cases, the values of the

blowing pressure for which oscillations start (mggz;, 75‘;2

and stop (’yc(f(l, 'yé)oci) are noted. Multistability zones are
then determined, knowing as an inner-property of reed in-
struments, that the equilibrium (no sound, noted RO) is

stable when v > 1 [5].

3.2 Hole openings

From a constant blowing pressure +, the hole is instanta-
neously opened. The frequency of p;,, is computed before
the opening of the hole (f(*)), and after (f(°)). The ratio
£/ £(°) determines the register obtained. In particular,
if £(°)/f(¢) ~ 3, the second register is played.

For one value of the blowing pressure, N, = 200 hole
openings are performed at different times distributed over
a time window T(°) = 1.5/f1(0), where fl(c) is the first
modal frequency for the closed hole. The value of 7€) is
chosen to ensure that all limit cycles can be fully sampled.
The proportion of the second register obtained for the IV,
openings is computed.

Four thresholds are measured through this procedure:

I(I?i?), S&O%), SSE%), ,(I?z‘l). Thresholds 751111?10%) and
(100%

max ) denote the minimum and maximum blowing pres-
sures that always lead to the second register (R2) when the
hole is opened. 7(0%)

min

07
lower than 7(100&

min

is the maximum blowing pressure

) that never leads to R2, and ’yr(x?;/,‘i)

the minimum blowing pressure greater than %,}SB%) that

never leads to R2.

To explore if the initial conditions that lead to a spe-
cific regime are sensitive to a small perturbation, a random
impulsion is added to ]517; when the hole is opened. Dif-
ferent amplitudes of perturbation are tested, between 0.0

is

2866

Table 1. Values of the four thresholds characterizing
the probability of playing the second register when
opening the hole.

%

Threshold 71(1?1?) 78310%) 'Yr(r}gg%) Vr(r?af()
Value 0.383  0.386 1.32 1.36
and 0.50.

4. RESULTS

4.1 Blowing pressure ramps

Figure 2 shows the evolution of the amplitude of the
acoustic pressure in the mouthpiece prms, as the blow-
ing pressure increases linearly from v = 0 to v = 3
over 20 s. The blue and yellow curves represent the cases
with the hole closed and open, respectively. The color
mapping corresponds to the oscillation frequency: for the
closed hole, the playing frequency is near the first modal

frequency fl(c) (first register R1), while for the open hole,
it is close to the second modal frequency fQ(O) (second reg-
ister R2).

(e) (o)

For each case, the minimum (7osc, Yose

mum blowing pressures (1'%}, %)) that sustain oscilla-

tions are measured. The thick black lines at the bottom
of the graph indicate values of v where the equilibrium

(no sound, RO) is stable. Note that the values of (yé‘;l and

2

) and maxi-

) are overestimated due to bifurcation delay [23].
For the open hole, when v € [1, ’y(o)] RO and R2 are

ext
both stable. In this range, if a musician plays in the first
register with the hole closed and then opens the register
hole, they may end up in either R2 or RO. The hole open-
ing procedure described in Section 3.2 is used to evaluate
how the probability of playing R2 evolves with . The
four threshold values characterizing this probability are
listed in Table 1.

Within the green region, R2 is always reached. In the
blue region around y = 1.3, the probability of playing R2
depends on the timing of the register hole opening. In the
red region, the system always lands on the RO. Hence,
the range of « in which R2 can be played after opening
the register hole from R1 is narrower than the range of ~
where R2 is stable.

To characterize the transition regions,

Y S
[ O%) A00%)) and € [y 4971, multiple hole

openings at different times are needed to determine which
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Figure 2. Evolution of the amplitude of the acoustic
pressure into the mouthpiece when the blowing pres-
sure -y increases linearly , for a constant embouchure
¢ = 0.3. Two crescendi are represented: one for
the hole closed (blue curve), and one for the hole
open (yellow curve). Colored surfaces in the back-
ground show the ranges of v where the second regis-
ter is reached with a given probability when the hole
is opened. Green: 100 %. Blue: between 0 % and
100 %. Red: 0 %.

regime the model will predominantly converge to. Com-
pared to the green or red regions, characterizing the blue
region requires N, times more simulations. For instru-
ment makers studying the playability of twelfths in a clar-
inet model, the narrowness of these transition regions is

an encouraging result.

A closer look at the transition from 7532,9 %

is carried out in the next section.

) to 4%

4.2 Evolution of the probability of playing the second
register

Figure 3 shows how the probability of playing the second
register evolves within v € ['ygg)?%), 71%);7)0()]. The proba-
bility follows negative sigmoid curve: it decreases grad-
ually from 100 % to 90 %, then drops sharply between
~v =1.336 and v = 1.338.

In the projection of the phase space on the variables

(p1,p1), Figure 4 illustrates how the system converges
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Figure 3. Evolution of the proportion of the sec-
ond register (R2) when opening the register hole,
for v € [1.334,1.339]. The red, yellow, purple and
green curves show the evolution of the proportion of
R2 when random perturbations are added to p;, when
the register hole is opened.

to either RO or R2 depending on the position of the ini-
tial condition on the R1 limit cycle. For instance, for
v = 1.334 (top left panel), only initial conditions within
a small section of the cycle (around an angle of 37 /4) are
attracted to RO (black dots). Opening the hole at a dif-
ferent time, corresponding to another position on the limit
cycle, leads to R2 (red dots). This behavior is an instance
of phase-tipping [24], where the result of a transition de-
pends not only on the perturbation but also on the phase at
which it is applied. As ~ increases and the probability of
playing R2 decreases, the set of initial conditions leading
to RO expands.

The top-center panel of Figure 4 shows that the set
of initial conditions leading to RO is not necessarily con-
nected, highlighting the complex structure of the basin
of attraction of the equilibrium in the (p1,p1) plane. At
v = 1.339 (top right panel), only a small portion of the
limit cycle, around an angle of —7/3, leads to R2.

This visualization suggests that opening the register
hole at the same time in every simulation is not ideal.

Within v € [yﬁjf,?%),yé??], if the hole were always
opened when (p1,p1) ~ (0,—1200), the model would
consistently produce R2. However, at v = 1.339 (top

right panel) there are few occurrences of R2.
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Introducing a small random perturbation to ;, when
opening the register hole results in smoother sigmoid
curves in Figure 3, indicating that the basins of attraction
of RO and R2 remain stable under perturbations below 0.1.
The second row of Figure 4 supports this, revealing addi-
tional regions belonging to R2’s basin, such as the red dots
around 7 /2 for v = 1.339. Larger perturbations blur the
basin boundaries in the (p;, 131) plane, as seen in the third
row of Figure 4.

To better assess the basin stability of RO and R2 when
opening the register hole, alternative methods could be ex-
plored. Since perturbing pjn primarily affects P, adding
white noise to the blowing pressure y and the embouchure
parameter  could provide a more balanced perturbation
across the phase space.

5. CONCLUSION

A waveguide model of a clarinet with a register hole is
studied. The blowing pressure ranges for which the first
and the second registers are stable are determined. In par-
ticular, for the open hole configuration, the multistabil-
ity regions of the second register and the equilibrium are
quantified.

Results indicate that within this multistability range,
repeatedly opening the register hole from the first register
can lead the system to either the equilibrium or the second
register. The probability of reaching a given register fol-
lows a sigmoid-shaped evolution as the blowing pressure
increases. This behavior is reflected in phase space by the
structure of the basins of attraction, which progressively
enclose the limit cycle of the first register. The shifting
probability of convergence to a given regime directly cor-
responds to changes in the shape of these basins.

Finally, the robustness of the basins of attraction is
assessed by introducing random perturbations to the ini-
tial conditions. Preliminary results suggest that the basins
remain robust under perturbations of pitl smaller than 0.1.

6. ACKNOWLEDGMENTS

This study has been supported by the French ANR Lab-
Com LIAMFI (ANR-16-LCV2-007-01).

7. REFERENCES

[1] J. Backus, “Vibrations of the reed and the air column
in the clarinet,” The Journal of the Acoustical Society
of America, vol. 33, no. 6, pp. 806-809, 1961.

(10]

(11]

2868

[2] C. McGinnis, H. Hawkins, and N. Sher, “An exper-
imental study of the tone quality of the boehm clar-
inet,” The Journal of the Acoustical Society of Amer-
ica, vol. 14, no. 4, pp. 228-237, 1943.

[3] W.Li, A. Almeida, J. Smith, and J. Wolfe, “The effect
of blowing pressure, lip force and tonguing on tran-
sients: A study using a clarinet-playing machine,” The
Journal of the Acoustical Society of America, vol. 140,

no. 2, pp. 1089-1100, 2016.
(4]

V. Chatziioannou, S. Schmutzhard, M. Pamies-Vila,
and A. Hofmann, “Investigating clarinet articulation
using a physical model and an artificial blowing ma-
chine,” Acta Acustica united with Acustica, vol. 105,

no. 4, pp. 682694, 2019.

[5] J.-P. Dalmont, J. Gilbert, J. Kergomard, and S. Ol-
livier, “An analytical prediction of the oscillation and
extinction thresholds of a clarinet,” The Journal of
the Acoustical Society of America, vol. 118, no. 5,

pp. 3294-3305, 2005.
(6]

J.-P. Dalmont and C. Frappé, “Oscillation and extinc-
tion thresholds of the clarinet: comparison of ana-
lytical results and experiments,” The Journal of the
Acoustical Society of America, vol. 122, pp. 1173—

1179, Aug. 2007.

[71 M. Atig, J.-P. Dalmont, and J. Gilbert, “Saturation
mechanism in clarinet-like instruments, the effect of
the localised non-linear losses,” Applied Acoustics,

vol. 65, pp. 11331154, Sept. 2004.

[8] T. Colinot, C. Vergez, P. Guillemain, and J.-B. Doc,
“Multistability of saxophone oscillation regimes and
its influence on sound production,” Acta Acustica,

vol. 5, p. 33, 2021.

[9] T. Colinot, N. Szwarcberg, C. Vergez, and S. Mis-
soum, “Cartography of a multistable system using
support vector machines, applied to a clarinet model,”

Nonlinear Dynamics, pp. 1-12, 2025.

A. H. Benade and D. H. Keefe, “The physics of a new
clarinet design,” The Galpin Society Journal, vol. 49,
pp- 113-142, 1996.

N. Szwarcberg, T. Colinot, C. Vergez, and
M. Jousserand, “Second register production on
the clarinet: nonlinear losses in the register hole as
the decisive physical phenomenon,” arXiv preprint
arXiv:2404.07540, 2024.

11™* Convention of the European Acoustics Association
Milaga, Spain * 23" — 26" June 2025 *

SOCIEDAD ESPAROLA
SEA DE ACUSTICA



FORUM ACUSTICUM
ale EURONOISE

v =1.334, %rs = 90%

2000
Q e
= 1000 "\
]
.S
+
I &
Qo ™ 0
—
2
= -1000
al}
-2000
-1 0
7}
9000 v =1.334, %rs = 90%
o Lo
‘_f oo.i - w» o
= 1000 oo 7C %0 o
24’ W,
E ’ %
+
3 .S 0
o] S g
—
i= .
= -1000 o5
() (=] d
[l l}.‘:& e
-2000
-1 0
7}
v =1.334, %ps = 88%
2000 . >
o [ ®o ®
™ e ° o o °
S 1000 s A
e o ° .'.\
g e .0'. ..oo {H
£ op & 3
"S r'. o o ol.
= .‘ o:........o
= 1000 e S e & 83
@ o © * [ X) % °%
A %% ...o.. ) ¢
-2000 * o 2o
-1 0
2}

0 v =1.3371, %Rs = 52.5%

L]
1000 \
< 0
-1000
-2000
-1 0
D1
0 v =1.3371, %R = 61.5%
.....'.. [ ]
1000 el N
& e
h ‘h’ t
¥ &
Y o
-1000 N g0 o B
) b LY
‘.o.o.ooa
2000
-1 0
D1
v =1.3371, %rs = 59%
0.0 ... ".' °
. L4 [
1000 2% e oq %0
o ° Se .o.' :}
— ... M
.<& 0 f . ‘:
P e L
-1000 P AP SR
[ ] .‘ [ J
[ o.e. ° [ :..?
° ' [ ] ..-
2000 oo
-1 0

v = 1.339, Pore = 25%

L1
1000 \
< 0
-1000
-2000
1 0 1
D1
v =1.339, %R = 27%
N,
1000} epo o0 T %y,
T
[ ]
< of 8§ 3
F
L)
-1000 %'.‘“ . ¥
"\:-'.@,‘;.2"
-2000
-1 0 1
D1
v = 1.339, %2 = 35%
2000 s
o ® ;Y °®
. [} o .‘ L]
10001 8% ®,° o 0
..‘ ..‘... . ... °
° ®
— ¢ ‘
EE 2 7
e’ ° 3.;
.‘:0 L [ Y °
1000 e,y -?‘,._ ‘o
L) ..’.. .O. g
2000 AL L
-1 0 1
D1

Figure 4. Positions on the limit cycle of the first register leading, when the hole is opened, to the second register
(in red), and to the equilibrium (in black). Limit cycles are represented in the (p1, ﬁl) space. Three different
values of « are displayed on each row. On the second row, a random perturbation of 0.1 is added to ﬁj;L when
the hole is opened; on the third row the amplitude is 0.33.
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