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ABSTRACT
The Interacting Multiple Model (IMM) algorithm

has gained significant attention as an effective approach
for maneuvering target tracking. However, when applied
to underwater scenarios characterized by sparse observa-
tions, this method suffers from intrinsic model transition
delays that significantly degrade tracking precision during
maneuver phases. To address this limitation, we present
a novel hybrid architecture integrating transformer-based
neural networks with conventional tracking methodolo-
gies. Our core contribution lies in developing a temporal
context-aware probability adaptation module through pat-
tern extraction from historical state estimations, which ef-
fectively mitigates latency in model set adaptation. Monte
Carlo simulations demonstrate statistical enhancement
with 10% improvement in tracking precision and 20% re-
duction in model transition latency. The results indicate
that the proposed algorithm outperforms the traditional
IMM in both tracking error and response speed.

Keywords: Interacting Multiple Model Filter, Trans-
former, target tracking

1. INTRODUCTION

Due to the complexity and uncertainty of maneuver-
ing target motion patterns, this task poses significant tech-
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nical challenges. Over the past decades, various classi-
cal methods based on Bayesian tracking theory have been
developed to improve tracking accuracy, including the
Kalman Filter (KF) [1], Extended Kalman Filter (EKF)
[2], Unscented Kalman Filter (UKF) [3], and Particle Fil-
ter (PF) [4, 5]. Under ideal conditions, these methods
provide reliable tracking performance when the motion
model assumptions hold. However, in real-world scenar-
ios, accurately modeling target motion is challenging, es-
pecially in highly maneuverable states where abrupt mo-
tion changes occur. As a result, a single motion model
often fails to adapt effectively, leading to degraded track-
ing performance.

To address this challenge, researchers have proposed
various strategies to enhance the tracking performance
of maneuvering targets, such as the input estimation al-
gorithm [6], the Singer model [7], and the Interacting
Multiple Model (IMM) algorithm [8]. Among these, the
IMM algorithm has emerged as the mainstream approach
for maneuvering target tracking due to its superior adapt-
ability and robustness. By incorporating multiple mo-
tion models and their corresponding filters, the IMM algo-
rithm estimates the target state through a weighted fusion
mechanism, achieving a balance between tracking accu-
racy and computational complexity. However, the con-
ventional IMM algorithm still has inherent limitations. Its
tracking performance depends on a predefined set of mo-
tion models, making model selection critical. If the num-
ber of models is insufficient, it may fail to describe the
target’s motion characteristics accurately, leading to re-
duced tracking accuracy. Conversely, an excessive num-
ber of models significantly increases computational over-
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head, reducing the real-time performance of the algorithm
[9]. Moreover, in high-dimensional state spaces associ-
ated with complex motion patterns, the conventional IMM
struggles to model target motion effectively, further im-
pairing tracking accuracy. In addition, the IMM algorithm
relies on the Bayesian update mechanism to compute the
probability of each filter and estimate the state. However,
when the target undergoes a maneuver, the algorithm of-
ten requires a considerable amount of time to accurately
recognize the new motion pattern, resulting in substantial
estimation delays that degrade tracking performance. This
issue is particularly pronounced in high-speed maneuver-
ing target tracking scenarios.

With the rapid advancement of deep learning tech-
nologies, particularly recurrent neural networks (RNNs)
[10] and long short-term memory (LSTM) networks [11],
these models have demonstrated unique advantages in ad-
dressing sequential problems, offering novel solutions to
the challenges of the IMM algorithm [12–16]. These net-
works can extract temporal features from measurement
data to estimate target states, while bidirectional LSTMs
further aid in correcting trajectory deviations [14]. Al-
though LSTM and its variants have shown certain advan-
tages in state estimation tasks [15], their performance is
often constrained when processing long sequences [16].
In contrast, the Transformer models input-output depen-
dencies entirely through an attention mechanism, elimi-
nating the need for an RNN structure and significantly
enhancing sequential modeling capabilities. Moreover,
since Transformers support parallel computation, they not
only achieve higher computational efficiency than LSTM
but also simultaneously capture both local and global de-
pendencies within sequences, thereby further improving
tracking accuracy.

To address the aforementioned challenges, we pro-
pose a Transformer-based Interacting Multiple Model
(Transformer-IMM) tracking method. This approach
leverages the Transformer to predict the switching of ma-
neuvering targets between different motion models, re-
placing the model probability update step in the conven-
tional IMM algorithm to improve the timeliness of model
transitions. Subsequently, the improved IMM algorithm
is employed to track the target state. Simulation results
demonstrate that the proposed method reduces motion
mode switching delays while enhancing the accuracy of
target state estimation.

2. PROBLEM STATEMENT

Establish a state space model of a nonlinear system:{
Xk = Fk−1Xk−1 +Gk−1wk−1

zk = Hk(Xk) + vk
(1)

Where Xk = [xk, yk, ẋk, ẏk] ∈ R4 represents the state
vector. wk ∈ Rn is the process noise, vk ∈ Rm is the
measurement noise, wk and vk are uncorrelated with each
other.

Assume that both the process noise and measurement
noise follow a Gaussian distribution.

p(wk) = N(wk; 0, Qk) (2)

p(vk) = N(vk; 0, Rk) (3)

The target is tracked using the Constant Velocity (CV)
model and the Constant Turn (CT) model, with their re-
spective state transition matrices given by:

FCV
k =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 (4)

FCT
k =


1 0 sin(ωkT )

ωk

(cos(ωkT )−1)
ωk

0 1 (1−cos(ωkT ))
ωk

sin(ωkT )
ωk

0 0 cos(ωkT ) − sin(ωkT )
0 0 sin(ωkT ) cos(ωkT )

 (5)

where T is the sampling interval, ωk represents the target’s
turn rate.

The noise gain matrix for both the CV model and the
CT model is given by:

Gk =


1
2T

2 0
0 1

2T
2

T 0
0 T

 (6)

The measurement equation can be expressed as:

zk = Hk(Xk) + vk

=

[ √
x2
k + y2k

arctan
(

yk

xk

) ]
+

[
vr
vθ

]
(7)
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Figure 1. Transformer-IMM framework

3. PROPOSED ALGORITHM

3.1 Overall Architecture

In traditional Interactive Multiple Model (IMM) al-
gorithms for maneuvering target tracking, the significant
delay in model probability estimation often results in high
tracking errors. To address this issue, we integrate the
Transformer architecture into the IMM framework, lever-
aging its self-attention mechanism to effectively capture
long-term dependencies and enhance the recognition of
target motion patterns. With its strengths in nonlinear
modeling and efficient filtering computation, the Trans-
former facilitates faster and more accurate estimation of
model probabilities, thereby reducing model-switching la-
tency and improving both tracking accuracy and real-time
performance. In the proposed Transformer-IMM algo-
rithm, the Transformer is employed to predict the model
probabilities of the target, and these predictions are incor-
porated into the IMM update process to optimize the over-
all estimation. Unlike conventional IMM methods that di-
rectly update model probabilities based solely on obser-
vation data, our approach introduces a feed-forward pre-
diction mechanism via the Transformer to provide a more
accurate initial model probability prior to the interaction
update. This predictive enhancement effectively improves
estimation accuracy. The IMM algorithm is implemented
in accordance with the approach described in [17]. The
structure of the proposed Transformer-IMM algorithm is
illustrated in Figure 1.

Since the Transformer model relies on a fixed-length
input window for time series prediction, it may not ef-
fectively predict the initial phase of the target’s motion.
Therefore, during the initial stage of the target’s trajectory,
we still employ the traditional IMM algorithm to ensure

prediction accuracy.
Assuming the target has n motion modes, the algo-

rithm steps are as follows:
1) Input observation data , Use the Transformer to

compute the target’s model probabilities, obtaining the
model probabilities as:

µj
k =

 a1
...
an

 ai ∈ {0, 1} ,∀i = 1, 2, · · · , n (8)

Where µj
k denotes the model probability predicted by the

Transformer, which is used to guide the IMM computation
process, thereby enabling the interaction update in IMM
to better align with the target’s motion mode.

2) Compute the mixed state estimate
⌢

X
0j

k−1|k−1 and
the mixed covariance estimate P 0j

k−1|k−1 for each model.
3) Apply UKF to each model for filtering, obtaining

the filtered output results ⌢
x
j

k|k and P j
k|k.

4) Fuse the outputs of each model by weighting them
according to their model probabilities to compute the final
target state estimate X̂k|k and Pk|k.

5) Repeat steps 1) – 4).

3.2 Transformer Neural Network

The Transformer consists of a positional encoding
structure, N stacked encoders, N stacked decoders, and an
output module. The encoder comprises a multi-head self-
attention layer, a feedforward fully connected network,
and two residual connection with layer normalization.
Similarly, The decoder contains of a masked multi-head
attention layer, a multi-head attention layer for encoder-
decoder interaction, a feedforward fully connected net-
work, and three residual connections with layer normal-
ization. The output module consists of a linear fully con-
nected layer and a Softmax activation function. Figure 2
illustrates the framework of the Transformer model.

3.2.1 Positional Encoding

Since the Transformer employs a self-attention
mechanism, it can process input sequences in parallel.
However, this prevents it from directly capturing the tem-
poral order of the input sequence. Positional Encoding
(PE) is introduced to incorporate positional information
into the input sequence. Transformer typically adopts a
fixed positional encoding approach, where position en-
codings are generated using sine and cosine functions of
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Figure 2. the framework of the Transformer model

different frequencies. These encodings vary across differ-
ent time steps. At time step k, the positional encoding is
given by:

Z̃e/d = ZW + b+ PE (9)

PE(k) =
[
sin(ρ0k), cos(ρ0k), · · · , sin(ρd/2k), cos(ρd/2k)

]
(10)

ρi =
1

10002i/d
i= 0, 1, · · · , (d/2)− 1 (11)

Where Z ∈ RT×2 represents the input data sequence,
W ∈ R2×d is the weight matrix, and b ∈ RT×d is the
bias vector, which is used to project the observation vector
into a d-dimensional representation space. PE ∈ RT×d

denotes the absolute positional encoding. Z̃e ∈ RT×d and
Z̃d ∈ RT×d represent the state encodings of the encoder
and decoder, respectively. The learnable parameters of the
positional encoding are not shared.

3.2.2 Multi-Head Attention Mechanism

The multi-head attention mechanism is used to ex-
tract global features from the input sequence and enhance
the Transformer’s ability to process different information
dimensions. Compared to traditional RNNs, which can

only handle local and synchronous dependencies, multi-
head attention can simultaneously capture both short-term
and long-term dependencies. Both the encoder and de-
coder incorporate multi-head attention mechanisms, but
their input variables differ depending on the application
scenario. For convenience, the input sequence is denoted
as S ∈ T×d , and it is assumed that this mechanism con-
sists of M self-attention heads.

First, the input sequence is mapped separately into the
query matrix Q ∈ T×dk , the key matrix K ∈ T×dk , and
the value matrix V ∈ T×dk The computation is performed
as follows:  Qi = S ∗WQ,i

Ki = S ∗WK,i

Vi = S ∗WV,i

i = 1 · · ·M (12)

Where WQ,i,WK,i,WV,i ∈ d×dk are linear projection
matrices.

The output of the single-head attention can then be
computed as follows:

Headi = Softmax(Qi ·Ki
T /

√
dk) · Vi (13)

Where dk is the scaling factor, used to prevent excessively
large inner products from affecting gradient computation,
and it satisfies dk = d/M .

Finally, the outputs of the individual attention heads
are concatenated and projected to the final dimension to
compute the output of the multi-head attention mechanism

Head = Concat(Head1, · · · ,HeadM ) ·W0 (14)

The main difference between the masked multi-head
attention mechanism and the standard multi-head atten-
tion mechanism lies in the introduction of a mask when
computing single-head attention. This ensures that future
information is not accessed during sequence generation.
The computation is performed as follows:

Headi = Softmax(mask(Qi ·Ki
T /

√
dk)) · Vi (15)

Where mask(·) is typically an upper triangular matrix.
Additionally, in the multi-head attention mechanism

of the encoder and the masked multi-head attention mech-
anism of the decoder, the computation of Q, K and V is
based on the input module or the output from the previous
layer of the encoder (or decoder). In the decoder’s multi-
head attention mechanism, K and V are computed based
on the final output of the encoder, while Q is derived from
the output of the masked multi-head attention mechanism
in the decoder.
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3.2.3 Feedforward Fully Connected Network

The feedforward fully connected network (FFN) ap-
plies independent nonlinear transformations to the fea-
tures at each time step. By utilizing a two-layer fully con-
nected structure, it enhances information abstraction, im-
proves feature representation, and strengthens the model’s
nonlinear modeling capability. FFN complements the
self-attention mechanism, enabling the Transformer not
only to capture global dependencies within sequences but
also to enhance information processing at individual time
steps. FFN consists of two sublayers: the first layer ap-
plies an activation function, while the second layer per-
forms a linear transformation:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (16)

Where x is the input to the FFN, W1 ∈ Rd×df , W2 ∈
Rdf×d, b1 ∈ Rdf and b2 ∈ Rd are learnable parameters.
ReLU( · ) is the ReLU activation function.

3.2.4 Residual Connection and Layer Normalization

Residual connection and layer normalization work
together in the Transformer to enhance training stabil-
ity and optimization efficiency. The residual connection
employs skip connections to directly transmit informa-
tion, preventing gradient vanishing, accelerating conver-
gence, and preserving input features to minimize informa-
tion loss. Meanwhile, layer normalization normalizes the
features at each time step, stabilizing data distribution, ac-
celerating convergence, and improving generalization ca-
pability.

O = LayerNorm(x+ SubLayer(x)) (17)

Where LayerNorm(·) represents layer normalization, and
SubLayer(·) denotes a specific sublayer within the Trans-
former.

3.2.5 Output Model

The output module consists of a linear transforma-
tion followed by a Softmax activation function, which can
be expressed as:

Output = Softmax(xW0 + b0) (18)

Where x is the output of the decoder, W0 ∈ Rd and b0 ∈ T

are learnable parameters.

4. SIMULATION

4.1 Training the Transformer Model

The Transformer network was trained on 200,000
sets of maneuvering target motion trajectories. Details of
the experimental parameters are provided in Table 1. The
model was trained for a total of 100 epochs, with each
batch containing 128 training samples. The loss func-
tion used was cross-entropy loss, and the optimizer was
ADAM with an initial learning rate of 0.001. Additionally,
the learning rate decay factor was set to 0.02 per epoch.

Table 1. Trajectory Dataset Parameters
Contents Range
Distance from sonar [0, 10km]

Velocity of target [0, 10m/s]

Maneuvering turn rate [−5◦/s, 5◦/s]

Deviations of distance noise [5m, 10m]

Deviations of azimuth noise [0.5◦, 1◦]

4.2 Simulation Setup

The total simulation sampling time is 100 seconds,
with a sampling interval of T=2s. The target motion mod-
els at different time steps are shown in Table 2, while the
target motion trajectory and measurements are illustrated
in Figure 3.

Table 2. Target Motion Models at Different Time
Steps

Time/s Target Motion Model
1-68 CT(1.5°/s)
70-118 CV
120-200 CT(-3°/s)

The process noise covariance matrix Qk , measure-
ment noise covariance matrix Rk , initial target state in-
formation X0, initial state covariance matrix P0, transi-
tion probability Π and initial model probability µ0 are set
as follows:

Qk = diag[(0.01m/s)2, (0.01m/s)2, (0.02◦/s)2] (19)
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Figure 3. Target Motion Trajectory and Measure-
ments

Rk = diag[(5m)2, (0.5◦)2] (20)

X0 = [305m, 512, 3m/s, 6m/s, 0] (21)

P0 = diag[(20m)
2
, (20m)

2
, (5m/s)

2
, (5m/s)

2
] (22)

Π =

 0.98 0.01 0.01
0.01 0.98 0.01
0.01 0.01 0.98

 (23)

µ0 = [0.34 0.33 0.33] (24)

To analyze the performance of the filter, the root mean
square error (RMSE) of position, velocity, and turn rate,
along with the average RMSE (ARMSE), are selected as
performance metrics to evaluate the filter’s accuracy and
consistency.

RMSEpos(k) =

√√√√ 1

M

M∑
s=1

(
(xs

k − x̂s
k)

2
+ (ysk − ŷsk)

2
)

(25)
RMSEvel(k) =√

1
M

M∑
s=1

((
vsx(k) −

⌢
v
s

x(k)

)2

+
(
vsy(k) −

⌢
v
s

y(k)

)2
)
(26)

ARMSEpos =

√√√√ 1

MT

N∑
k=1

M∑
s=1

(
(xs

k − x̂s
k)

2
+ (ysk − ŷsk)

2
)

(27)
ARMSEvel =√

1
MT

N∑
k=1

M∑
s=1

((
vsx(k) −

⌢
v
s

x(k)

)2

+
(
vsy(k) −

⌢
v
s

y(k)

)2
)

(28)
Where M=1000 represents the number of Monte Carlo
simulation runs, and N denotes the number of tracking
steps in each Monte Carlo run.

Figure 4. Model Probabilities of the Proposed Algo-
rithm and Traditional IMM

Figure 5. Comparison of Position Root Mean Square
Error (RMSE) Plot
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Figure 6. Comparison of Velocity Root Mean
Square Error (RMSE) Plot

Table 3. Position and Velocity ARMSE

Filter Position Velocity
ARMSE(m) ARMSE(m/s)

IMM-UKF 4.3392 1.2048
Transformer-IMM 3.8831 1.0327

4.3 Simulation Results

The performance of Transformer-IMM and IMM-UKF in
target tracking tasks was analyzed in the simulation. Fig-
ure 4 presents the predicted model probabilities of both
algorithms alongside the ground truth model probabilities.
The results indicate that the proposed algorithm identifies
the target’s motion model more quickly and accurately.
Specifically, the target undergoes its first maneuver at 68s
and the second at 118s. The proposed algorithm detects
these maneuvers at 72s and 120s, whereas the traditional
IMM algorithm identifies them at 80s and 126s, demon-
strating a slower response.

Figure 5 and Figure 6 illustrate the position RMSE
and velocity RMSE of both algorithms. It can be observed
that throughout the tracking process, the proposed algo-
rithm consistently achieves lower errors than IMM-UKF.
Notably, when a maneuver occurs, IMM-UKF experi-
ences a significant increase in error, whereas Transformer-
IMM maintains a relatively smaller error growth.

Table 2 presents the ARMSE results for both algo-

rithms. The position ARMSE of Transformer-IMM is
3.8831 m, which is 10.5% lower than that of IMM-UKF,
while the velocity ARMSE is 1.0327 m/s, representing a
14.3% reduction compared to IMM-UKF.

5. CONCLUSION

To enhance the tracking performance of underwa-
ter maneuvering targets, we propose a Transformer-based
IMM algorithm that accelerates the identification of ma-
neuvering target motion models, improving recognition
accuracy and tracking precision. Simulation results
demonstrate that, compared to the traditional IMM algo-
rithm, the proposed method exhibits superior performance
in both tracking accuracy and response speed. In future
work, we will further validate the reliability of the pro-
posed algorithm by testing it on more complex maneu-
vering target trajectories and evaluating its practical effec-
tiveness in real experimental environments.
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