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ABSTRACT

Predicting vibrational displacement fields and mode
shapes in thin plates is crucial for various engineering ap-
plications, particularly in the acoustic characterization of
musical instrument soundboards. Traditional methods are
limited by high computational costs or dense measure-
ment requirements e.g., Finite Element Analysis (FEA).
This study introduces a Physics-Informed Neural Network
(PINN) approach to reconstruct displacement fields us-
ing sparse data. The PINN integrates the Kirchhoff plate
equation into its training process, enabling accurate pre-
dictions even in data-sparse regions. The model was val-
idated using COMSOL simulations of a thin rectangular
plate, with material properties resembling a violin sound-
board. Its performance was compared to Radial Basis
Function (RBF) interpolation and data-driven neural net-
works. The PINN consistently outperformed the consid-
ered baselines, achieving robust results with minimal data,
particularly for higher resonant frequencies where other
methods fail.

Keywords: physics-informed neural network, structural
analysis, interpolation, modal analysis

1. INTRODUCTION

Accurately predicting displacement fields and mode-
shapes in vibrating structures is of fundamental im-

*Corresponding author: mirco.pezzoli@polimi.it.
Copyright: ©2025 Pezzoli et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution
3.0 Unported License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original au-
thor and source are credited.

portance across various engineering fields, including
aerospace, structural mechanics, and acoustics.

In structural mechanics, accurately predicting the dis-
placement fields and mode shapes of vibrating structures
is a fundamental task across a wide range of applica-
tions, from aerospace and civil engineering to the acoustic
design of musical instruments. In particular, the acous-
tic characterization of thin wooden plates is fundamental
for designing and tuning stringed instruments, as the vi-
brational behavior of the soundboard directly influences
sound quality [1]. Classical Experimental Modal Anal-
ysis (EMA) relies on multiple spatially-distributed mea-
surements to extract modal parameters such as natural fre-
quencies, damping ratios, and mode shapes from the ac-
quired data [2–4]. However, practical constraints often
lead to suboptimal sparse sensor data. For instance, in
musical instruments, parts of the soundboard may be in-
accessible due to physical obstructions such as the finger-
board, making a full-field measurement challenging.

Traditional approaches, such as Finite Element Anal-
ysis (FEA) [5, 6] and Nearfield Acoustic Holography
(NAH) [7], have been employed to predict vibrational be-
havior. While FEA is capable of providing detailed in-
sight into complex vibrational phenomena, its computa-
tional cost and difficulties in modeling intricate geome-
tries limit its practical use. Conversely, NAH requires a
dense grid of measurements to yield reliable reconstruc-
tions, which is not always feasible.

To overcome the limitations imposed by limited data,
different works have investigated sparse optimization
techniques to interpolate or reconstruct the full modal
shapes from limited data [8, 9]. Compressed Sensing [8]
have been employed in [10] to synthesize plate impulse
responses as sparse combinations of basis functions, i.e.,
plane waves, thereby effectively bridging the gap between
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coarse measurements and the desired continuous field. A
different approach in [9] integrates sparse regularization
decomposing the available measurements into a summa-
tion of resonance curves and fitting them with Finite Ele-
ment Analysis (FEA) mode shapes.

More recently, machine learning emerged as an effec-
tive solution in various fields including the design of musi-
cal instruments [11, 12], acoustics [13, 14], and, structural
analysis [15]. In particular, deep learning has been pro-
posed for the interpolation of vibrational data. A first ap-
proach for the so-called super-resolution of modal shapes
has been introduced in [16] exploiting a CNN autoencoder
trained on ideal rectangular plates. The usage of convolu-
tional autoencoders has been further investigated in [17],
which proposes a U-Net [18] architecure for the interpo-
lation of frequency response functions (FRFs). Although
effective, the methods in [16,17] employ customary super-
vised training for which an extensive dataset is required in
order to train the models. This represents a limitation for
generalization to different objects and real measurements,
since training data set are generally synthetic and tailored
to a specific object geometry or material parameters.

In order to overcome the need of a training data set
in [19] a deep prior approach [20] has been proposed.
Through a per-element training, the method in [19] allows
one to reconstruct FRFs starting from a limited set of mea-
surements. In fact, deep prior models solve inverse prob-
lems such as the upsampling of data points exploiting the
inherent regularization given by the adopted neural net-
work structure [21–23]. One main limitation of the deep
prior approach is that it does not exploit further a priori-
information on the problem under analysis. As a matter of
fact, regularization strategies based on the physics of the
vibrating system could be ideally exploited.

Therefore, in this work, we propose the adoption of a
physics-informed neural network (PINN) [24] for the re-
construction of the displacement field. PINNs emerged
as an effective solution for solving several ill-posed prob-
lems in vibroacoustics [25, 26] including upsampling of
sound field [27–30] and NAH [26, 31]. In fact, PINNs
are design to promote solutions that fulfill the governing
equations of physical systems, typically involving partial
differential equations (PDE), in order to guide the learning
of the network. This allows the network to obtain physi-
cally meaningful solutions, while eliminating the need of
large training sets to learn the underlying behaviour of the
system.

Therefore, we adopted a physics-informed SIREN
[32], a multilayer perceptron with sinusoidal activations,

that is able to provide an implicit representation of the
physical quantity and proved to be an effective architec-
ture in several problems [28, 29] akin to modal shape in-
terpolation. We train the PINN with a physics loss imple-
menting the Kirchoff plate equation in order to regular-
ize the predictions. This implicit representation enables
the continuous reconstruction of the displacement across
the entire domain, allowing the prediction of the displace-
ment at any point, even in regions where no direct data
points are available. We evaluated the proposed method
against two baseline approaches: Radial Basis Function
(RBF) interpolation [33, 34] and a data-driven neural net-
work without physics loss. The results show the superior
performance of the PINN with respect to the adopted solu-
tions, suggesting promising adoption of physics-informed
SIREN in the context of vibroacoustics.

2. PROPOSED METHOD

2.1 Problem formulation

Let us consider a set of measurements taken at N discrete
points {ri = (xi, yi)}Ni=1 over the surface of a thin plate
e.g., the sound board of a violin or guitar, capturing the
corresponding displacement values at M resonance fre-
quencies {ωm}Mm=1. The acquired measurements yield a
dataset of the form:

D = {(ri, wm
i )} ,

i = 1, . . . , N,

m = 1, . . . ,M,
(1)

where wm
i represents the transverse displacement of the

plate at the ith spatial point ri = (xi, yi) for the resonant
frequency ωm. Each resonant frequency ωm corresponds
to a different mode shape of the vibrating plate, capturing
the distinct patterns of deformation that occur at specific
frequencies. The objective is to interpolate the displace-
ment values across the entire surface of the plate, denoted
as Ω. Given D, we aim at finding a function that repre-
sents the plate displacement w(·) over the entire surface
Ω based on the limited number of observation such that

ŵ(r, ωm) = F(Θ, r, ωm), (2)

where Θ is the set of learnable parameters of the function
F . Typically, the solution to the problem in (4) is found
through an optimization problem design to determine the
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Figure 1. PINN architecture scheme, where the in-
put is the spatial domain represented by the Carte-
sian coordinates x and y. In SIREN architecture, the
sine function is used as the activation function. The
output representing the plate displacement is used to
compute the data loss and then is differentiated with
respect to the inputs to implement the physics loss.

optimal parameters as

Θ̂opt = argmin
Θ

∑
i

∑
m

(
|ŵ(Θ, ri, ωm)− w(ri, ωm)|2

)
s.t. R(Θ, r),

(3)

where R(·) is a regularization term, designed in order to
retrieve meaningful solutions and avoid overfitting.

2.2 PINN for modal interpolation

Building on the problem formulation presented in the pre-
vious section, we propose the adoption of a PINN to per-
form continuous reconstruction of the displacement field.
Thus the estimation in (4) becomes

ŵ(r) = N (Θ, r), (4)

where ŵ(r) ∈ C1×M is the estimate of the displacement
in r for all the M modal frequencies, and N is a fully con-
nected multilayer perceptron (MLP) parametrized by Θ
that takes as input the spatial coordinates r. The network
is, thus designed to have M output channels, each cor-
responding to the displacement at a specific resonant fre-
quency and for each input pair of spatial coordinates, the
network predicts the displacement for all the M modes,
providing a complete set of displacement values across all
frequencies at each point.

Among the different MLP architectures that are avail-
able in the literature, we adopted the so-called SIREN [32]
(see Fig. 1). As a matter of fact, SIREN proved to be an
effective solution for providing implicit neural representa-
tion of several physical quantities, including images, au-
dio, and the acoustic field. The structure of the adopted
MLP is given as

N (Θ, x) = (ΦJ ◦ ΦJ−1 ◦ · · · ◦ Φ1)(x), (5)

where x is the input of the network and the jth layer Φj

adopts the sinusoidal function as nonlinear activation

Φj(xj) = sin
(
ω0x

T
j Θj + bj

)
, (6)

with xj , Θj , bj are the jth input, weights and biases, re-
spectively and ω0 is an hyperparameter controlling the fre-
quency of the sinusoidal function [32].

In this work, we employ a physics-informed SIREN
in order to estimate the displacement. In practice, we
replace the regularization term R in (3) with a physics-
informed training in which the loss function contains a
term implementing the PDE underlying the physical be-
haviour of the plate. Thus, the network aims at minimiz-
ing two distinct terms: a data-driven loss, which ensures
that the predicted displacements match the observed data,
and the physics-informed loss. The total loss is the sum of
the two terms defined above, namely

L=λd

(
1

Nd

Nd∑
i=1

||ŵ(ri)−w(ri)| |2
)

+ λp

(
1

Nc

Nc∑
k=1

||K(ŵ(rk))| |2
)
,

(7)

where Nd represents the number of known points,
w(ri) ∈ CM × 1 is the vector of the known displace-
ment in ri, ŵ(·) is the predicted displacement, and K(w)
is the differential operator that represents the plate gov-
erning equation computed over Nc randomly generated
points. Here, we adopted the as K(·) the residual of the
Kirchhoff plate equation that governs the beding vibration
of a thin plate and defined for a frequency ω as [35]

D∇4w(x, y, ω)− ρhω2w(x, y, ω) = 0,

with D =
Eh3

12(1− ν2)

(8)

where D is the flexural rigidity of the plate, E is the
Young’s modulus, h the plate thickness, ν the Poisson’s

4399



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

ratio, ∇4 is the biharmonic operator, ρ is the material den-
sity and ω is the angular frequency at which the plate is
vibrating. The physical loss acts as a regularization term,
preventing overfitting and guiding the network towards a
solution consistent with the expected behavior of a vibrat-
ing thin plate.

The weights λd and λp in the loss function (7) can be
either fixed or are dynamically reweighted during training
in order to avoid that one component shadows the other
during the optimization. Here, we adopted the ReLo-
BRaLo algorithm [36] for the dynamic reweighting.

2.3 Nondimensionalization

As shown in [37], when the PDE coefficients differ sig-
nificantly in magnitude, the loss landscape becomes more
complex, making the optimization problem less prone to
converge. This issue can be solved with the so-called
nondimensionalization, a technique ensuring that all terms
in the equations have similar order of magnitude. In or-
der to perform the nondimensionalization of the Kirch-
hoff equation, characteristic scales for the spatial coordi-
nates and frequency are introduced. In particular, the fre-
quencies ωm are normalized by the maximum resonance
frequency ωmax and the spatial variables r = (x, y) are
scaled by a characteristic length scale Lnorm, namely

Lnorm = 4

√
D

ρhω2
max

. (9)

The result of such normalization is a set of dimensionless
variables x̄, ȳ, and ω̄, thus making the equation invariant
to plate dimensions and frequency scaling. It follows that
we can define the nondimensionalized form of the Kirch-
hoff equation (8) as

∂4w

∂x̄4
+ 2

∂4w

∂x̄2∂ȳ2
+

∂4w

∂ȳ4
= ω̄2w. (10)

3. VALIDATION

The proposed PINN for the interpolation of modal dis-
placement is implemented in Python using the PyTorch
framework. Thus the network takes as input the normal-
ized spatial coordinates r̄ = (x̄, ȳ) ∈ Ω̄. We adopted
a shallow architecture that includes J = 2 hidden layers
with 256 neurons each, using a sinusoidal activation func-
tion. The output layer consists of M = 10 neurons, corre-
sponding to the first 10 resonant frequencies of the plate.
A scheme of the network architecture is shown in Fig. 1.

We train the network with the Adam optimizer over 20000
epochs using a learning rate equals to 10−3. The physics
loss in (7) is computed over Nc = 500 randomly gener-
ated points. The dynamic weighting of the loss function is
handled by the ReLoBRaLo algorithm, which adjusts the
scaling factors λd and λp. The hyperparameters for ReLo-
BRaLo [36] are set as follows: α = 0.99, ρ = 0.999, and
T = 10−3.

The data set of dispacement (1) has been obtained
by means of FEA using the software COMSOL Multi-
physics, simulating a thin rectangular plate. The plate is
defined with dimensions of 20 × 35 cm, closely resem-
bling those of a violin soundboard. The material prop-
erties were set to typical values for spruce wood, with a
density of 420 kg

m3 , a Young’s modulus of 10 × 106 Pa,
and a Poisson’s ratio of 0.28. An eigenfrequency study
is conducted by assuming free boundary conditions and
predicting the first ten plate natural vibration modes. The
results of this study provided the transverse displacement
values for a grid of 20 × 35 spatial points over the plate
surface, with each point capturing the response in terms
of displacement at each resonant frequency. A subset of
these points was selected to simulate the limited experi-
mental data available during training. We consider dif-
ferent number of available measurements, namely Nd =
[6, 8, 10, 12, 14, 16, 18] corresponding to a percentage of
known points ranging within 1−2.5%, approximately. The
locations of these data points were generated randomly,
following a uniform distribution. Finally, the displace-
ment values were normalized between −1 and 1.

3.1 Metrics

To evaluate the model accuracy in the prediction of the
displacement fields, we employed the Normalized Mean
Squared Error (NMSE) defined as

NMSE(wm, ŵm) = 20 log10

(
1
N

∑N
i=1 (w

m
i − ŵm

i )
2

1
N

∑N
i=1 (w

m
i − w̄)

2

)
(11)

N is the number of points, and w̄ represents the mean
value of w.

3.2 Results

In order to provide a baseline for comparison, we im-
plemented the Radial Basis Function (RBF) interpola-
tion technique [33]. RBFs are commonly used for
solving upsampling problems due to their ability to
smoothly interpolate scattered data points. The method
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Figure 2. NMSE as a function of the mode and the number of known data points for each of the considered
methods: (a) RBF interpolation using TPS, (b) purely data-driven NN and (c) PINN with physics-informed
loss. NMSE values are reported in dB scale in the form of a heatmap, where high values are highlighted in
yellow and low values are denoted with blue.

relies on a weighted sum of radial basis functions,
which are centered at known data points. For this
study, we employed the Thin Plate Spline (TPS) vari-
ant of RBF interpolation, which is particularly effec-
tive for solving mechanical deformation problems in
plates [34, 38]. We used the Rbf function from the
Python scipy.interpolate 1 library, specifying the
‘‘thin plate’’ radial basis function to perform the
interpolation. The data points used in the RBF interpola-
tion are the same as those employed for training the neural
network.

To highlight the benefits of incorporating physical
constraints, we then compare the PINN with a purely data-
driven neural network. The network consists of the same
architecture as the PINN, with the only changes being the
absence of the governing equation loss and the use of the
SiLU activation function. Without the physics-based loss,
in fact, using the sine activation function led to significant
overfitting. From now on, we will refer to this model as
“NN”.

Fig. 2(a) shows the NMSE heatmap for RBF interpo-
lation using TPS, Fig. 2(b) displays the NMSE heatmap
for the prediction of the NN and Fig. 2(c) the NMSE
heatmap for the PINN results. The plots show results for
the first ten vibration modes across varying numbers of
known data points: 6, 8, 10, 12, 14, 16, and 18.

As expected, all methods perform well with a high
number of data points, showing a clear improvement in

1 https://docs.scipy.org/doc/scipy/
reference/interpolate.html

accuracy as sufficient information is available. However,
for very low numbers of data points, particularly under
10, both the RBF interpolation and the NN exhibit sig-
nificantly higher NMSE values. In such cases, the mod-
els do not have enough data to generalize the vibrational
behavior of the plate effectively, leading to poor predic-
tions. The high NMSE values indicate that both methods
are incapable of extrapolate any meaningful structure in
the absence of sufficient data. In contrast, the PINN shows
resilience in handling sparse data. The regularization pro-
vided by the physics-based constraints enables it to infer
plausible solutions even in regions far from data points.

Fig. 3 compares the NMSE of the three different
methods. The upper panel shows the mean NMSE across
the number of data points for each mode, while the bottom
panel shows the mean NMSE across modes for each num-
ber of data points, with error bars representing the corre-
sponding standard deviation.

By inspecting the higher modes in Fig. 3 (top), it
can be clearly noticed that both neural networks gener-
ally perform better than RBF for higher resonant frequen-
cies. Regarding the dependence on the number of data
points (Fig. 3, bottom), RBF and NN show compara-
ble performances, while PINN stands out as the only ap-
proach showing a consistently decreasing trend in NMSE,
directly correlated with the number of data points. To
summarize, the results show that performance generally
deteriorates as the number of known points decreases or
as the mode number increases (i.e., higher frequencies).
For sufficient data points and/or lower modes, all methods
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Figure 3. Comparison between the three different
approaches: RBF interpolation with TPS (blue), NN
(orange), and PINN (green). Top: mean NMSE
across number of data points for each mode. Bot-
tom: mean NMSE across modes for each number of
data points (b). The black error bars denote the cor-
responding standard deviations.

perform well, with the PINN maintaining approximately
10 dB improvement over the baselines. However, what
is particularly noteworthy is that, in cases with very few
data points or higher frequencies, where the baselines pro-
duce completely incorrect predictions (positive NMSE),
the PINN still manages to deliver meaningful and reliable
solutions.

4. CONCLUSIONS

This work presents a PINN-based method for predicting
the displacement field of a vibrating plate at resonance
frequencies, leveraging physics-based constraints to im-

prove accuracy and reduce dependency on extensive data.
The method effectively upsamples sparse data to recon-
struct continuous displacement fields, addressing chal-
lenges related to the spatial distribution and number of
measurement points. The method was evaluated using
COMSOL simulations, which demonstrated the robust-
ness of the method, showing that the PINN consistently
outperforms baseline approaches, namely RBF interpola-
tion and purely data-driven NN. Indeed, while the base-
line methods perform well with a large number of data
points, their performance quickly decreases with lower
data points. The PINN’s ability to integrate physical laws
into its loss function allows it to reconstruct the displace-
ment field even in data-sparse regions. Similar approaches
hold promise for applications in lutherie, where they could
be valuable for tuning and analyzing the soundboard of
musical instruments. More broadly, this study contributes
to showcase the use of PINNs in structural mechanics,
showing how these methods can solve mechanical prob-
lems governed by physical equations. Future improve-
ments could involve further testing of the model with dif-
ferent geometries and materials, as well as refining the
resolution for non-resonant frequencies by incorporating
non-homogeneous Kirchhoff equations into the PINN.
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