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ABSTRACT

This paper introduces the boostlet transform to analyze
and reconstruct spatiotemporal acoustic fields measured
in 2D space-time. The transform builds upon the insight
that sparse multi-scale representations learned from natu-
ral wavefields perform geometric transformations that pre-
serve the dispersion relation. The boostlet transform de-
composes a spatiotemporal wavefield using a collection
of wavelet-like functions parametrized by dilations, hy-
perbolic rotations, and translations in space-time. From
a physical viewpoint, boostlets encompass global and lo-
calized waveforms with variable band-limited frequency
and phase-speed content. We show transform applica-
tions of wavefront segmentation and sparse reconstruc-
tion of room impulse responses. In particular, we find
that boostlet decompositions excel at representing local-
ized wavefront phenomena typical of the early part of such
room recordings. At the same time, plane waves perform
equally as well as or better than boostlets in the late part.

Keywords: acoustic signal processing, boostlets, space-
time, multi-scale representations, sparse reconstruction.

1. INTRODUCTION

The accurate analysis and efficient processing of wave-
field recordings pose central challenges in acoustic en-
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gineering, particularly when dealing with large acoustic
spaces. Acoustic field analysis has evolved from early ge-
ometrical acoustics models [1–3] to more advanced nu-
merical and data-driven methods. Subsequent studies [4,
5] drew on seismic analogies to refine room-acoustic
modeling and extrapolation. At the same time, numer-
ical methods such as finite differences [6], spectral ele-
ments [7], and discontinuous Galerkin schemes [8] have
become standard tools in acoustics. In recent years, ma-
chine learning-based algorithms have allowed the devel-
opment of new tools for acoustic field analysis. Physics-
informed neural networks [9], generative models [10],
and neural operators [11] have shown impressive potential
thanks to their ability to grasp inherent data structures.

Much less explored is the application of multi-scale
directional transformations to acoustic signals in space-
time, like the relativistic Poincaré wavelets [12] and the
empirical results with shearlets [13] and curvelets [14],
which offer optimally sparse representations of the free-
space wave propagator [15]. A notable example in this
direction is the work by Pinto and Vetterli [16], who in-
troduced directional filter banks to analyze spatiotempo-
ral acoustic fields recorded with 1D microphone arrays.
Their approach extends traditional time-frequency analy-
sis by incorporating directionality through spatiotempo-
ral windows, effectively capturing phase-speed content.
Nonetheless, directional filter banks cannot account for
frequency-dependent behavior emerging from the sources
and boundary conditions in the acoustic environment.

A promising approach, as observed empirically in air
media [17], is to encode the propagation medium disper-
sion relation in the definition of the representation system
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(or dictionary) itself. Then, the resulting basis functions
become intrinsically aligned with the underlying physics
by embedding the dispersion relation in the representation
(e.g., through transformations that preserve its geometric
definition). Representations of this nature appear to attain
sparser multi-resolution decompositions and more accu-
rate reconstructions from fewer coefficients [18].

This paper introduces the boostlet transform [19] for
acoustic signal processing in space-time. The boost-
let transform shares mathematical similarities with the
Poincaré wavelet transform [12]. The latter performs di-
lations, hyperbolic rotations, and translations of a mother
wavelet-like function; thus, their admissibility condition
is the same. However, two distinctions must be made.
Firstly, while Poincaré wavelets have been previously
applied to relativistic harmonic sources, the focus was
not on sparse multi-scale decompositions and efficient
reconstruction—the driving purpose of the boostlet trans-
form. Secondly, and as a consequence of the first point,
boostlets form a representation system that fulfills Parse-
val’s identity, contrary to Poincaré wavelets, which do not
have a scaling function to account for finite dilations and
boosts. In previous work [18], we observed that boost-
lets attain higher accuracy reconstruction from fewer co-
efficients and superior denoising performance than other
multi-scale transforms, such as wavelets and shearlets.
The present work studies these properties and the phys-
ical consequence of those properties from the perspective
of acoustic measurements.

2. BOOSTLET THEORY

The boostlet transform decomposes a wavefield over a
dictionary of wavelet-like atoms called boostlets. This
section defines these functions and the resulting decom-
position and reconstruction formulas.

2.1 Boostlets

Boostlets are defined by applying various transformations
to a function known as a mother boostlet. We denote this
function by ψ(ς), where ς = (x, t) is a point in space-
time. To obtain a family of boostlet functions from this
mother boostlet, we apply a dilation, a hyperbolic rotation
(a Lorentz boost), and a translation to obtain

ψa,θ,τ (ς) = a−1ψ(M−1
a,θ (ς − τ)), (1)

where

Ma,θ =

�
a cosh θ −a sinh θ
−a sinh θ a cosh θ

�
(2)

with a dilation factor a ∈ R>0, a hyperbolic rotation angle
θ ∈ R, and a translation vector τ ∈ R2. By varying the pa-
rameters a, θ, and τ , we can modify the original waveform
ψ(ς) to express different types of waves in space-time.

We can also consider the above transformations in the
Fourier domain. Let us define the Fourier transform of a
space-time function f(ς) as

bf(ξ) =
Z

R2

f(ς)e−2πiξTςdς, (3)

where ξ = (k,ω) is a wavenumber–frequency vector. We
now divide the wavenumber–frequency plane into three
parts: the near field where |ω| < |k|, the far field where
|k| < |ω|, and the radiation cone where |ω| = |k|. Acous-
tically, waveforms in the near field correspond to evanes-
cent waves, while the far field contains propagating waves.

The effect of the dilation, boosting, and translation in
the Fourier domain can be described by

bψa,θ,τ (ξ) = ae−2πiτTξ bψ(MT
a,θξ). (4)

From this relationship, it can be seen that if ψ(ς) is sup-
ported in the near-field cone, the same is true for all
ψa,θ,τ (ς). As a result, these near-field boostlets can only
be used to decompose wavefields that are entirely sup-
ported in the near-field cone. We resolve this by defining
a far-field version of ψ(ς) as

ψ⋆(x, t) = ψ(t, x). (5)

In other words, we switch the roles of time and space,
which moves ψ(ς) from the near to the far field. We can
now define the far-field boostlets

ψ⋆
a,θ,τ (ς) = a−1ψ⋆(M−1

a,θ (ς − τ)). (6)

Together, we will see that these functions form a natural
decomposition of wavefields in nondispersive media.

2.2 Building a physical intuition

Boostlets, and similarly Poincaré wavelets, are short,
pulse-like waveforms in space-time, parametrized with
dilations, corresponding to spatiotemporal frequency in-
tervals, and boosts, corresponding to phase speed inter-
vals. As illustrated in Fig. 1 below, we can understand
the boostlet construction as hyperbolically expanding the
Fourier support of a plane wave, which is mapped into a
Cartesian grid (a, θ) ∈ R>0 × R for the far- and near-
field cones. Thus, boostlets effectively provide natural,

4120



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

Far-field

Near-field

Figure 1: Boostlet partitioning (left) in the Fourier
domain and (right) in the dilation-boost domain,
(a, θ), via the hyperbolic change of coordinates for
the (top-right) far-field cone and (bottom-right) near-
field cone.

multi-scale directional decompositions of propagating and
evanescent wavefronts in unified space-time. In particu-
lar, boostlets localize (extract) wavefronts in space-time
when their frequencies and phase speeds match the wave-
front location in the (a, θ) domain. This means boost-
let decompositions highlight (band-pass filter) wavefronts
with certain phase-speed content, accounting for complex,
frequency-dependent wave phenomena.

The spatiotemporal frequencies associated with dila-
tions shall not be mistaken for stationary frequencies (i.e.,
time-harmonic dependence), as this would imply a sep-
arate treatment of space-time. On the contrary, these fre-
quencies correspond to hyperbolic frequency bands due to
the Lorentz boost parameter θ = arctanh (vp/c), where
vp is the phase speed along the 1D array axis, and c is the
sound speed. For θ = 0 in the far-field cone, i.e., k = 0,
the apex of the hyperbolic frequency band is at ω = a,
which corresponds to the frequency of a wavefront propa-
gating with infinite phase speed [20], i.e., normal-incident
upon the 1D microphone array. Conversely, for θ = 0 in
the near-field cone, i.e., ω = 0, the apex of the hyperbola
is at k = a, which corresponds to the frequency of an
evanescent wavefront propagating with zero phase speed.

2.3 Boostlet decompositions

Together, the near- and far-field boostlets cover the entire
wavenumber–frequency plane, (k,ω) ∈ R2, and thus al-
low us to decompose an arbitrary wavefield without losing
information. Concretely, we define the near- and far-field
boostlet coefficients Bf(a, θ, τ) and B⋆f(a, θ, τ), respec-

tively, by computing the inner product with the various
boostlet functions, yielding

Bf(a, θ, τ) = ⟨f,ψa,θ,τ ⟩ (7)

and
B⋆f(a, θ, τ) = ⟨f,ψ⋆

a,θ,τ ⟩, (8)

respectively.
The above decomposition presupposes that we de-

compose the wavefield f(ς) over the boostlets ψa,θ,τ (ς)
and ψ⋆

a,θ,τ (ς) for arbitrarily large dilation factors a. Phys-
ically, this means arbitrarily long measurement times. In
practice, this is not meaningful as the measurement time
is limited (thereby limiting the largest scale A) for a given
data type or task. We can therefore restrict a to be in the
range (0, A) and capture the remaining part of the wave-
field using a boostlet scaling function ϕA(ς) that satisfies

|bϕA(ξ)|2 = 1−
Z

(0, A) × R

| bψa,θ,0(ξ)|2 + | bψ⋆
a,θ,0(ξ)|2

dadθ

a
, (9)

fulfilling Parseval’s relation. We translate ϕA(ς) to obtain
ϕA,τ (ς − τ) and the boostlet scaling coefficients are then
given by

Sf(A, τ) = ⟨f,ϕA,τ ⟩. (10)

2.4 Boostlet expansions

It can be shown that we can now recover the original
wavefield f(ς) from these coefficients through the for-
mula [18, 19]

f(ς) =

Z

R2

Sf(A, τ)ϕA,τ (ς)dτ

+

Z

(0, A) × R × R2

Bf(a, θ, τ)ψa,θ,τ (ς)
dadθdτ

a3

+

Z

(0, A) × R × R2

B⋆f(a, θ, τ)ψ⋆
a,θ,τ (ς)

dadθdτ

a3
.

(11)

While the above derivations are performed for continu-
ous wavefields and boostlets, we deal with discrete data
in practice. Therefore, the integrals are replaced by the
appropriate sums, and the values of the parameters a, θ,
and τ are sampled on discrete grids. An example of a
possible mother boostlet (and the family of boostlet func-
tions it generates) is found in Zea et al. [19]. Fig. 2 below
shows a boostlet dictionary with na = 2 discrete scales
and nθ = 3 discrete boosts.
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(a) Boostlets in the Fourier domain. (b) Boostlets in space-time.

(c) Scaling func-
tion in the Fourier
domain.

(d) Scaling
function in space-
time.

Figure 2: A 128 × 128 × 13 boostlet dictionary with na = 2 discrete scales and nθ = 3 discrete boosts. The
first two rows of (a) and (b) correspond to far-field boostlets, while the last two rows correspond to near-field
boostlets. The boostlet scaling function is shown in (c) and (d).
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Figure 3: 128 × 128 spatiotemporal room impulse
response in the NBI Auditorium A [21].

3. WAVEFIELD ANALYSIS

In this section, we analyze 2D spatiotemporal acoustic
fields using discrete boostlets. We use the room impulse
response (RIR) dataset measured by Figureoa et al. at
the Niels Bohr Institute (NBI) in Denmark [21]. The
RIRs have been obtained along two lines in the spatial
domain, with microphone spacing of ∆x = 1 cm. The
sound source emitted exponential frequency sweeps from
20 Hz to 20 kHz, with a sampling frequency of 48 kHz.
The reader is referred to the documentation in [21] for
more details on the measurements. To properly sample
the dispersion relation of air (i.e., so that the far- and near-
field cones fit exactly within the 2D Fourier grid), we pre-
process the RIRs by re-sampling them in time to the sam-
pling frequency fs = c/∆x ≈ 34.3 kHz.

We consider a 128×128 wavefield in space-time from
the NBI RIR dataset. We shall denote such a pressure
signal with p. Fig. 3 below depicts the acoustic pressure
amplitude in space-time. It can be observed that it consists
of a combination of two dominant wavefronts.

When we apply the boostlet dictionary in Fig. 2 to
the wavefield in Fig. 3, we obtain the boostlet coeffi-
cients shown in Fig. 4 via the inner products ⟨p,ψj,τ ⟩, j =
1, i . . . 12, and ⟨p,ϕτ ⟩ for translation vectors τ on a 2D
grid. It can be seen that the coefficients resulting from
the inner products ⟨p,ψ2,τ ⟩, ⟨p,ψ3,τ ⟩, ⟨p,ψ5,τ ⟩, ⟨p,ψ6,τ ⟩,
and ⟨p,ϕτ ⟩ have much larger real-part amplitudes than
those of the remaining inner products. In particular, the
inner products with ψ2,τ and ψ5,τ appear to localize the
first wavefront in Fig. 3. Similarly, the inner products

Figure 4: Boostlet decomposition of the acoustic
field in Fig. 3 using the dictionary in Fig. 2.

with ψ3,τ and ψ6,τ seem to localize the second dominant
wavefront from the right-hand side of the x axis. Finally,
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Figure 5: ℓ2 and ℓ1 norms of the boostlet coefficients
across space-time per index j = 1, . . . , 13, using the
boostlet dictionary in Figure 2.

the inner products with ϕτ yield a smoothened version of
the original wavefield with high-frequency content corre-
sponding to phase speeds near the speed of sound (i.e.,
oblique incidence over the array). This is understood by
looking at the shape of ϕ̂(k,ω) in Fig. 2(c).

At a higher level, we can analyze the ℓ2 and ℓ1
norms—∥ ·∥q = [

P
i | ·i |q]

1/q for q = 1, 2—of the boost-
let coefficients across all space-time translations. Fig. 5
shows these norms, indexed with j representing the jth
boostlet function for all translations τ ∈ [0, 1, . . . , 127]

2.
The index j = 13 corresponds to the boostlet scaling
function coefficients ⟨p,ϕτ ⟩. Remarkably, the ℓ2 norms
reveal that the energy is concentrated on the inner prod-
ucts with the boostlets ψ2,τ , ψ3,τ , ψ5,τ , and ψ6,τ , and
with the scaling function ϕτ . Conversely, the remaining
coefficients are significantly smaller in ℓ2 and ℓ1 norms,
particularly the evanescent coefficients associated with
ψ7,τ , . . . ,ψ12,τ . As shown in Fig. 4, these evanescent
components are most active at the boundaries of the space-
time window, suitable to account for periodicity effects
introduced by FFTs.

Implementing segmentation entails synthesizing the
acoustic field in space-time from the boostlet coefficients
that capture a given wavefront, say, ψ2,τ and ψ5,τ , to
reconstruct the first wavefront in Fig. 3. Then, set all
boostlet coefficients with associated indices j ̸= {2, 5}
to zero and perform an inverse boostlet transform. These
results highlight the boostlet transform’s potential to sep-
arate and quantify individual wavefronts from room im-

pulse response recordings.

4. SPARSE WAVEFIELD RECONSTRUCTION

This section shows the result of reconstructing acoustic
fields using boostlets. We use plane wave decomposi-
tions in space-time as a comparison method via 2D fast
Fourier transforms (FFTs). Given the distinct nature of
plane wave decompositions and boostlets, we shall not
compare their performance solely based on quantitative
metrics but also on qualitative reconstruction.

We aim to solve a basis pursuit denoising problem of
the form [22]:

min
α

1

2
∥pδ − Φα∥22 + µ∥α∥1, (12)

where pδ = p + δ is the pressure wavefield with noise
δ, here a zero-mean Gaussian-distributed with a given
signal-to-noise ratio (SNR), Φ is a synthesis operator
(e.g., inverse Fourier/boostlet transform), α• contains the
transform-domain coefficients (• = pw or bt for plane
waves and boostlets, respectively), and µ > 0 is a regular-
ization parameter that balances data fidelity and sparsity.

To solve (12), we employ an iterative soft-
thresholding algorithm [23], using FFTs to implement Φ
and its adjoint efficiently, and the L-curve [24] to find the
optimal µ. This process assumes that the noise variance
is known or has been estimated. Finally, we set the max-
imum thresholding iterations to 200, a log-space of 250
values for µ ∈

�
10−4, 5 · 10−1

�
, and we assess the re-

construction performance by computing the relative root-
mean-squared error ϵ• = ∥p− p•∥2/∥p∥2 × 100% (again
with • = pw or bt).

Fig. 6 shows the reconstruction of noisy wavefields
in the early and late parts of the RIRs using plane waves
and boostlets. In the early part shown in Fig. 6(a), plane
wave reconstructions contain artifacts at the edges of the
space-time window, which arise due to a lack of wavefield
periodicity. In contrast, boostlet reconstructions account
for non-periodic, localized behavior more effectively and
yield a smaller relative reconstruction error. We attribute
this extended performance to the evanescent boostlets.

The reconstructions in the late RIR part shown in
Fig. 6(b) suggest that the performance is the opposite. We
find a natural explanation for this performance in terms
of Sommerfeld’s radiation boundary condition. A spher-
ical wavefront in an early window of 128 × 128 space-
time samples spreads its energy and becomes locally pla-
nar in a later window of the same size. Another per-
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(a) Reconstruction of a space-time wavefield in the early part.

(b) Reconstruction of a space-time wavefield in the late part.

Figure 6: Reconstruction of noisy acoustic wavefields in the (a) early and (b) late part. Left column: Noisy
wavefield, SNR = 15 dB. Middle-left column: Reconstructions with plane waves. Middle-right column:
Reconstructions with boostlets. Right column: Reference wavefield.

spective is that the early RIR part likely has more spheri-
cal/aperiodic wavefronts than the late part, which is more
diffuse and carries wavefronts propagating with multiple
phase speeds.

5. CONCLUDING REMARKS

The boostlet transform provides a natural, multi-scale di-
rectional decomposition of wavefield data in space-time.
Boostlet transforms decompose wavefields into a collec-
tion of waveforms parametrized with the Poincaré group
and dilations. Potential applications of boostlets for multi-
scale wavefront segmentation are discussed. Compared
to plane waves, the boostlet transform tested in this work
excels at sparsely reconstructing wavefield phenomena in
the early part of room impulse responses. We find that
boostlets effectively capture localized wavefronts due to
wave scattering and periodicity effects. Further research
entails compressed sensing of acoustic fields and feature-
extraction for machine-learning algorithms.
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