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ABSTRACT

Transient numerical simulations are typically used to au-
ralize sound sources and in particular for problems in-
cluding moving sources. The time domain boundary el-
ement method (TD-BEM) is a particularly attractive alter-
native as it is especially suitable for exterior/unbounded
domains. Nevertheless, as TD-BEM uses the fundamental
solution together with a convolution integral to obtain the
solution; a new system matrix is assembled for each time
step and used together with all previously assembled sys-
tem matrices to calculate the response for the current time
step. Thus, the memory required to store the system ma-
trices grows with time, possibly resulting in an excessive
requirement. To alleviate this issue, several techniques re-
sort to either efficient truncations of the convolution cal-
culation at later time instances or interpolation strategies
of the fundamental solution in time. In this work, the trun-
cation method for 2D TD-BEM is extended using higher
order Taylor series expansion, focusing on a better trade-
off between memory reduction and numerical error. In
particular, the effect of changing the expansion order and
the representative distance on the error is examined for
interior and exterior examples. Results lead to the conclu-
sion that larger storage reduction is obtained by including
higher order terms while the error remains acceptable.
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1. INTRODUCTION

The boundary element method (BEM) is used quite exten-
sively for numerical acoustical analysis in the frequency
domain [1], while its application for time domain simu-
lations is a less studied topic [2]. Even for applications
where the time domain should have the advantage, fre-
quency domain BEM is used such as is the case for pass-
by-noise analysis [3] or auralization using head related
transfer functions [4]. Instead of directly using time do-
main solutions, those simulations rely on the construction
of time domain response by utilizing convolution of the
frequency response functions.
One of the main issues of employing the time domain
BEM (TD-BEM) is that the stability of the solution is
problem dependent [5]; however, it can be mended with
different formulations [6] or different convolution calcu-
lations [7]. Additionally, one of the main drawbacks of the
TD-BEM is that the formulation requires the explicit cal-
culation of convolution, since the fundamental solution is
non-affinely dependent on time [8]. This convolution cal-
culation increases the computational effort, requiring the
construction of new system matrices for each time step
and performing matrix-vector multiplications for all pre-
vious time steps to capture their effects. This results not
only in increasing the memory requirements for the stor-
age of the system matrices, but also an unfavorably scaling
multiplication costs. This holds especially for the two di-
mensional case where the fundamental solution is a step
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function with a slow decay in time, resulting in fully pop-
ulated system matrices after certain time [9].
Several mitigation strategies have been proposed to al-
leviate the storage difficulty. Starting with the works of
Demirel and Wang [9] where the convolution calculation
is fully stopped after a predetermined cutoff time sepa-
ration (tL), which can be calculated based on the ratio
of the remaining area under the fundamental solution to
the already calculated area (δ). The ratio δ acts as an er-
ror estimator as well as a storage/cost reduction metric.
Even though truncation seems to work for exterior prob-
lems with no reflections, it creates significant error for in-
terior problems where reflections are present. Instead, for
interior domains, the problem can be tackled with partial
truncation by Mansur and Delima-Silva [10] that replaces
all the distances in the boundary integral calculation by
a constant average distance (ravg) by assuming time sep-
aration is much larger compared to the physical domain.
Then, instead of truncating the convolution after tL; a sin-
gle system matrix constructed with ravg is stored and em-
ployed after multiplying it with a function that depends
only on time during the convolution calculations.
Even though high storage cost reductions can be achieved
with partial or total truncation, errors which do not have
robust estimators might increase rapidly, while only lim-
ited storage cost is gained. Hence, interpolating polyno-
mials, such as Lagrange or radial basis functions [11],
have been proposed for the separation of time convolu-
tion and boundary integration. Such techniques succeed
in minimizing calculation efforts by only calculating the
system matrices at predefined positions in time, and inter-
polating for the intermediate time steps. Nevertheless, in-
terpolation methods generally require multiple additional
system matrices to be stored as compared to the trunca-
tion methods. On the other hand, the error obtained with
interpolation is much smaller, such that larger tL can be
chosen, therefore reducing the total system matrices to be
constructed [12].
In this work, the truncation approach is extended by con-
sidering a series expansion strategy of the analytically in-
tegrated kernel produced by linear and constant time in-
terpolation for pressure and flux, respectively. The kernel
is expanded around a representative distance with Tay-
lor series such that time convolution and the domain in-
tegral can be separated. The resulting formulation pro-
duces lower errors with increasing approximation order,
enabling the choice of a larger tL. The resulting acceler-
ation method is validated on two academic examples with
known analytical solutions and on a complex geometry.

2. TD-BEM FPRMULATION

TD-BEM for the 2-dimensional scalar wave equation is
given by Mansur [13] and can be written as:

(Hnn +C)pn +Gnnqn =

fn +

n−1∑
m=1

(Hnmpm +Gnmqm)
(1)

where Hnm and Gnm are system matrices calculated for
time steps n and m representing the emitter and receiver
times; pn, qn, and fn are the vectors relating to pressure,
flux, 1 and source values for discrete boundary points for
discrete time step n, respectively. C is the free term coef-
ficient calculated as is done in the frequency domain for-
mulation [13]. Moreover Hnm and Gnm are defined as
the discrete form of the boundary integral equations

H(x, t) =
∫
Γ

∂(x−ξ)
∂n

∫ t

0

(
q∗p+ p∗ 1

c
∂p
∂τ

)
dτ dΓ, (2a)

G(x, t) =
∫
Γ

∫ t

0
p∗q dτ dΓ, (2b)

where x is a point on the boundary 2 while ξ is the
secondary position vector on the boundary for integra-
tion. Furthermore, the pressure and flux fundamental so-
lutions p∗ and q∗ are defined as the impulse response emit-
ted at time τ , and measured at a time t with a distance
r = |x− ξ| away from the source and given mathemati-
cally as

p∗ =
2c√

c2(t− τ)2 − r2
Ĥ (c(t− τ)− r) , (3a)

q∗ =
2c (c(t− τ)− r)√
c2(t− τ)2 − r2

Ĥ (c(t− τ)− r) , (3b)

where c is the speed of sound and Ĥ is the Heaviside step
function such that information travels at speed c and the
causality of the problem is respected. The time integral of
Eqn. (2) can be analytically calculated utilizing linear in-
terpolation for pressure and constant interpolation for flux
(for more details see [8]), with the resulting intermediate
kernels H∗

nm and G∗
nm that can be used in boundary inte-

gration.

1 Flux here is used vaguely referring to the gradient of pres-
sure, if the velocity potential formulation for acoustics were to
be used it would refer to particle velocity.

2 It can refer to a point in the domain to calculate the domain
response from boundary values for post-processing.
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Note that all the descriptions are made on the assump-
tion that time steps are equidistant such that H∗

nm and
G∗

nm only depend on the time separation between time
steps (n−m)∆t. Otherwise, the formulation scales with
O(N2

T ) instead of O(NT ), NT being the total time steps.

2.1 Singularities and wavefront

Kernels p∗ and q∗ demonstrate two different singularities;
one is a geometric singularity that occurs when r → 0,
and the other one is the wavefront singularity that occurs
when c(t − τ) → r. However, H∗

nm and G∗
nm are not

affected by these singularities due to subtractive cancela-
tions [14].
The only remaining singularity arises for H∗

nm when
n −m = 0 (i.e. observation time step and emission time
step are the same). Nonetheless, the calculation of the
singular integral is not necessary if constant or linear spa-
tial elements are used, because H∗

nm and the respective
shape function gradient ∂(x−ξ)

∂n in Eqn. (2a) are orthogo-
nal. Even though the wavefront singularity is eliminated,
it still disturbs the smoothness of the intermediate kernels
as n−m gets closer to zero. Thus, smooth approximations
to H∗

nm and G∗
nm, such as Taylor series, might become in-

adequate; which is a limiting factor in the current study.

2.2 Total truncation

As can be seen from Eqn. (1), in order to calculate a new
convolution for each time step n, all past responses need
to be multiplied with the corresponding past system ma-
trix and summed. Resulting calculation and storage costs
scale quadratically and linearly with time, respectively.
The initial remedy to this shortcoming is to disregard the
terms in the convolution summation of Eqn. (1), that are
separated by more than tL = NL∆t [9]. This cutoff time
is based on the δ parameter, which is defined as

δ =

∫ tF−tL

0

p∗dτ

/∫ tF−ravg

0

p∗dτ , (4)

where tF = NT∆t is the final time of the simulation and
ravg is the average distance of the domain. Hence, param-
eter δ corresponds to the ratio of the lost information if the
integral of p∗ is truncated after tL at a distance r = ravg .
Thus, δ is not an actual error predictor of the solution
but a rather crude approximation of error for H∗

nm and
G∗

nm. Finally, the equation of motion (1) can be written

for n > NL as

(Hnn +C)pn +Gnnqn =

fn +

n−1∑
m=n−NL

(Hnmpm +Gnmqm) .
(5)

The resulting solution requires NL/NT relative storage
and computational costs compared to full solution while
introducing an approximation error.

2.3 Partial truncation

The next development is to increase the reduction by de-
creasing the resulting error by the inclusion of single set of
matrix calculation. Since kernels p∗ and q∗ are dominated
by time contributions for tL ≫ r/c, contributions related
to r can be ignored. This is achieved by using r = ravg
to avoid additional singularities, such that for n > NL the
term

n−NL−1∑
m=1

(
H(1)h(1)

nmpm +G(1)g(1)nmqm

)
(6)

is added to to Eqn. (5) where H(1) and G(1) are matri-
ces calculated by the boundary integral with the kernel
”1”; moreover, h(1)

nm and g
(1)
nm are functions of time de-

fined by the substitution of r = ravg in Eqns. (3), respec-
tively. Partial truncation strategy requires an additional set
of system matrices compared to total truncation strategy
while reducing the error significantly. Such that smaller
error enables the selection of larger tL values, which low-
ers the storage and computational costs compared to the
total truncation strategy.

3. SERIES EXPANSION TD-BEM

Even though, partial truncation offers significant advan-
tages, its applicability is limited due to the initial assump-
tion of tL ≫ r/c. In contrast, attempting to remedy the
storage and cost problem by a spatial reduction can offer
higher order expansion terms. Assuming that the kernels
p∗ and q∗ are smooth functions of r, they can be expanded
around a representative distance r = rrep with a Taylor
series expansion. As noted in Sec. 2.2, although this as-
sumption starts to fail as time separation becomes smaller,
it allows greater generalization compared to the assump-
tions made in the partial truncation approach. Specifically,
by explicitly expanding p∗ and q∗ around r = rrep it can
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be written

p∗ = 2c√
c2(t−τ)2−r2rep

+
2crrep(r−rrep)

(c2(t−τ)2−r2rep)
3/2 + . . . , (7a)

q∗ =
2c(c(t−τ)−rrep)√

c2(t−τ)2−r2rep
− 2c2(t−τ)(r−rrep)

(c(t−τ)+rrep)
√

c2(t−τ)2−r2rep
+ . . . . (7b)

In the above expressions, the first term is treated iden-
tically as in the partial truncation approach. However,
higher order terms are quite lengthy and require signifi-
cant effort while integrating analytically in time. To sim-
plify the implementation, H∗

nm and G∗
nm can be expanded

with Taylor series instead of p and q; the resulting expres-
sions for t > rmax/c are given as

H∗
nm = hn,m+1 − 2hn,m + hn,m−1, (8a)

G∗
nm = gn,m − gn,m−1, (8b)

where hn,m and gn,m are used to replace repetitive ex-
pressions and are defined as

hn,m =

√
c2∆t2 (n−m)

2

r2
− 1, (9a)

gn,m = ln

(
c∆t (n−m)

r
− hn,m

)
. (9b)

Furthermore, expanding H∗
nm and G∗

nm around r = rrep
results in the following higher order system matrices

H(k) =

∫
Γ

∂r

∂n
(r − rrep)

k−1
dΓ, (10a)

G(k) =

∫
Γ

(r − rrep)
k−1

dΓ. (10b)

The temporal functions h
(k)
nm and g

(k)
nm are defined by the

Taylor series terms of H∗
nm and G∗

nm defined by Eqn. (8)
calculated considering r = rrep, which are straightfor-
ward to calculate and for the sake of brevity are omitted
in this work. Finally, in order to express the equation of
motion, the expression

n−NL−1∑
m=1

(
No∑
k=1

H(k)h(k)
nmpm +G(k)g(k)nmqm

)
(11)

needs to be added to the Eqn. (5). Since the reduced matri-
ces now include distances with different orders, geomet-
rical information is retained to a certain extent, compared
to partial truncation.

4. RESULTS

4.1 Interior response for a rectangular geometry with
impulsive boundary excitation

The first example is the interior rectangular geometry
shown in Fig. 1 with side lengths Lx = 2 m, Ly = 1 m
and the speed of sound c = 1m/s. The investigated struc-
ture is excited from the right end with an impulsive pres-
sure applied at time t = 0 while the rest of the boundaries
are sound hard boundary (v = 0 m/s). The boundaries
are discretized with 24 equal length linear elements and
the time step is taken as ∆t = 0.6∆x/c. Pressure re-
sponses for three points on the midsection line obtained
by the full model are shown in Fig. 2 with an analytical
solution for the first 12 seconds, however, the final simu-
lation time used in the error calculation is 25 seconds.
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Figure 1. Rectangular interior geometry and three
response locations
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Figure 2. Response obtained from full model at three
points to impulsive pressure

Next, the effect of δ is examined by means of the error de-
fined as the L2 norm of the maximum difference between
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full solution and series expanded solution on three points
in the domain, shown mathematically as

ϵ =

√√√√ 3∑
i=1

(
max
t∈T

(
pfull
i (t)− pseries

i (t)
))2

. (12)

Fig. 3 demonstrates the decrease of error for increasing
order of expansion while considering rrep = ravg . This
decrease only continues up to a δ = δc value after which
the error starts to increase with increasing order of the ex-
pansion. For the δ values larger than δc, the t > rmax/c
assumption is not satisfied, such that the effect of the
Heaviside step function needs to be taken into account.
This inclusion changes the kernel that is approximated,
which nullifies the earlier series expansion, resulting in a
problem dependent causality limit δc after which no con-
vergence can be obtained. Note that, calculating δ with
r = rmax would be a better metric so that δc ≈ 1 for all
problems; however, to stick to the historical convention
ravg is used while calculating δ.
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Figure 3. Change of error due to series expansion for
different expansion orders for rectangular geometry

By choosing an acceptable error of 10−3, Tab. 1 is con-
structed indicating the largest reduction achieved within
the error limit for certain reduction orders. A clear bene-
fit of using higher orders on the storage and construction
costs can be noticed, with diminishing returns. For the
sake of completeness, results obtained from [12] are also
included in Tab. 1, although no error is specified in the
paper.

Table 1. Reduction percentages for given orders of
reduction for absolute error of 10−3

Order None 1st 2nd 3rd 5th 9th [12]

Reduction 0% 38% 55% 76% 82% 83% 70%

4.2 Exterior response for a circular geometry with
time harmonic boundary excitation

The second investigated example is the exterior problem
of the circular geometry shown in Fig. 4 with radius of
1m, and with c = 1m/s . The geometry is excited on all
boundaries with time harmonic pressure starting at time
t = 0 with the frequency of f = 0.5 Hz . The boundary
is discretized with 24 equal length linear elements and the
time step is taken as ∆t = 0.6∆x/c. The time response
for three different points inside the domain at different dis-
tances away from the center obtained by the full model
can be seen in Fig. 5 with analytical results for the first 5
seconds but is used in error analysis with 25 seconds total
time.
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Figure 4. Circular exterior geometry and three re-
sponse locations

The effect of δ on the error defined by Eqn. (12) is shown
in Fig. 6 by considering rrep = ravg . The error is greatly
reduced compared to full truncation even by including the
first order term (partial truncation approach). Similarly to
the interior example of Sec. 4.1, in case δ is larger than
δc, the error starts to increase with increasing order of
terms. Note that compared to the interior example, in-
cluding even orders in the expansion does not offer a sig-
nificant improvement to the error.
Similarly, choosing an acceptable error as 10−3 Tab. 2 can
be constructed as is done in Sec. 4.1. Unlike the first ex-
ample, reduction decreases with second order which is
counterintuitive; where an explanation will be given in
Sec. 4.4.
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Figure 5. Response obtained from full model at three
points to time-harmonic pressure
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Figure 6. Change of error due to series expansion
for different expansion orders for circular geometry

Table 2. Reduction percentages for given orders of
reduction for absolute error of 10−3

Order None 1st 2nd 3rd 5th 9th

Reduction 0% 75% 67% 87% 86% 84%

4.3 Exterior response of a complex geometry with a
full sine plane wave excitation

The examined exterior complex geometry is shown in
Fig. 7 with c = 343 m/s. The geometry is excited by a
propagating single period full sine wave with a frequency
of f = 171.5 Hz, which starts propagating at y = 3 m
at time t = 0 directed towards negative y-direction. The

boundaries are considered sound hard, while they are dis-
cretized with ∼ 0.15 m linear elements and the time step
is taken as ∆t = 0.6∆x/c. The time response for the first
0.04 seconds obtained through the full model is given in
Fig. 8.
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Figure 7. Complex exterior geometry with three re-
sponse locations
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Figure 8. Response obtained from full model at three
points to a full sine traveling wave

The effect of δ is examined in Fig. 9 by considering
rrep = ravg . Unlike the examples of Sec. 4.1 and
Sec. 4.2, the reduction that is achieved by increasing the
approximation order is lower. Moreover, due to the large
size of the geometry compared to the total simulation
time, δc is much smaller, which limits the reduction as
well. Similar error table can be constructed for this exam-
ple as well, however, the trend is similar to Tab. 1 where
the reduction stagnates around 50% starting from second
order expansion for 10−3 error criteria.
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Figure 9. Change of error due to series expansion
for different expansion orders for complex geometry

4.4 Choice of representative distance

Even though employing rrep = ravg within the Taylor
expansion is a logical choice, it might be suboptimal in
terms of the induced approximation error. To examine the
effect of this selection on the approximation error, consec-
utive error analyses are performed by keeping δ constant
and changing rrep for a given expansion order. Inspect-
ing Fig. 10 given for the problem of the Sec. 4.1 using
δ = 0.6, it is clear that the optimum choice for each ex-
pansion order changes, converging to a general optimum
around r = 0.6rmax, which is slightly different than rrep
used Sec. 4.1. Even though, the difference is small, using
the optimal rrep affects the maximum error significantly,
which is approximately halved.
Similar conclusions can be drawn for the exterior problem
of Sec. 4.2 as given in Fig. 11 for δ = 0.7. An opposite
trend compared to interior case is observed with optimal
distance decreasing for increasing order, while changes
are more chaotic. Moreover, addition of even order terms
increases the optimum error significantly.
Based on these conclusions, the need for a good apri-
ori error estimator becomes pronounced, since the error
strongly depends on the expansion distance while increas-
ing the expansion order might not reduce the error if the
same expansion distance is used.

5. CONCLUSION

In this work, the truncation method for 2D acoustic TD-
BEM is extended using a Taylor series expansion. The
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Figure 10. Change of error with changing represen-
tative distance for different expansion orders for the
problem of Sec. 4.1 using δ = 0.6
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Figure 11. Change of error with changing represen-
tative distance for different expansion orders for the
problem of Sec. 4.2 using δ = 0.7

proposed approach offers considerable savings for both
storage and computational costs by increasing the ap-
proximation order compared to partial or total truncation
method.
One of the main drawbacks of the method is the causality
limit δc, which depends on the size of the domain. Further
reduction after δc is not possible and error increases with
increasing approximation order. Another drawback of the
proposed approach is the lack of an apriori error estimator,
which is required for the selection of optimal rrep. Since
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the choice of optimal rrep parameter is significantly de-
pendent on the considered geometry, selecting it as ravg
can still be a safe option without an apriori error estima-
tor.
Even with aforementioned shortcomings the increase in
speed and reduction in memory for interior or exte-
rior problems are quite significant compared to alterna-
tive methods. Moreover, reduction in temporal calcula-
tions does not hinder any possible spatial size reductions
such as model order reduction; which could be combined
directly with the temporal reduction introduced in this
work.
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