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ABSTRACT

This paper explores the use of a complex-valued neural
network for virtual sensing applications. The aim is to
estimate the pressures from single frequency plane waves
from various directions at control points where physical
microphone measurements are not feasible. Making use
of measurements from a microphone array arranged on
an open sphere, the proposed network is trained to infer
the spatial properties of sound fields, predicting the pres-
sure at designated virtual sensor locations. A key contri-
bution of this work is the analysis of the network’s internal
operations via singular value decomposition (SVD) of its
weight matrices. This analysis reveals how the captured
sound fields are spatially encoded by the hidden layer,
which can be considered as a pre-processing step. Dif-
ferent network configurations and training scenarios will
be investigated, focusing on examining the spatial filter-
ing performed by the hidden layer. The results not only
demonstrate the potential of complex-valued neural net-
works in the context of virtual acoustic sensing but also
provide valuable insights into its decision-making pro-
cess.
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1. INTRODUCTION

Sound field reconstruction is crucial for applications
including spatial audio rendering, immersive virtual
reality, and active noise control [1,2]. Very often, it is
necessary to estimate the acoustic pressure at positions
where physical microphone placement is impractical, an
approach known as virtual sensing [3]. Virtual sensors
allow estimation of the sound field at arbitrary positions
by making use of data captured from limited or irregularly
placed microphone arrays. Traditional methods such as
spherical harmonic expansions (SHE) or interpolation
techniques often suffer from spatial aliasing, limited
frequency range, and modeling inaccuracies particularly
when measurements are sparse [4].

Recently, data-driven approaches, particularly those
using neural networks, have shown potential to overcome
these limitations by directly learning spatial relation-
ships within acoustic fields from measured data [5, 6].
However, common neural networks typically handle
only real-valued data, neglecting the inherently complex-
valued nature of frequency-domain signals (magnitude
and phase). The phase information, critical for accurate
spatial reconstruction of acoustic signals, is thus often
poorly represented [7].

Complex-valued neural networks (CVNNs) offer a
promising solution by naturally processing complex
data and preserving the crucial magnitude-phase re-
lationship [8, 9]. CVNNs have demonstrated superior
performance in some acoustic applications such as
near-field acoustic holography [10], classification of
acoustic spectra [11] or sound source localisation [12].
Moreover, because wave propagation is modeled using
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complex exponentials that capture both amplitude and
phase, CVNNs naturally operate in this domain, poten-
tially leading to more accurate sound field reconstructions.

This paper explores the application of CVNNs for
estimating single-frequency sound fields captured from
an open spherical microphone array, focusing on their use
in virtual sensing scenarios. A complex-valued multilayer
perceptron (cMLP) is used for this task. By performing
singular value decomposition (SVD) on the network
weights relating the input and the hidden layer, the
spatial filtering mechanisms employed by the network are
investigated, revealing insights into how CVNNs encode
and interpret acoustic data. Through various network
configurations, we demonstrate that CVNNs can robustly
reconstruct virtual sensor signals with improved spatial
accuracy compared to benchmark techniques, especially
at frequencies above the spatial aliasing frequency.

2. METHODOLOGY
2.1 Problem description

Consider a homogeneous, free-space environment, where
the sound field is modeled as a single-frequency plane
wave. The pressure p measured at a microphone located
at position ry, is given by

p(k, 1) = Ae ™7 knarmta) )

where A denotes the unit amplitude, k& = 27 f/c is the
wavenumber of frequency f and speed of sound c. The
dot product ng.r,, determines the phase shift of the plane
wave as it arrives at the microphone at position vector
r,, where the unit vector ng indicates the direction of the
plane wave propagation. The additional phase term « is
introduced to apply a random offset to each plane wave
when training the neural network model. This ensures
that the arrival time at the microphone array varies for
each wave, effectively removing the phase shift from the
plane wave starting point to the array.

The measurements of the single-frequency plane
waves are computed at a microphone array arranged on
the surface of an open sphere. The sensors are placed
nearly uniformly on the sphere at locations r,, that
replicate the angular positions of those of an Eigenmike
em64 [13]. The radius of the array is set to Ry,;c = 0.4 m.
Due to the finite spatial sampling of the open sphere, the
microphone array has an inherent spatial aliasing fre-
quency falas, Which limits the effective frequency range
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for accurate sound field reconstruction using traditional
spherical harmonic (SH) methods. This frequency can be
computed for the array used here as [4]

cN

— =055.33 H
2'/T}zmic “

f alias — (2)
where N = 7 is the maximum SH order determined by
the sampling of the open sphere microphone array and

the speed of sound is assumed to be ¢ = 343 m/s.

For the reconstruction task, the virtual sensors de-
noted here as control points are placed within a smaller
sphere of radius R, = 0.2 m. A total of 2945 control
points were uniformly distributed on a 3-dimensional
Cartesian grid throughout the volume of this smaller
sphere, ensuring complete and even spatial coverage. The
spacing is determined based on the smallest wavelength
of interest to ensure that spatial aliasing is avoided at the
control points. This guarantees that the reconstruction
at these locations remains accurate even though the
microphone array itself may experience aliasing at higher
frequencies.

2.2 Dataset Generation

To evaluate the performance of the cMLP for this sound
field reconstruction task, three different datasets were gen-
erated, each corresponding to a specific plane wave fre-
quency relative to the spatial aliasing threshold of the
open-sphere microphone array (see Eq. (2)). The three
plane wave frequencies are defined as

¢ One octave below aliasing: fiow = 477.66 Hz
¢ At the aliasing frequency: falias = 955.33 Hz
* One octave above aliasing: fiigh = 1910.66 Hz

This selection of frequencies enables the investigation of
the network’s robustness to aliasing effects and its ability
to reconstruct sound fields at and beyond the aliasing
threshold.

For each frequency, plane waves originating from
2000 different directions ng quasi-uniformly distributed
over the sphere are generated with a random phase.
The distribution of plane waves ensures comprehensive
coverage of possible incident angles and facilitates a
thorough assessment of the network’s generalization to
unseen directions. Each dataset was partitioned into
80% of the plane wave directions for training and 20%
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Figure 1: cMLP model with two hidden layers used
for the sound field reconstruction task.

of the directions for validation purposes. By structuring
the datasets in this manner, the aim is to rigorously
evaluate the CVNN’s ability to generalize to unseen
plane wave directions across a range of frequencies,
particularly in scenarios where spatial aliasing may
impact reconstruction quality.

2.3 Network parameters

A cMLP with two hidden layers was used to solve the pro-
posed sound field reconstruction task and is illustrated in
Figure 1. The measured sound field at the A/ = 64 micro-
phones on the open sphere were used as input features to
the network. The target outputs were the pressure values
at the 2945 control points within the smaller sphere. The
network’s objective was to accurately predict these values,
effectively reconstructing the sound field within the con-
trol region. The two hidden layers contained 200 neurons
and had the complex cardioid activation function [14],
which reduces to the ReLU function if the data is real. The
output layer contained no activation function. A learning
rate of 0.001 was used initially and after every 50 epochs
this value was halved. The model was trained for a total
of 300 iterations using the ADAM optimizer to update the
weights and with a batch size of 16.

2.4 Benchmark techniques

The proposed cMLP model is compared with two differ-
ent signal processing based approaches in terms of sound
field reconstruction performance. These benchmark
methods are the spherical harmonic expansion (SHE) and
least squares (LS) solution. All three techniques can be
represented within a common framework that transforms
microphone pressures into pressures at designated control

4345

points. The cMLP network is defined as a nonlinear
approach due to the nonlinear activation functions while
the other two benchmark methods are defined as linear
transformations.

The proposed cMLP approach can be defined as a
nonlinear transformation of the pressure recorded at the
microphone array py, to the pressure at the control points
P. and is given by

pPc = N(pm),

where N represents the nonlinearity of the network
model.

3)

2.4.1 Spherical Harmonic Expansion (SHE)

The SHE approach exploits the physical properties of the
acoustic wave propagation. Using the common frame-
work, the technique can be defined as p. = WgphePm-
The computation of Wy, involves three main steps.

First, the measured pressure p,, can be expressed
in terms of SH using matrix form notation as

“4)

where Y, is the matrix of SHs evaluated at the M = 64
microphones and p is the vector of SH coefficients [4].
Due to the number of microphones on the open sphere,
the maximum SH order is N = 7, which yields (N + 1)?
SH functions. It follows that Y., is a 64 x 64 ma-
trix. The matrix Dy, is a 64 x 64 diagonal matrix
representing the radial dependency at R, defined
as D, = diag{jn(kRmic)} with j,(kRmic) being the
spherical Bessel function of order n. The vector of SH co-
efficients p can thus be computed from p = D' Y] p.,
where Y7, is the Moore-Penrose pseudoinverse of Y ,.

Pm = YmDmf)v

Using a similar approach, the pressure at the con-
trol points can be represented in terms of SH as

pPc = Y.Dcp, (&)

where Y. is the matrix of SH evaluated at the 2945 con-
trol points and D, is the diagonal matrix of radial depen-
dencies at I2.},. Replacing the vector of SH coefficients p
yields

pe = Y.D.D,'Y] pn (6)

and a transformation matrix Wy, can be computed from
Wahe = YCDCDgllY;fn.
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This approach provides a systematic framework for
reconstructing the sound field at the control points,
however it suffers from certain limitations. For example,
the matrix D! contains terms of the form 1/, (kRmic),
where the spherical Bessel function j,(kRpmic) may
approach 0. For a given radius, the spherical Bessel
functions at multiple frequencies are zero and can
lead to numerical instabilities which will impact the
reconstruction of the pressure. The second limitation is
related to the spatial aliasing. If the measured microphone
pressure p,, contains errors due to undersampling at high
frequencies, these errors will affect the computation of
P., further degrading the reconstruction quality [4].

2.4.2 Least squares (LS) solution

This method computes a simple linear mapping between
the pressures at the measurement microphone array and
that at the control points. The aim is to minimise the
error in estimating the control point pressures based on
the available microphone data. First, two matrices are
generated with the available training data at the micro-
phones and control points. P, € C64*1600 ¢ontains the
64 pressures at the microphone positions for all 1600
training plane waves. P, € C2945x1600 contains the
pressure values at the control points for the same set of
plane waves.

We assume that the relationship between the mea-
sured microphone pressures in the training dataset
P., and the pressures at the control points P. can be
approximated by a linear mapping represented by the
transformation matrix Wy,. This can be formulated as
15C ~ Wlsf’m. To determine the optimal matrix Wi,
the aim is to minimize the reconstruction error in the

least-squares sense
win||Pc - WP |3, (7

where || - ||z denotes the Frobenius norm. After some
algebraic steps including a derivative with respect to Wi,
it follows that the general solution for W is expressed as

Wy, =P Pl )

where f’jn denotes the Moore-Penrose pseudoinverse of
P, [15]. For the validation set, the pressures at the con-
trol points are estimated from

Pc = Wlspm . (9)

Table 1: Normalised mean squared errors of the
c¢cMLP and the benchmark techniques for the valida-
tion dataset, expressed as an averaged error over all
control points in dB.

flow falias fhigh

cMLP | -43dB | -29dB | -3dB
SHE | -80dB | 0dB | 18dB
LS -81dB | -9dB | -1dB

It should be noted that both the cMLP and the LS methods
are data-driven approaches, using the same training data
P, P... In contrast, the SHE method relies on a physical
(analytical) model rather than empirical data.

3. RESULTS

This section will present a comparative analysis between
the cMLP and the benchmark techniques across various
scenarios. First, the sound field reconstruction perfor-
mance is assessed for the general task as described above.
Next, an analysis of the internal operations of the three
techniques will be presented, focusing on the singular vec-
tors of the matrices. In the end, based on previous obser-
vations discussed in [16], the performance of the cMLP
with microphone pressures as input will be compared to
that of the cMLP with other features as input.

3.1 Normalised mean squared errors

Table 1 shows the reconstruction performance of the
cMLP and the two benchmark techniques (SH and LS)
expressed as an averaged error in dB for all validation
plane waves. The error is averaged over all 2945
control points. It can be observed that for the fioy,
both benchmark techniques outperform the cMLP by a
significant amount. This is not necessarily surprising,
since at frequencies significantly below the aliasing
frequency, these traditional methods are highly accurate
due to their solid mathematical foundation and the ideal
conditions, such as sufficient spatial sampling relative
to the wavelength. At low frequencies, the acoustic
field varies smoothly over space and the pressure can be
accurately captured using a relatively small number of
SH modes. Due to the simple wave patterns, simple linear
mappings such as SHE and LS approaches can handle
these spatial patterns, while it is likely that the nonlinear
c¢MLP model introduces unnecessary complexity.
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When the frequency approaches or exceeds the spa-
tial aliasing frequency, traditional methods like SH and
LS degrade significantly, as observed in Table 1. This
is mainly due to the errors in the measured sound field
introduced by aliasing. Especially for the SHE approach,
higher-order spherical modes are not properly captured
and the missing information leads to a lower reconstruc-
tion performance. The cMLP model outperforms both
benchmark techniques at faiias and fuign due to the fact
that it can learn complex patterns from the data, including
aliasing artifacts. Essentially, the network is able to
compensate for the undersampling in the input data and
can reconstruct an aliasing free sound field at the control
points. Similar promising observations have been made
by [5,7,17] and suggest that one can use neural networks
to improve the reconstruction performance around and
above spatial aliasing.

Figure 2 shows an example of the sound field re-
construction performance at the control points for a plane
wave at fiias = 955.33 Hz using the trained cMLP
model.

3.2 Spatial filtering

In previous work [16], it has been shown that for a similar
task of sound field reconstruction, the first hidden layer
in the cMLP is decomposing the input pressure field
into spatial basis functions that resemble SH modes.
Specifically, by evaluating the SVD of W(®) = UBVH,
where W) is the matrix relating the input and the first
hidden layer (see Figure 1), the resulting right singular
vectors in V exhibit clear physical interpretations. For
low frequencies below falias, the first mode closely
resembles an omnidirectional pattern, while subsequent
modes reflect dipole-like patterns oriented along different
spatial axes.

Following this, it is interesting to compare the spa-
tial filtering operations of the cMLP model with the SHE
and LS methods. This can be achieved by computing the
SVD of Wy, and W4 and examining their right singular
vector matrices V. For all methods, the columns of V
represent spatial patterns at the microphone positions. To
investigate the relation of these patterns to traditional SH
modes, we first define a so-called beamformer output for
a plane wave arriving from direction n; as

zi(m) = vi'p(k,my), (10)
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where j = 1...J. By evaluating z;(m;) at L directions,
we form a beamformer output matrix Z = VHP, where
P = [p(n;), p(n;), ..., p(ny)]. For the three different
methods, we define three matrices of beamformer outputs
Zip, Lis, Zghe. Using a general beamformer output ma-
trix Z, each of the above matrices can be expanded in
terms of SH as

zT =Y\Z, (1n

where Y is an L x (N + 1)? matrix containing SH
basis functions evaluated at L directions and Z is an
(N + 1)? x J matrix of SH expansion coefficients [4].
Note that N = 7 is the maximum SH order. Similarly, the
plane wave sound field matrix P can be expanded in terms
of SHas P = Y,,P, where Yy, isa M x (N + 1) ma-
trix containing SH basis functions evaluated at M = 64
microphones. The SH coefficient matrix P can be further
decomposed into P = DY, with D a diagonal ma-
trix containing the spherical Bessel functions jy, (kRpnic)
and phase terms j ~" originating from the SH expansion of
plane waves. Substituting the above terms into the beam-
former expression yields

Z =VHip
Y,2)" = Vviy, P

12)
(13)

and so the SH coefficients of the beamformer becomes

Z=(vihy,D)". (14)
Figure 3 shows three plots corresponding to the magni-
tude of the elements of the matrices Z,1p,, Zis, Zghe for
the dataset of plane waves at fi,, = 477.66 Hz. These
plots show how strongly each SH mode is excited by
each singular vector. The SHs corresponding to the first
singular vectors are considered to be the most important
when decomposing the pressures at the microphones.
Essentially, the plots show how each of the techniques
processes microphone pressures generated by plane
waves arriving from directions uniformly distributed
around the sphere.

It is interesting to observe that the LS and SHE ap-
proaches behave very similarly at fj,, and this behaviour
is emphasised by the almost identical reconstruction
performance from Table 1 at f,,. Even if the LS method
does not use any SH decomposition of the pressure,
it concentrates its strength in the lower-order SH and
requires minimal contributions from higher-order SHs.
The magnitude plot of the cMLP model is different,
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Figure 2: Example of reconstruction performance of one plane wave at faj.s = 955.33 Hz for the cMLP
model.
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Figure 3: Magnitude of the SH expansion coefficients Z for the dataset of plane waves at fi,,, = 477.66 Hz.
Magnitude is normalized for each plot individually. The horizontal axis indicates the spherical harmonic index
n? 4+ n + m where n and m are the SH order and degree, respectively.

showing that the network uses the information from more
SHs in each singular vector and there is no clear pattern
that an increased singular vector corresponds to SHs at
higher orders. Even though the cMLP is using additional
information compared to the other two methods, this
information is only increasing the complexity of the
learning, without really adding any benefit to the recon-
struction performance (see Table 1). A pattern emerges
though for all three techniques. For the fi.,, dataset, all
three techniques use SHs just up to order NV = 5.

Above the aliasing frequency at fpizn, the magni-
tudes of the SH coefficients look different and are shown
in Figure 4. The SHE approach has an expected behaviour
with the magnitude of the coefficients split over all SHs,
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including those of higher order. The LS approach and
the cMLP model have very similar behaviours and each
singular vector uses a linear combination of most of the
SHs. There are some obvious gaps of strength in all
three plots at the same SHs and these gaps correspond
to the zeros in the Bessel functions at specific orders.
Interestingly, even if both the LS and the cMLP models
do not use any Bessel functions in their approach, the
methods cannot make use of the information contained in
those SHs.

3.3 Performance analysis using different input
features

Based on the fact that the weight matrix W, between
the input and the hidden layer is learning a modal decom-
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Figure 4: Magnitude of the SH expansion coefficients Z for the dataset of plane waves at fpizn, = 1910.66 Hz.
Magnitude is normalized for each plot individually. The horizontal axis indicates the spherical harmonic index
n? + n + m where n and m are the SH order and degree, respectively.

Table 2: Normalised mean squared error of the
cMLP using microphone pressures as input (cMLP-
P) with one or two hidden layers, compared to
the cMLP using SH coefficients in the input layer
(cMLP-SH) with one or two hidden layers.

flow falias fhigh

cMLP-P 1 layer -19dB | -14dB | -1dB
cMLP-P 2 layers | -43dB | -29dB | -3dB
cMLP-SH 1 layer | -44dB | -26dB | -1dB
cMLP-SH 2 layers | -41dB | -29dB | -2dB

position of the sound field, similar to SHs, an interesting
comparison of reconstruction performance is shown in Ta-
ble 2. Here, the cMLP with microphone pressures as input
layer (cMLP-P) is compared to a cMLP with SH coeffi-
cients as input layer (¢cMLP-SH). It is expected that by
adding this pre-processing stage of SH decomposition of
microphone pressures, the new cMLP model might need
less time to converge and will need only one hidden layer
to achieve a similar performance to that of the original
cMLP. It can be observed that if the microphone signal
is used as input into the network, using just one hidden
layer decreases the reconstruction performance substan-
tially at all three frequencies. However, if the prepro-
cessing step of SH decomposition is added, the cMLP-
SH model achieves a similar performance with one hid-
den layer as the cMLP-P with two hidden layers. This
suggests that when the first hidden layer is removed from
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the cMLP-P approach, the network loses its ability to per-
form the critical basis transformation step. Providing this
preprocessing step simplifies the learning task and reduces
the network complexity needed. These observations fur-
ther confirm that the learned internal spatial basis signifi-
cantly contributes to the network’s reconstruction capabil-
ities.

4. CONCLUSION

In this study, the use of a complex-valued multilayer per-
ceptron (cMLP) was investigated for a sound field re-
construction task, specifically addressing virtual sensing
scenarios with spherical microphone arrays. While tradi-
tional methods (spherical harmonic expansions and least-
squares solutions) excel at frequencies below spatial alias-
ing, the cMLP outperformed these benchmarks at and
above the aliasing threshold, highlighting its robustness to
spatial sampling limitations. Singular value decomposi-
tion of the network’s input layer weights revealed that the
network implicitly learns spatial basis functions closely
resembling spherical harmonic modes, indicating a phys-
ically interpretable internal representation. Further vali-
dation showed that directly using spherical harmonic co-
efficients as inputs allowed for substantial simplification
of the cMLP architecture, maintaining high reconstruc-
tion accuracy. Thus, complex-valued neural networks not
only offer improved reconstruction at higher frequencies
but also implicitly discover optimal spatial decomposi-
tions aligned with classical acoustics theory.
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