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ABSTRACT

Smart vehicles are experiencing increasing adoption,
driven by a growing demand for their applications. To
facilitate widespread deployment, it is important to im-
prove the security and trust of these vehicles. This pa-
per focuses on improving smart car safety by develop-
ing an audio-based system for detecting important sound
events, including emergency vehicle sirens, tire skidding,
car crashes, horn types, drifting, and others. Our method-
ology involves a multifaceted approach to classifying a
diverse range of driving-related audio events. We begin
with a Convolutional Recurrent Neural Network (CRNN)
as a baseline. Subsequently, we investigate the perfor-
mance of pre-trained foundational models (e.g., BEATS,
Audio Spectrogram Transformers) followed by a Recur-
rent Neural Network layer, aiming to leverage the pre-
trained representations for improved event classification.
Additionally, we explore the potential benefits of combin-
ing these approaches, considering as well the effect of in-
troducing augmented data. We propose novel hybrid mod-
els that integrate features extracted by the convolutional
layers of the CRNN with those directly obtained from the
pre-trained models. Our experimental results demonstrate
significant performance gains when combining these dis-
tinct approaches into a unified architecture.

Keywords: Sound Event Detection, Deep learning Mod-
els, Smart Vehicles, Driver safety, Convolutional Recur-
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rent Neural Network (CRNN), Audio Spectrogram Trans-
former (AST), BEATs, Data Augmentation.

1. INTRODUCTION

Human senses, especially sight and hearing, play a major
role in our perception, communication, and safety. Al-
though sight is undoubtedly the most important sense,
hearing helps humans absorb and analyze surrounding in-
formation and may even be the only reliable source in
certain situations. Due to the importance of auditory in-
formation, integrating auditory sensing into smart devices
and autonomous systems, which are increasingly preva-
lent, has become essential [1]. These systems, including
smart cars, are now equipped with various sensors such
as cameras, long and short-range radars, Light Detection
and Ranging (LiDAR), ultrasonic transducers, and GPS
receivers. However, these sensors have limitations [1].
For instance, cameras have blind spots and are sensitive
to lighting and scene structure, making visual information
unreliable. According to the National Highway Traffic
Safety Administration, approximately 840,000 blind spot
incidents occur annually in the United States, resulting in
300 fatalities [2]. Similarly, lasers are ineffective in ex-
treme weather conditions.

To handle these challenges, researchers are increas-
ingly focusing on the ability of devices to automatically
detect and classify sound events through technological
means known as sound event detection (SED) [3]. SED
is the automatic process that detects and classifies events
in audio streams and estimates the onset and offset of
these events [4]. SED has many applications, including
audio/video surveillance [5, 6], healthcare monitoring, en-
vironmental monitoring [7], industrial machine fault mon-
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itoring [8], human-computer interaction, and smart cars.
By accurately detecting and timestamping sound events,
SED systems can enhance the capability, security, and
trust in smart devices and autonomous systems.

However, SED is still an evolving research topic due
to several challenges, such as having enough data for
training, ensuring performance in noisy environments,
real-time processing, and modeling overlapping sounds
[9]. Additionally, the development of robust SED systems
is complicated by the need for sufficiently labeled datasets
with accurate annotations for training purposes, making
them more applicable in real-world scenarios [10]. Tra-
ditional SED methods relied on manual feature extraction
(e.g., MFCC [11], Mel spectrograms) and classical ma-
chine learning techniques such as SVM [11], KNN, and
HMM/GMM [12]. While these approaches provided ini-
tial insights, they often required extensive experimenta-
tion and struggled in complex, noisy environments. These
limitations spurred the transition to deep learning, which
has revolutionized sound event detection. Recent works
have shown that through deep learning models, specifi-
cally Convolutional Neural Networks (CNNs) [13,14] and
Recurrent Neural Networks (RNNs) [15], state-of-the-art
performance is achieved on numerous tasks involving pat-
tern recognition and learning data representations. These
models reduce the dependency on manual feature extrac-
tion. This gave deep learning models the potential to
handle the complexities of multiple concurrent and over-
lapped sound events; hence deep learning has become the
state-of-the-art approach for SED with better accuracy and
robustness.

More recently, pre-trained foundational audio models,
such as BEATSs [16] and the Audio Spectrogram Trans-
former (AST) [17], have emerged as powerful tools for
capturing universal audio representations from large-scale
datasets. These models offer enhanced feature extrac-
tion capabilities and have shown promise in various au-
dio analysis tasks, making them particularly well-suited
for addressing the challenges of SED in dynamic environ-
ments like driving scenarios.

There are, however, a few remaining research gaps.
Despite many advances, current models still need to bet-
ter consider temporal dependencies, contextual complex-
ities, and rich feature extraction. Moreover, more gen-
eralized models that perform well under diverse acoustic
environments [15] are needed, and the issue of computa-
tional efficiency—especially for deployment in resource-
constrained setups—remains a challenge. The main ob-
jective of this paper is to address these gaps by investigat-
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ing novel deep learning architectures and training strate-
gies aimed at developing more robust, general, and ef-
ficient SED systems for driving scenarios. In particu-
lar, this paper promotes the sound event detection field
by developing and evaluating novel deep learning models
that combine the strengths of traditional CNN and RNN
architectures with the enhanced representations obtained
from pre-trained embedding models. The critical con-
tributions from this work include presenting a novel hy-
brid model that integrates convolutional and recurrent lay-
ers with pre-trained audio representations to improve both
performance and generalization. Comprehensive experi-
mental results on data collected in driving environments,
demonstrate the effectiveness and superior performance of
the proposed methods.

Section 2 provides an overview of the data used in
our study. Section 3 outlines a baseline system and dif-
ferent proposed SED models. Section 4 describes the ex-
perimental setup, including the preprocessing step, train-
ing details, and evaluation metrics. Section 5 provides the
experimental results and discusses their implications, and
Section 6 concludes the paper with suggestions for future
research.

2. DATASET

The dataset used in this study was collected by [18],
specifically designed to support the training and evalua-
tion of sound event detection systems in driving environ-
ments. This dataset has sounds that originated from both
internal sources within the vehicle, such as vehicle com-
ponents, devices, and human interactions, as well as exter-
nal sources like traffic, road conditions, and environmen-
tal factors (see Fig. 1).

2.1 Dataset overview and Sources

The dataset comprises 19,000 audio files, each with a du-
ration of 10 seconds, resulting in a total duration of ap-
proximately 53 hours. To ensure a balanced representa-
tion of events, the dataset was split into training, vali-
dation, and test subsets: 15,000 audio samples for train-
ing, 2,000 for validation, and 2,000 for testing [18]. The
sound events were sourced from various publicly avail-
able datasets with unrestricted usage rights, including:
Musical Genre Classification of Audio Signals [19], Ur-
banSound [20], AudioSet [21], Old Phone Ringtones as
MIDI [22], ASR-CabNois (Cabin Noise Dataset) [23],
Freesound [24], A Singing Voice Dataset [25], DCASE
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Figure 1. Internal (e.g. ring tone) and external (e.g.
horn, siren) sounds while driving.

2020 Task 4 Dataset [26], Donate-A-Cry Corpus Features
Dataset [27].

2.2 Synthetic Data Generation and Labeling

To simulate realistic driving conditions, the dataset was
created using Scaper [28] with augmentation techniques
such as time stretching and pitch shifting applied to
improve diversity and model generalization. Table 1
provides a concise overview of our dataset, which
comprises 41 classes. In our classification framework,
we explicitly consider a problem with 41 distinct classes.
These events are organized into nine primary distractor
categories- horns, Sirens, Speech, Physiological, Pets,
Notifications, Vibrating, RingTone, and Cry- each of
which represents sounds most likely to divert a driver’s
attention. All other environmental sounds, such as rain,
thunder, or microphone noise, are grouped under “Other”,
thus completing the broader driving environment. Each
event was assigned hard labels, providing precise onset
and offset timestamps within the 10-second clips. The
event annotations followed a standardized format: The
audio file name, the event type, the event onset and
offset times. This structured labeling approach ensured
the dataset was compatible with multiple machine
learning frameworks and facilitated accurate model
training. The dataset is openly accessible via https:
//www.kaggle.com/datasets/ccastorena/

sound-event-detection-for-driver-safety

and can be utilized by researchers and practitioners for

benchmarking and further development in sound event
detection [18].

Table 1. Dataset Summary

Class Groups Classes Appearances
Horns 4 11,693
Sirens 3 8,858
Speech 1 3,020
Physiological 3 8,639
Pets 2 5,843
Notifications 1 2,862
Vibrating 1 2,988
RingTone 1 2,835
Cry 1 2,950
Other 24 16,597
Total 41 66,285

3. SED MODELS

Sound Event Detection (SED) involves identifying and
localizing sound events by capturing both their spectral
details and temporal dynamics. We begin with a popu-
lar CRNN baseline from the DCASE framework, which
uses convolutional layers to extract features from Log-Mel
spectrograms and recurrent layers to model how these fea-
tures evolve over time. To further enhance our model’s
performance, we also combine additional feature extrac-
tion from pretrained models like the Audio Spectrogram
Transformer (AST) and BEATS, creating a richer repre-
sentation of the audio signals for more robust detection.

3.1 CRNN model as a baseline

We employ the DCASE baseline architecture [29] based
on Convolutional Recurrent Neural Networks (CRNNSs),
which are widely used in sound event detection. This ar-
chitecture is used to detect patterns in complex audio sig-
nals (via convolutional layers) and interpret how those pat-
terns evolve over time (via recurrent layers). We use the
standardized CRNN architecture defined by the DCASE
framework, ensuring compatibility with other studies. As
illustrated in Figure 2, the CRNN starts by converting au-
dio into a Log-Mel spectrogram. This spectrogram, sized
[1, 626, 128] (1 is the channel dimension, 626 is the
time dimension, and 128 is the number of Mel frequency
bands), is processed through seven convolutional blocks.
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Figure 2. Baseline CRNN Architecture.

Dense
(156x41)

Each block uses a 2D convolution with a kernel size of
3%3, batch normalization, GLU activations, and average
pooling. The number of filters in each layer is: 16, 32,
64, 128, 128, 128, 128, and the pooling operations has the
specific dimensions of 2x2, 2x2, 1x2, 1x2, 1x2, 1x2,
1x2, respectively. This results in the convolutional output
shape of [128, 156, 1]. To integrate with the bidirectional
recurrent layers, the filter dimensions are transposed, and
the extra dimension is removed. The bidirectional GRU
layer produces an output of [156, 256], with 128 hidden
units in both directions. Finally, a dense layer with soft-
max activation generates the final output with 156 frames
and 41 distinct events.

3.2 Proposed models

Our proposed framework explores three distinct feature-
extraction pathways for each audio clip, as illustrated in
Figure 3. The first pathway, termed the Baseline CNN
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Path, uses Log-Mel spectrograms of size 1x626x128 as
input to a convolutional neural network. This CNN pro-
cesses the spectrograms to generate initial feature tensors
with dimensions of [128, 156, 1].

The second pathway, referred to as the AST Path,
leverages the frame-level version of the Audio Spectro-
gram Transformer (AST), specifically the ATST-Frame
variant with a Base384 configuration. This model pro-
cesses 10-second audio segments to produce a feature ten-
sor of size 768x496 (representing the embedding dimen-
sion and time steps). An average pooling stage is ap-
plied to reduce the time dimension from 496 to match the
CRNN’s temporal resolution of 156, resulting in a pooled
output of size [768, 156]. Features from this path are
stored in HDFS format for efficient loading.

The third pathway, known as the BEAT's Path, utilizes
BEATS _iter3_plus_AS2M.pt, a model pre-trained on Au-
dioSet. Operating at a 16 kHz sampling rate with a 25
ms window (and a 10 ms hop length), this approach also
outputs embeddings of size 768x496, which are similarly
reduced via average pooling to produce a tensor of dimen-
sions [768, 156]. Again, the features are stored in HDF5
format.

To harness the complementary strengths of these
pathways, our framework investigates several fusion
strategies. The simplest strategy is the CNN+RNN base-
line, which relies solely on features extracted by the
CNN. Alternatively, pretrained features from the BEATs
and AST paths can be fed directly into recurrent layers
(BEATs/AST Path + RNN). Another approach involves
concatenating the CNN-extracted features with those from
the AST or BEATSs paths (CRNN + AST/BEATS), before
inputting the combined representation into recurrent lay-
ers. Finally, a full integration strategy (CRNN + BEATSs
+ AST) is proposed, combining all feature streams into a
unified architecture. This multi-path fusion is designed
to exploit the diverse and rich representations provided
by each pathway, ultimately enhancing the robustness and
accuracy of sound event detection in dynamic driving sce-
narios.

4. EXPERIMENTAL SETUP
4.1 Audio Pre-processing and Augmentation

All audio clips are first resampled to a 16 kHz sampling
rate (mono) using Librosa. To ensure consistent input
lengths, clips longer than 10 seconds are truncated, and
those shorter than 10 seconds are zero-padded to reach
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Figure 3. Proposed models.

the 10-second duration. For labeling, a frame-wise hard
label format is used, where each frame corresponds to a
discrete timestamp. Each frame has a value of 1 when
an event is present and O otherwise. The output must
predict 156 frames, corresponding to the chosen num-
ber of events. The model uses log-mel spectrograms as
input features for the CNN model, using 128 mel-filters
with a window length and FFT size of 2048, a Hamming
windowing function, and a hope size of 256. The fre-
quency range for the Mel spectrogram is from 0 Hz to
8000 Hz. The resulting Mel spectrogram has dimensions
of 626 frames, 128 Mel bands, and a single channel. Dur-
ing training, we apply a combination of data augmentation
techniques to enhance the robustness and generalization
of our models. Specifically, we use the mixup technique
and specaugment. Mixup is a widely adopted augmenta-
tion method in both machine listening and computer vi-
sion [30]. It creates synthetic training samples by lin-
early interpolating pairs of input spectrograms and their
corresponding labels, thereby increasing the diversity of
the training data and smoothing the decision boundaries.
In addition, specaugment [31] is applied to the Log-Mel
spectrograms, which involves randomly masking blocks
of time and frequency bins. This perturbation forces the
model to learn more invariant features and reduces sensi-
tivity to noise, ultimately contributing to improved perfor-
mance in dynamic and challenging driving scenarios.

4.2 Training Schedule

All experiments (CRNN-only, CRNN+AST,
CRNN+BEATSs, etc.) use the same overall training
procedure: training continues for up to 200 epochs with
early stopping triggered if no improvement is observed
for 100 consecutive epochs, a dropout rate of 0.5 is
applied, and the batch size is set to 48 for both training
and validation. Additionally, the Adam optimizer is
employed with a learning rate of 0.001 and a warm-up
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phase during the first 50 epochs.

4.3 Metrics

To comprehensively evaluate sound event detection sys-
tems, we employ a range of complementary metrics.
While Accuracy is a common measure, relying on it
exclusively can be misleading, especially for frame-by-
frame detection and rare events. Thus, we complement it
with more detailed metrics, such as the F1 score and the
Polyphonic Sound Detection Score (PSDS).

The F1 score is widely used because it effectively bal-
ances Precision and Recall, thereby measuring the sys-
tem’s accuracy in detecting events without over- or under-
detection. Meanwhile, the PSDS is computed using the
psds_eval toolbox [32], which is a recognized standard
within the DCASE community. PSDS values are derived
from 50 operating points (linearly distributed from 0.01 to
0.99) and refer to the normalized area under the PSD-ROC
(Receiver Operating Characteristic) curve up to a specified
maximum effective false positive rate (eFPR).

In our experiments, we use PSDS1, where DT =
GT¢ = 0.7, in accordance with common practices in gen-
eral SED tasks.

5. RESULTS AND DISCUSSION

Models Augmentation Accuracy PSDS F1

CRNN+ReLU None 92 22.1 556
CRNN+ ReLU Mixup+specaugment 94 235 563
CRNN+GLU(baseline) Mixup+specaugment 95 28.1 58.1
AST+RNN Non 96 30.1 599
BEATs+RNN Non 98 31,5  60.6
CRNN+AST Mixup+specaugment 97 374 612
CRNN+BEATs Mixup+specaugment 97 39.7 616
BEATs+AST+RNN Non 97 43.6 63.1
CRNN+BEATs+AST  Mixup+specaugment 97 443 634

Table 2. Comparison of models, augmentations, and
their performance metrics.

Table 2 summarizes the performance of various sound
event detection models. We begin with a CRNN+ReLU
model without augmentation that achieved an accuracy of
92%, a PSDS of 22.1, and an F1 score of 55.6. When aug-
mented with Mixup and specaugment, the CRNN+ReLU
configuration improved slightly to 94% accuracy, 23.5
PSDS, and 56.3 F1. Replacing ReLU with GLU in the
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Figure 4. Confusion matrices comparing the best proposed model (left) and the CRNN+GLU baseline(right)

CRNN, while using the same augmentation, further en-
hanced performance to 95% accuracy, 28.1 PSDS, and
58.1 F1. This enhanced model not only serves as the
baseline for the DCASE 2021-2023 editions [29], but it
also becomes our reference point for comparing the per-
formance of our proposed models, and forming the back-
bone of our hybrid approaches.

Models that integrate pre-trained audio features also
showed notable improvements. The AST+RNN model,
which does not use data augmentation, reached 96% ac-
curacy, 30.1 PSDS, and 59.9 F1, while the Beats+RNN
model outperformed it with 98% accuracy, 31.5 PSDS,
and 60.6 F1.

The benefits of fusion strategies become even more
evident in the hybrid models. The CRNN+AST and
CRNN+Beats models, CNN employing Mixup and
specaugment, achieved 97% accuracy with PSDS scores
of 37.4 and 39.7, and F1 scores of 61.2 and 61.6, re-
spectively. The Beats+AST+RNN configuration, with-
out augmentation, reached 97% accuracy, 43.6 PSDS,
and 63.1 F1. Finally, the fully integrated model
CRNN+Beats+AST with Mixup and specaugment main-
tained 97% accuracy while achieving the highest PSDS
(44.3) and F1 (63.4) scores.

To illustrate the behavior of the best model and the
CRNN+GLU baseline on different classes, frame-based
confusion matrices and associated accuracies are shown
in Figure 4. The confusion matrices demonstrate that
the BEST model has a stronger diagonal, reflecting a
higher number of correct predictions, whereas the base-
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line shows more off-diagonal misclassifications. In Fig-
ure 4, we use a support-weighted per-class accuracy met-
ric that differs from the frame-based accuracy presented
in Table 2. The Table 2 metric is computed online us-
ing torchmetrics, evaluating the model’s ability to
correctly detect the presence or absence of sound events
within fixed-length segments and capturing both active
and inactive portions. By contrast, the metric in Figure 4
is derived post-hoc from a confusion matrix (often ex-
cluding the non-event class) by normalizing each class’s
counts and computing a weighted average based on class
frequencies, effectively treating each class as a separate
binary classification (one-vs-rest). These differences in
aggregation, class inclusion, and weighting account for
the observed discrepancies between the two accuracy val-
ues. Notably, for Figure 4, the BEST model achieves an
average accuracy of 67.7% compared to the CRNN base-
line’s 61.8%, highlighting the benefits of integrating pre-
trained audio features in driving scenarios.

These results indicate that leveraging pre-trained au-
dio models substantially enhances the detection of com-
plex, overlapping sound events in dynamic driving envi-
ronments, with data augmentation further improving gen-
eralization. The superior performance of the hybrid mod-
els over the CRNN approaches underscores their potential
for robust real-world sound event detection in challenging
driving scenarios.
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6. CONCLUSION

In this study, the integration of pre-trained models, specif-
ically AST and BEATs, into a CRNN-based framework
represents a significant breakthrough in sound event de-
tection for driving scenarios. By leveraging the ad-
vanced feature extraction capabilities of models like AST
and BEATS alongside the proven temporal modeling of
CRNN:Ss, our hybrid approach achieves superior perfor-
mance—demonstrated by higher accuracy, PSDS, and F1
scores—compared to traditional methods. Data augmen-
tation techniques such as mixup and specaugment further
enhance model robustness in noisy, real-world environ-
ments, making the approach well-suited for the complex
auditory landscapes encountered in smart vehicle applica-
tions.

Looking ahead, these findings open up promising av-
enues for future research, including real-time deployment
optimizations, exploration of additional fusion strategies,
and training on more diverse datasets. Overall, our work
marks a significant step toward developing safer, more re-
liable autonomous systems by providing a robust frame-
work for detecting critical sound events in dynamic driv-
ing conditions.
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