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ABSTRACT
Speaker Diarization addresses the question Who spoke and when?
—a crucial task in conversational AI. We propose Localize,
Filter, Segment (LoFi-Seg), a novel framework for speaker seg-
mentation in multi-microphone setups. LoFi-Seg consists of
three modules: a direction-of-arrival (DOA) estimator, a spa-
tial filter bank (beamforming), and a Voice Activity Detection
(VAD) model. The framework processes multichannel audio by
steering beamformers—one per speaker—toward predicted di-
rections from the DOA module. The output of each beamformer
is then passed through the VAD model to determine speaker ac-
tivity. Combining explicit DoA estimation and VAD improves
the model transparency, thus preserving physical interpretability
during multichannel filtering. We validate LoFi-Seg through ex-
periments on simulated multi-speaker, multi- microphone con-
versations, where speaker positions and acoustic conditions are
controlled. The system is evaluated on speaker segmentation
performance, with additional assessments of speaker localiza-
tion performance drift across setups. This approach demonstrates
how LoFi-Seg combines robust speaker segmentation with in-
terpretable processing, making it a valuable tool for advancing
speaker diarization in complex audio environments.

Keywords: Speaker segmentation, Speaker localization, Beam-
forming, Interpretability, Data simulation

1. INTRODUCTION

Deep learning is now commonly adopted for automatic speech
processing, such as automatic speech recognition (ASR) [1],
speaker recognition [2], or speaker diarization [3, 4]. Although
these systems can reach impressively low error rates, most of the
time this is at the cost of an increase in the number of trainable
parameters 1 , and a loss in model transparency [5].
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Copyright: ©2025 Théo Mariotte This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution 3.0 Un-
ported License, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author and source are cred-
ited.

1 https://jonathanbgn.com/2021/12/31/timeline-transformers-
speech.html

This paper focuses on the speaker segmentation task [6] that
consists of predicting the activity of each speaker in an audio seg-
ment. Speaker segments can later be used to perform speaker
clustering in speaker diarization [7] or to perform speaker-wise
ASR [8, 9]. Recently, several papers have shown that speaker
segmentation can be performed by combining speech separation
and Voice Activity Detection (VAD) [10, 11]. These systems of-
fer several advantages. First, they can be very efficient regard-
ing computational cost and can be deployed in the streaming sce-
nario [11]. Second, they rely on the combination of speech sep-
aration and VAD models that can be trained in a short amount of
time, requiring fewer resources than End-to-End approaches [4].
Third, applying separation before VAD improves the model trans-
parency since we can access the separated sources before predict-
ing speaker activities.

Although these systems offer strong segmentation perfor-
mance, they are restricted to the single-microphone scenario, i.e.,
when the audio is encoded in a single channel. However, record-
ing the acoustic scene with multiple microphones allows encod-
ing spatial information that can be exploited to improve speech
segmentation tasks [12–14].

Based on these previous works, we propose a new system
inspired by the combination of source separation and VAD ap-
plied to the multi-microphone scenario. The system exploits
spatial filtering to extract multiple representations of the multi-
microphone input signal. Steering directions of these spatial fil-
ters – beamformers – are predicted by a neural network from the
multi-microphone audio signal. Each spatially filtered signal is
forwarded through a VAD model to predict the activity of each
speaker. Since the model is trained on short time windows, e.g.,
4s, the maximum number of overlapping speakers is considered
as fixed [6]. Hence, the system includes one spatial filter for
each possible active speaker. The model is later called Localize,
Filter, Segment (LoFi-Seg). This paper explores several training
schemes of the proposed model on simulated 2-speaker conver-
sations. This can be seen as a proof-of-concept of the proposed
architecture to perform speaker segmentation in the multichannel
scenario. The contributions are the following:

• We propose a new data simulation algorithm to generate
2-speaker multi-microphone pseudo conversations ;
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• We show that combining steered beamformers with VAD
can perform speaker segmentation on the proposed dataset
;

• We explore training schemes, such as pre-training the
steering model with source localization objective or com-
bining segmentation and localization losses ;

• We visualize the steering direction learned by the model
to assess its transparency.

The code for model training, evaluation, and dataset gener-
ation is available at https://git-lium.univ-lemans.
fr/speaker/speakseg.

2. RELATED WORKS

Speaker segmentation is a key task in speaker diarization [6]
and appeared with the development of end-to-end speaker di-
arization models (EEND) [4]. Multiple works have been con-
ducted to solve speaker segmentation in the single-channel sce-
nario [4]. The Target Speaker VAD (TS-VAD) is also related
since it predicts speaker activities from the audio signal with ad-
ditional speaker information [15]. The proposed LoFi-Seg is in-
spired by the approach in [6] where speakers segments are pre-
dicted on short audio chunks (typically 5s).
Multi-microphone speaker diarization Several works have
tackled speaker diarization in the multi-microphone scenario.
The work from [16] is close to the proposed paper since it predicts
speaker activity from spatial cues. Works that inspired the pro-
posed method focused on multi-microphone Voice Activity De-
tection (VAD) and Overlapped Speech Detection (OSD) in the
context of speaker diarization [12–14].
Neural source localization is related to the proposed method
since we align beamformer steering direction on speakers’ direc-
tion of arrival (DOA). Multiple methods and architectures have
been proposed for source localization using deep learning [17].
The proposed architecture is inspired by [18, 19] and specifi-
cally [20]. Note that we do not intend to propose a new state-
of-the-art source localization model in this paper.

3. SPEAKER SEGMENTATION AND LOCALIZATION

This section introduces the speaker segmentation (3.1) and lo-
calization (3.2) tasks. The formulation, training objectives, and
evaluation procedures are described for each task.

3.1 Speaker segmentation

3.1.1 Problem formulation

Let x ∈ RM×N be an audio segment with N samples and M
channels recorded by a microphone array. Let y ∈ RS×T be the
speaker activity labels with S the number of possible speakers in
x and T the number of time frames. Speaker segmentation con-
sists of predicting y given the audio signal x. This problem is
commonly solved by defining a function fθ : RM×N 7→ RS×T

with parameters θ. These parameters are optimized using gradi-
ent descent based on a loss function ℓ(y, fθ(x)) measuring the
prediction error between labels and model predictions. Since
multiple speakers can be simultaneously active, speaker segmen-
tation is a multi-label classification task. Hence, we consider Bi-
nary Cross Entropy (BCE) as a training objective as proposed
in [6]. This loss is denoted as ℓBCE .

Similarly to source separation [21], speaker segmentation
systems are subject to random permutations in the output [6]. To
align the label ys with its associated prediction ŷs, all the per-
mutation pairs over s ∈ {1, S} should be considered. The final
permutation invariant training (PIT) objective is defined as fol-
lows:

LBCE (y, fθ(x)) = min
π∈Π

ℓBCE (π(y), fθ(x)) , (1)

where Π is the set of all possible permutations between labels and
predictions.

3.1.2 Evaluation procedure and metrics

During inference, the audio file is chunked using a sliding win-
dow. The segmentation model fθ predicts the likelihood of each
speaker to be active at the frame level. The frame-wise likeli-
hood is binarized by applying a threshold τ ∈ [0, 1] such that
ŷb = {ŷ > τ}. The predictions of consecutive sliding windows
are concatenated to obtain the prediction over the entire file. We
consider the Oracle speaker assignation scenario. The stitching
between windows is obtained using (1). The predictions are con-
verted to the RTTM file format before computing the metrics us-
ing pyannote.metrics [7].

Speaker diarization is usually evaluated in terms of Diariza-
tion Error Rate (DER) [4]. This metric combines segmentation
errors and speaker confusion. In this work, we focus on the seg-
mentation task. The performance of the models is reported as the
Missed Detection (Miss.) and False Alarm (FA) rates. The sum of
both metrics is also reported and denoted as Segmentation Error
Rate (SER). This is equivalent to a DER with a speaker confusion
set to 0.

3.2 Speaker localization

3.2.1 Regression vs. Classification

Acoustic source localization consists of predicting the position
of an emitting acoustic source from a multi-microphone signal
recorded by a microphone array. In this context, several speakers
can be active in the audio segment. Thus, we consider the mul-
tiple source localization problem. In this paper, we restrict the
localization problem to an azimuthal direction-of-arrival (DOA)
prediction problem [17].

The multi-source localization problem can be formulated as
a classification [17] or a regression [19, 20] problem. Since it
remains difficult to identify which formulation offers the best
performance [19], we consider the formulation proposed in [20]
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Figure 1. Overview of the system. The multichannel signal is forwarded to the steerer to predict beamformer steering
directions. The signal is then filtered by all the beamformers steered in different directions. VAD is applied on each
beamforming output to predict speaker activities.

where the model is trained to predict the likelihood of each DOA
as a regression problem.

3.2.2 Problem formulation

Let φs ∈ [−π,π] be the ground-truth DOA of the s-th speaker in
radians. The φs DOA is encoded into a likelihood function with
support l = [1, L]. Following [20], the target likelihood vector
{ol} is defined as follows:

ol =

(
maxS

s=1

n
e−d(φs,φl)

2/σ2
o

if S > 0

0 otherwise
, (2)

where σ controls the width of the Gaussian-like functions and
d(·, ·) denotes the angular distance between the support DOA φl

and the ground-truth φs. An example of DOA encoding with
equation (2) is in Figure 2.

The localization model gϕ : RM×N 7→ RL is optimized
to predict the appropriate ô function from the audio signal. The
Mean Squared Error (MSE) is used as a loss function to optimize
the parameters ϕ of the model:

LMSE =
1

L

X

l

∥ol − ôl∥22. (3)

3.2.3 Evaluation procedure and metrics

Once the gϕ model is trained to predict the best likelihood func-
tion ô according to the cost (3), it is evaluated on the evaluation
set. The DOA can be predicted (i.e. decoded) from the ô predic-
tion. DOA predictions can be inferred from ô by finding peaks
above a threshold ξ ∈ [0, 1]: φ̂ = {φl | ôl > ξ} .

In the proposed experiments, the maximum number of active
speakers is supposed to be known for a given segment. Hence, if
the number of predicted DOAs in φ̂ is greater than the number of
possible speakers S, we restrict the DOA predictions to the ones
with the highest likelihood.

The quality of the model predictions is evaluated by Mean
Absolute Error (MAE) on the DOA, denoted MAE (◦). The MAE
is computed considering the shortest path on the unit circle.

In some situations, the model can miss or overpredict
sources,i.e., when the likelihood is too low, or too high. The de-
tection performance is reported in terms of FA and Miss scores.
Note that the MAE is computed only on the detected sources,
measuring the prediction quality of the sources that the model
can predict.

4. LoFi-Seg SYSTEM OVERVIEW

LoFi-Seg is composed of three main parts described in this sec-
tion. The multichannel audio is processed by a set of spatial filters
implemented as a Superdirective beamformer (4.1). A steering
model predicts the steering direction of each filter (4.2). Finally,
speaker activities are predicted by a VAD model after each spatial
filter (4.3). An abstract view of the model is proposed in Figure 1.

4.1 Super-directive Beamforming

Super-directive beamforming is a commonly used algorithm for
spatial filtering [22]. It can be seen as a simplified version of the
so-called Minimum Variance Distortionless Response (MVDR)
beamforming [23]. The narrowband weights of such a filter can
be expressed as follows:

wH(f,φs) =
vH(f,φs)Σ

−1(f)

vH(f,φs)(Σ(f) + λregI)−1v(f,φs)
, (4)

where f is the frequency, v(f,φs) ∈ CM×1 a steering vec-
tor and Σ(f) ∈ RM×M the noise covariance matrix. λreg

is a regularization parameter to prevent singularities in matrix
inversion [24]. Under isotropic noise assumption, an element
Σm,n(f) of the covariance matrix can be expressed as [22]:
Σm,n(f) = sinc(2πfdm,n/c), where dm,n is the distance be-
tween m-th and n-th microphones.
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When considering a uniform circular array (UCA), the m-
th element of the steering vector vm, oriented towards the φs

angular direction, can be expressed as [25] :

vm(f,φs) = exp

j2πfrc−1 cos(φs − ψm)

�
, (5)

with ψm the angle of the m-th microphone, c the speed of sound
and r the radius of the UCA.

Let X ∈ CM×K×T be the STFT of the multi-microphone
input signal x. The output of filter steered in the φs direction at
frequency f , is obtained following

Y(t, f,φs) = wH(f,φs)X(f, t). (6)

The broadband output Y(φs) ∈ CK×T is the STFT of a single-
channel signal steered towards the φs direction, obtained by ap-
plying (6) for each considered frequency. In this work, one beam-
formed signal is obtained for each possible speaker. A steering
model predicts the angular direction of each filter φ̂s. Its design
is described in the next section.

4.2 Steering model

The steering model predicts the speakers’ DOA from the STFT
of the multi-microphone signal X. The steering architecture
is designed to require a few trainable parameters to limit the
complexity of the LoFi-Seg model. The architecture is inspired
by [18] and combines a convolutional neural network (CNN)
to extract features from the STFT, followed by sequence mod-
eling layers. BLSTM layers, commonly used for sequence
modeling, are replaced with a Temporal Convolutional Network
(TCN) [26]. The TCN has shown impressive sequence model-
ing performance [12, 13, 27] with a limited number of trainable
parameters.

Specifically, the model is composed of a 2D convolutional
encoder that maps the multichannel STFT X ∈ R2M×K×T to a
new representation Xe ∈ RD×K×T , where D > 2M is the num-
ber of channels in the encoded representation [28]. Note here
that 2M holds for the concatenation of the real and imaginary
parts of the STFT. The Xe representation is processed by a CNN
composed of 3 Conv-blocks that reduce the frequency dimension
before processing the sequence with the TCN model. The conv-
blocks are structured with a 2D convolutional layer, followed by
Batch Normalization (BN), ReLU activation, and a max pooling
operation. The number of channels is doubled after each conv-
block. We use depthwise separable convolutions [29] to reduce
the number of trainable parameters. The CNN outputs a repre-
sentation of shape Xc ∈ RD′×T , where D′ is the final number
of channels.

Finally, the Xc representation is processed by the TCN. The
architecture is similar to [12]. After the encoding layer, the se-
quence is processed by NB TCN blocks of depth NL. The output
of the model is of shape ô ∈ RL, with L the number of DOA in
the likelihood function predicted by the model (See Section 3.2).

4.3 VAD model

The VAD model follows the architecture we used in [13]. The
output of the s-th beamformer Y(φs), represented in the STFT
domain, is transformed into a Mel spectrogram with F filters.
These features of shape RF×T are forwarded through a TCN
model predicting the output ŷ ∈ RS×T .

5. SIMULATED CONVERSATION DATASET

In this section, we present the proposed methodology to simulate
conversational data to train and evaluate LoFi-Seg.

5.1 Motivations

Traditional benchmark datasets for speaker diarization mainly
consider the single-channel scenario, e.g., in the context of broad-
cast news or meetings. Few datasets propose multi-microphone
recordings in meetings like AMI [30] or AISHELL-4 [31]. Al-
though widely adopted, these datasets lack annotations such as
speaker localization. However, speaker position can be very in-
formative in the context of speaker diarization. Since our sys-
tem relies on a steering model trained with a speaker localization
objective, it requires the ground-truth direction of arrival (DOA)
labels. Thus, we consider data simulation to cover this need.

5.2 Conversation dynamics generation

Data simulation for speaker diarization has been considered for
EEND training [4]. Originally, simulations combined speech
samples to create overlapping speech segments as done for
speech separation. However, this strategy provides limited gen-
eralization capacities to real data. To tackle this issue, conversa-
tion simulation has been proposed by modeling real conversation
statistics and using them to perform simulations [32]. The pro-
posed strategy lies between these approaches. Instead of mod-
eling real conversation dynamics, we simplify the conversation
generation process with few parameters.

The first step of data simulation is to generate the conversa-
tion dynamics. This consists of defining each speaker’s starting
and ending time in the conversation.

The segment generation is controlled by a few parameters:
Np(µp,σp) represents the pause statistics, Ns(µs,σs) represents
the segment statistics, pov is the probability of a segment to over-
lap with the previous one, and rov is the average overlap ratio
when overlap is occurring. The speaker index, starting and end-
ing time are randomly sampled according to these parameters to
create pseudo-conversations of a target duration Tc. Once the
segments are defined, one has to sample segments from a source
dataset to generate the audio signal aligned with the conversation
dynamics. This step is described in the next section.

5.3 Conversation generation and spatialization

In this work, we use Librispeech [33], a dataset of clean read
speech, to create the conversations. We use the train-100
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split to generate the training set, and dev-clean to generate
the test set. For each conversation, we ensure selecting different
speakers and that those have enough audio segments to create a
conversation. Then, we randomly sample the utterances from the
original data without replacement and crop them to fit the target
duration of the current segment in the conversation.

Once the clean audio signal is generated for each speaker,
we simulate a room using the Pyroomacoustics toolkit [34]
with random source positions around the microphone array. The
reverberation time of the room–in seconds–is also randomly sam-
pled following T60 ∼ U(0.5, 1).

5.4 Simulated dataset

The dataset used in the following experiments is split into two
subsets: train-100 for training and dev-clean for evalua-
tion. The source audio signals are sampled from the eponymous
subsets of Librispeech to prevent overlapping speakers between
the training and evaluation sets. Both subsets contain simulated
pseudo-conversations in random rooms with random source po-
sitions, recorded by a uniform circular microphone array with a
radius r = 0.1m and M = 8 microphones. The training set con-
tains 2985 audio files, each being a short conversation between
60s and 180s. It represents about 175 hours of simulated conver-
sations, with a 50% probability of overlapping speech between
speakers and an average overlap ratio of 70%. The evaluation set
is about 10 hours of conversation and follows a similar setup.

During training, dynamic mixing [35] is applied between
speaker segments with a relative SNR sampled following
SNR ∼ U(−5, 5)dB. 10% of the training set is kept for vali-
dation purposes. Dynamic mixing is disabled during validation
and evaluation. The evaluation conversations are generated with-
out relative SNR between speakers.

6. EXPERIMENTAL RESULTS

6.1 Speaker segmentation in various training configurations

In this section, we train LoFi-Seg considering different training
schemes. The training is conducted on the train-100 simu-
lated data, and evaluated on thedev-clean evaluation set. This
section explores the impact of each scenario on the performance.
We encourage the reader to refer to the code and model configu-
rations for more details about the training configurations.

6.1.1 Experimental setup

Five configurations are considered for the following experiments.
The two first configurations consist of training LoFi-Seg from
scratch: (i) only the segmentation loss (1) is used. (ii) The model
is trained with a combination of the segmentation (1) and local-
ization (3) losses: LBCE + LMSE . Hence, localization and seg-
mentation are jointly optimized.

In the 3 other configurations, the steering model gϕ param-
eters are initialized from a model trained with a source localiza-
tion objective. The training procedure of such a model is detailed

in Section 6.1.2. Three configurations are considered with ini-
tialized ϕ parameters: (iii) the steering model gϕ is frozen dur-
ing segmentation optimization with LBCE ; (iv) LoFi-Seg is opti-
mized to minimize LBCE ; (v) LoFi-Seg is optimized to minimize
LBCE + LMSE .

6.1.2 Pre-training the speaker localization model

Training configuration We explore several configurations where
the steering model gϕ is pre-trained to predict speakers’ angular
directions. The model is trained on 4-second segments randomly
sampled from the train-100 set and grouped into batches of
64 examples. DOA labels are encoded similarly to [20] with
equation (2) by setting σ = 10 and L = 360. Models are trained
to minimize the MSE on DOA likelihood functions (3). 10% of
the training set is kept for validation purposes. Model parameters
are optimized using the ADAM optimizer [36] with a learning
rate of 0.001. The learning rate is halved if no improvement in
the validation loss is seen during 10 epochs. We select the model
reaching the lowest MSE on the validation set.

Model architecture The localization model predicts DOA like-
lihood from the STFT of the multichannel signal extracted on
512-sample windows with a 160-sample shift. The convolutional
encoder has 32 hidden channels with a 2D kernel of 1 × 1 to
keep the frequency and time dimensions. The CNN has the same
structure as [18] by doubling the number of channels after each
convolutional layer. These layers have a kernel size of 3× 3 with
a stride of 1. Each max-pooling operation downsamples the fre-
quency axis by 8 while keeping the temporal axis the same. The
TCN model has 3 TCN blocks composed of 3 convolution layers
with exponentially increasing dilation. The hidden dimension is
set to 128. Finally, the model has only 240k trainable parameters.

6.1.3 Training the LoFi-Seg speaker segmentation model

Training configuration All models are trained with the same
data distribution. The optimization objective depends on the
considered configuration (6.1.1). Parameters are optimized with
the ADAM optimizer with an initial learning rate of 0.001. The
learning rate is halved if no improvement is seen in the validation
loss after 15 epochs. The batch size is set to 64. We select the
model reaching the best validation loss for evaluation.

Model architecture For each setup, the architecture is the same.
STFT is computed on 512-sample widows with a hop size of 160
samples. The mel-spectrogram is computed with F = 128 fil-
ters. The beamformer weights are calculated with a regularization
term set to λreg = 10−4. The VAD model contains 3 repeating
TCN blocks, composed of 3 TCN layers with expanding dilation.
The TCN bottleneck comprises 128 channels; the hidden channel
number is 512. The model has 2 VAD model instances since we
are processing 2-speaker conversations. In the end, the model has
2.7M trainable parameters.
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Table 1. Segmentation performance of the LoFi-Seg model in various training scenarios. The results of each configuration
are compared with the single-channel segmentation baseline.

# Param. (M) Init. gϕ Frozen gϕ LMSE SER (%) ↓ Miss (%) ↓ FA (%) ↓
2.46 ✓ ✓ ✗ 26.9 ± 6.8 21.2 5.9

2.70 ✓ ✗ ✗ 26.9 ± 6.8 21.2 5.9
2.70 ✓ ✗ ✓ 26.0 ± 6.2 20.0 6.1

2.70 ✗ ✗ ✗ 25.8 ± 6.3 19.6 6.4
2.70 ✗ ✗ ✓ 25.8 ± 6.2 20.1 6.0

6.1.4 Results

Speaker segmentation is evaluated on the dev-clean subset.
Speaker activity predictions are obtained on 4s sliding widows
with no overlap and metrics are computed following the proce-
dure described in 3.1.2. Table 1 presents the results for each
model configuration.

The two models trained from scratch reached the best seg-
mentation performance with 25.8% with or without MSE loss.
Adding a pre-trained localization model tends to slightly degrade
the performance. In fact, including a pre-trained gϕ model leads
to 26.9% SER whether it is frozen or not. However, adding the
MSE loss with this setup seems to improve the segmentation with
a 26% SER. The Wilcoxon signed-rank test was performed on
the SER between the worst-performing model (initializing gϕ and
freezing it) and the others to evaluate the statistical significance.
All the tests obtain a p-value p > 0.1, indicating the SER differ-
ence between models is not statistically significant.

Globally, the models can perform speaker segmentation on
the simulated dataset. However, the SER remains high with the
best model reaching 25.8%, mostly because of a high missed de-
tection rate. This is probably due to silences in Librispeech utter-
ances used to create the simulated conversations, which are not
labeled. The model predicts a low likelihood for a given speaker
when there is silence, while the label indicates that this speaker
is active. This highlights necessary improvements in the labeling
strategy of the conversation simulation algorithm.

6.2 Drift of speaker localization across setups

While the segmentation performance does not seem to strongly
rely on the training configuration, the model’s speaker local-
ization capacities are not guaranteed to be kept. The model
could find optimal parameters without predicting the source posi-
tions. This would drastically reduce the physical interpretability
of LoFi-Seg. This section explores the drift in speaker localiza-
tion performance across configurations.

6.2.1 Evaluation of speaker localization

The localization performance is evaluated on 1000 4s segments
randomly sampled from the dev-clean evaluation set. For

each model, the threshold for DOA prediction is set to ξ = 0.6.
We report the MAE in degrees along with FA and Miss detection
metrics, as described in the protocol defined in section 3.2.3. The
performance of the gϕ model for each configuration is presented
in Table 2.

6.2.2 Results

First, table 2 shows that the models trained from scratch, i.e.,
without a pre-trained localization model, cannot perform source
localization (e.g., MAE of 66.3◦ without the MSE loss). The
model can find a set of parameters that solves the segmenta-
tion task without predicting the accurate source DOA. Thus, the
model loses transparency in this situation. The detection metrics
are low because the steering model activates almost all the DOAs
in the output. By listening to beamforming outputs, it seems that
the audio signals are not strongly discriminative. That would not
facilitate the system to predict the source DOA and require fur-
ther investigations.

Then, when adding a pre-trained localization model, the lo-
calization performance remains the same whether the weights are
frozen or not. The model does not modify the ϕ parameters, as
observed in the segmentation experiments.

Finally, when the initialized model is trained with the addi-
tional MSE loss, the localization performance is improved. In
this set-up, the model can better segment the speakers (table 1)
while providing an accurate localization of the sources with an
average MAE of 13.4◦. Note that the detection performance is
still mitigated, with 39.7% of missed detection. However, the
MAE is better on the sources the model was able to detect.

Figure 2 illustrates the improvement obtained with the MSE
loss during training. It presents the DOA prediction for a given
segment of the 3 initialized models. It shows how the model
trained with BCE and MSE (ckpt+MSE) improves the localiza-
tion w.r.t. the two other models.

7. CONCLUSIONS AND DISCUSSIONS

This paper proposes Localize, Filter, Segment (LoFi-Seg), a new
model for multi-microphone speaker segmentation. This model
consists of a localization module that predicts the speaker’s direc-
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Table 2. Drift of speaker localization prediction with the LoFi-Seg model across setups. The number of sources is supposed
to be known.

Init. gϕ Frozen gϕ LMSE MAE (°) (↓) FA (%) (↓) Miss (%) (↓)

✓ ✓ ✗ 21.4 2.3 39.9

✓ ✗ ✗ 21.4 2.3 39.9
✓ ✗ ✓ 13.4 1.9 39.7

✗ ✗ ✗ 66.3 4.1 0.0
✗ ✗ ✓ 66.8 4.1 0.0
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Figure 2. Example of DOA prediction with the gϕ model
for various training setups.

tions of arrival (DOA), a set of spatial filters, and a Voice Activity
Detection (VAD) model. The DOA is used to steer the spatial fil-
ters in the speaker directions to obtain a filtered single-channel
signal, before applying VAD. The LoFi-Seg aims at conserving
physical interpretability in the steering step of the model, to bet-
ter understand the model behavior. The paper also introduces a
new simulation strategy, combining pseudo-conversation genera-
tion with acoustic simulation to create multi-microphone conver-
sation datasets.

The proposed model can perform speaker segmentation on
the generated dataset. While the performance remains mitigated,
some configurations allow to keep the speaker localization in-
formation while accurately predicting speaker segments. The
best configuration in terms of performance and transparency is
to initialize the localization model with weights optimized with
a speaker localization objective and to train LoFi-Seg with joint
segmentation and localization losses. This improves the local-
ization quality and the segmentation performance, providing a
transparent and efficient model.

In general, the current model offers limited segmentation per-
formance and should be compared to other concurrent models
(e.g. Pyannote [6]). Furthermore, by listening to the beamform-
ing output, the audio quality seems very low, and the difference
between different directions is hard to perceive. Some work is re-

quired in that direction to improve the quality of the beamforming
step. The current version of the model requires one VAD model
for each beamforming output to perform well (which is probably
related to the poor quality of beamforming outputs). The num-
ber of parameters highly depends on the number of speakers to
segment. Future work will focus on preventing this limitation
to scale the system to more speakers. Finally, the segmentation
performance highlighted some limitations in the label generation
from the simulated conversation, paving the way for improve-
ments in the simulation algorithm.
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