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ABSTRACT

This paper evaluates the performance of lossy compres-
sion algorithms for data from Distributed Acoustic Sens-
ing (DAS) systems, which use fibre optic cables to de-
tect vibrations at discrete locations along their length.
While DAS provides high spatial and temporal resolution
with real-time, continuous acquisition, it generates vast
amounts of data, creating challenges for both transmission
and storage. To address these issues, various compres-
sion algorithms, commonly used in music and speech pro-
cessing, were tested on publicly available DAS datasets.
The evaluation considered key metrics such as recon-
struction fidelity, computation time, and compression rate.
Since DAS systems operate at much lower sampling rates
than audio applications, acquired data is collected in a
buffer and processed at higher sampling rates by the audio
codecs. After comparing multiple algorithms, the OPUS
codec was selected due to its flexibility across bit rates,
low latency, consistent performance, and high adaptabil-
ity. A real-time compression system was developed based
on OPUS, capable of handling five-digit channel counts.
The system is configurable to meet task-specific require-
ments, allowing adjustments between compression rate
and reconstruction accuracy as needed. The proposed so-
lution significantly reduces storage needs and enables ef-
ficient low-bandwidth data transmission, making it well
suited for real-time DAS applications.

Keywords: Distributed Acoustic Sensing, lossy compres-

*Corresponding author: hagmueller@tugraz.at.
Copyright: ©2025 Eckert et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution
3.0 Unported License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original au-
thor and source are credited.

sion, OPUS codec

1. INTRODUCTION

Distributed Acoustic Sensing (DAS) is a technology that
uses fiber optic cables to detect vibrations along the length
of the cable. Unlike traditional geophones which mea-
sure displacement or particle velocity, the measurand of
DAS interrogator units is strain rate, i.e. the temporal
change in strain. The sensing technique has found appli-
cations across various domains, including seismic moni-
toring (e.g., [1]), pipeline security (e.g., [2]), and struc-
tural health monitoring (e.g., [3]), due to its high spatial
and temporal resolution and real-time data acquisition ca-
pabilities. However, the vast amount of data generated by
DAS systems presents significant challenges in terms of
storage, transmission, and processing.

The high demand of resources stems from its continu-
ous, high-frequency sampling across potentially long dis-
tances with densely spaced measurement positions, result-
ing in terabytes of data even for relatively short observa-
tion periods. Additionally, DAS data is often acquired in
remote areas with highly limited transmission rates like
mountain ranges or the seafloor. Efficient data compres-
sion methods are therefore essential to utilize DAS data
effectively. Compression not only reduces storage re-
quirements but also enhances data transmission efficiency,
enabling real-time monitoring and analysis in resource-
constrained environments.

Although there is a lot of literature on compression
of data in general (e.g., [4]), or specific like multichannel
compression for medical purposes (EEG/ECG) (e.g., [5])
or lossy and lossless compression of music (e.g., [6]) or
speech (e.g., [7]). At the time of writing, only few publi-
cations on the topic of compression for DAS systems are
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known to the authors (e.g., [8], [9]). This paper addresses
the critical need for effective DAS data compression tech-
niques. We focus on already existing algorithms used in
speech and music compression and evaluate their use for
DAS data. Compression rates are assessed and compared
in terms of computational complexity and reconstructed
signal quality. We additionally evaluate multi-class classi-
fication on original and OPUS-compressed data to further
assess the quality and usability of the algorithm for tasks
like acoustic event recognition.

1.1 Publicly Available DAS Datasets

There are multiple DAS datasets available publicly. In
[10] eight are listed and a combined repository PubDAS
with all of these is presented. The paper also lists datasets
that are available online, but not contained in PubDAS.
Also, there is data from the Imperial Valley Dark Fiber
Project [11]. While [8] state the data they used, and it is
partly contained in PubDAS, their exact used time frames
are not available.

We used the Brady Hot Springs PoroTomo dataset
[12], since it did not only contain noise, but also an earth-
quake. It was used for both the codec comparison de-
scribed in Sec. 3 as well as the parameter study in Sec. 3.2.

Brady Hot Springs PoroTomo:

• Recorded: 2016-03-21 at 07:37:51 a.m.
• Length: 30 seconds
• Channels: 8721
• Data type: 16-bit integer
• Contains an Earthquake: M 4.3 - 23km ESE of

Hawthorne, Nevada; Time: 2016-03-21 07:37:10
(UTC); Location: 38.479 N 118.366 W; Depth: 9.9
km

1.2 Related Work

Data compression is established in many fields, but only
few studies focus on DAS specifically. In [8] lossless tech-
niques are used on DAS data in both real time and post hoc
scenarios. For evaluation of their compression techniques,
they used the Sacramento FOSSA dataset described in [1]
and partly contained in the PubDAS repository [10]. They
also used data from the Imperial Valley Dark Fiber Project
(Imp Valley) [13] and from Monterey Bay [14]. On these
datasets up to 40 % reduction, or a compression rate of up
to 1.65, was achieved.

In [9] lossy compression techniques were used to
compress DAS data. The methods used were wavelet

compression, Zfp floating point compression and trun-
cated SVD compression. For evaluation the FORESEE
dataset [15], which is also contained in PubDAS [10],
was used as well as the Brady Hot Springs PoroTomo
dataset [12] for event detection. In this paper the norm of
the noise is computed. Noise is defined by the difference
of the original data D and the reconstructed compressed
data D̃. The norm is then computed using the normalized
Frobenius norm error according to Eq. 3.

The results of the lossless compression performed in
[8] are given in Tab. 2 together with the approximate re-
sults of the lossy compression done by [9] and compared
to our own results.

2. COMPRESSION ALGORITHMS

Data compression depends on compression rate, quality,
computational complexity, delay, editability, and error re-
silience. The key is balancing data reduction while retain-
ing necessary information. Real-time processing requires
low complexity and minimal delay. Editability and error
resilience determine ease of modification and robustness
against transmission errors. Depending on the applica-
tion, different trade-offs are required. There are two main
approaches to data reduction.

(i) Lossless approaches focus on reducing redundancy
and include information theoretic methods like Huffman-
coding or dictionary-based methods like Lempel-Ziv-
Welch-coding in addition to linear prediction. For loss-
less coders, the quality assessment is not applicable, but
the other criteria mentioned above are. Well known loss-
less audio coders are FLAC, ALAC or AIFF.

(ii) Lossy compression reduces both redundancy and
irrelevance, meaning data cannot be exactly reconstructed
after decoding. Here, the main goal is to achieve max-
imum reduction while preserving essential information,
which varies by application. For audio, psychoacoustic
principles exploit masking effects, audibility thresholds,
and ear sensitivity to reduce data without affecting per-
ception. Quantization noise is not perceivable if it does
not exceed the perceptual threshold. Predictive techniques
like Linear Predictive Coding (LPC) improve efficiency
by transmitting only model parameters and prediction er-
rors. While music codecs prioritize perceptual quality,
speech codecs focus on intelligibility and real-time pro-
cessing. The original signal is not kept, but regenerated
upon reconstruction. There are many codecs for audio and
speech compression, some of which will be compared in
this paper. In structural health monitoring, seismic detec-
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tion, or pipeline security, compression must retain event
detectability. Algorithms used on raw data must also per-
form the same on compressed data. Depending on the ap-
plication, a controlled loss of detection may be acceptable
to achieve higher compression, especially when only spe-
cific events are relevant.

The efficiency of the compression is measured in
compression ratio R (Eq. 1) or reduced size in percent.

Due to its higher compression rates, we used lossy
compression techniques. Due to the structure of DAS
data, having many channels and recording continuously,
real-time capability and computational efficiency need to
be factors for performance evaluation.

3. COMPRESSION OF DAS DATA

For an initial comparison of lossy compression codecs,
FFmpeg [16] was used. The codecs for our compari-
son are listed below, including the library used for en-
/decoding. If no library is stated, the native implementa-
tion of FFmpeg was used. In addition to the lossy codecs,
FLAC was used to compare the compression rates.

• MP3 - encoder: libmp3lame
• GSM - encoder: libgsm
• AMR-NB - en-/decoder: OpenCORE AMR-NB
• AMR-WB - encoder: Android VisualOn AMR-

WB; decoder: OpenCORE AMR-WB
• OPUS - en-/decoder: libopus
• FLAC

Most publicly available datasets are stored in the
HDF5-format. For comparison purposes, the dataset is ex-
tracted and converted to 16-bit integer if necessary. Note,
that the compression rate refers to the 16-bit version of the
dataset, even if originally recorded at a higher bit depth.
Then every channel is compressed with FFmpeg, using
the corresponding encoder of the chosen codec. Audio
and speech codecs do not operate at the same sample rates
as DAS data is sampled at. The original sample rate is de-
noted as fso and usually lies below 2 kHz. The compres-
sion sample rate fsc is set according to the capabilities of
the codecs. OPUS, MP3 and FLAC are tested at an fsc of
8 kHz, 16 kHz, 24 kHz and 48 kHz. No resampling needs
to be done, one second of the audio file at fso = 2 kHz
then consists of 4, 8, 12 and 24 seconds, respectively, of
the DAS data. GSM and AMR-NB are tested at an fsc of
8 kHz and AMR-WB at 16 kHz. The lossy codecs allow
a range of bits used per second to encode the signal (bit

rate). The bit per second (bps) are not to be confused with
bit per sample (bit/sample). For fsc = 48 kHz and a bit
rate of rb = 96 kbps the signal will have 2 bit/sample. We
test GSM, AMR-NB and AMR-WB at their highest possible
bit rates of 13 kbps, 12.2 kbps and 23.85 kbps respectively,
resulting in ≈ 1.5 bit/sample. OPUS and MP3 are tested
at [0.5, 1, 2, 3, 4] bit/sample. After compression, the size
of the compressed data is determined, and the compres-
sion rate R calculated (see Eq. 1).

R =
Sorig

Scomp
, (1)

where Sorig is the size of the original data and Scomp is
the size of the compressed data.

This is followed by reconstruction using the corre-
sponding decoder. To assess the quality of the com-
pressed data, two different time domain measures Q were
used: mean absolute scaled error (MASE) and Normal-
ized Frobenius Norm Error (NFNE) as described in [9].
It was also considered to include the mean squared error
(MSE) and the mean absolute percentage error (MAPE).
The MSE is dependent on the amplitude on the signal and
weighs outliers heavily, due to the square. MAPE was
excluded, because the DAS data includes zero and close
to zero values, for which MAPE tends to infinity. We let
Y represent the original data and Ŷ the encoded (com-
pressed) and decoded (reconstructed) data.

MASE. This measure was chosen due to the follow-
ing properties. In contrast to the MSE, it is scale invari-
ant, meaning that it is independent of the amplitude of the
data, and it does not weigh outliers heavily. Additionally,
in contrast to MAPE, it does not tend to infinity for values
close to zero. For non-time-series data, it is estimated by
Eq. 2. With this measure, classification is clear with the
best achievable value being 0. So it is neither necessary
nor possible to alter the data as with the MSE, since divi-
sion of the data by a maximum value would cancel out in
any case.

QMASE =

∑n
i=1 |Yi − Ŷi|∑n
i=1 |Yi − Y |

(2)

NFNE. In [9] a normalized Frobenius norm error is
proposed for comparison of compression techniques. It is
given in Eq. 3,

QNFNE =
||Y − Ŷ||F

||Y||F
, (3)

where || · · · ||F denotes the Frobenius norm. The norm of
the difference is divided by the norm of the original data,
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but it is not scale invariant. This is due to outliers also
weighing in more heavily. It is also robust against close
to zero values within the data, since the overall norm is
computed before division. The best achievable value is
0. However, this measure can yield values > 1, if some
strong outliers are present. It also yields exactly 1 if the
compression data would be empty. This makes this mea-
sure hard to interpret.

To show the behaviour of the compression algorithms
in the frequency domain, we estimated the power spectral
density (PSD) of white noise for 1000 channels and av-
eraged them for original and compressed data each. The
result can be seen in Fig. 2.

3.1 Comparison of Codecs

We use the Brady Hot Springs PoroTomo dataset as spec-
ified in Sec. 1.1 to compare the codecs. QMASE (Eq. 2) is
shown vs compression rate R (Eq. 1) in Fig. 1.

As expected, we can see that R and QMASE depend on
the bit/sample. We further see that MP3 and OPUS per-
form better than the speech codecs. The AMR codecs are
way apart from the rest, but GSM can compete with the
worst results of OPUS. For MP3 and OPUS there are sev-
eral markers per bit/sample each in Fig. 1. This is due to
different fsc = [8, 16, 24, 48] kHz being tested, the bigger
the marker, the higher fsc. The FLAC codec was excluded
from this figure, since the QMASE of a lossless codec is al-
ways 0. But the resulting R for FLAC differed slightly
depending on the sample rate, ranging from R = 1.85 for
fsc = 8 kHz to R = 1.95 for fsc = 48 kHz. For MP3,
the QMASE does not vary much for different sample rates,
but R does. For OPUS R does not change much for 2, 3
or 4 bit/sample but QMASE does. For 1 bit/sample, both
vary significantly. The difference in R can not be reason-
ably explained without looking into the internal structure,
but might be similar to the compression rate explanation
in Sec. 3.2. QMASE is lower for higher sample rates. This
difference might be explained by comparing the PSDs of
encoded and reconstructed white noise, as seen in Fig. 2
for 2 bit/sample. All reconstructed PSDs seem to cut off
the signal at a certain frequency depending on the sample
rate. For both MP3 and OPUS this cutoff-frequency is the
lowest for fsc = 48 kHz.

The codecs AMR-NB, AMR-WB, GSM, and OPUS
at a sampling rate of fsc = 8 kHz exhibit the least accu-
rate estimation of the PSD compared to the uncompressed
reference (thick black line). The PSDs of MP3-encoded
signals tend to underestimate energy at low frequencies

while overestimating it at high frequencies. OPUS at
higher sampling rates provides the most accurate PSD ap-
proximation overall.

Both MP3 and OPUS apply low-pass filtering, with
the effect of being more pronounced at higher sampling
rates. This behaviour is attributed to their design as audio
codecs, which prioritize perceptually relevant frequency
bands for music and speech, typically located in the lower
frequency range. Lower sampling rates are predominantly
used for speech coding and aim to represent information
across the entire band of perceptually relevant frequen-
cies.

At lower bit or sample rates, PSD estimation be-
comes less accurate across all codecs, with some exhibit-
ing significantly reduced cut-off frequencies. Nonethe-
less, OPUS maintains the best performance among them.
At higher bit/sample rates, MP3 consistently underesti-
mates the PSD across the entire spectrum, while OPUS
achieves even greater accuracy.

OPUS at fsc = 16 kHz and fsc = 24 kHz shows a
smoother spectral roll-off, indicating less aggressive filter-
ing. Therefore, if high-frequency content carries relevant
information, we recommend using fsc = 24 kHz. Con-
versely, if the signal energy is concentrated in the low-
frequency range—such as in seismic recordings or low-
frequency event detection—fsc = 48 kHz is preferred, as
it yields superior PSD estimation in the lower frequency
domain.

3.2 Parameter Study for Opus Codec

Based on the results presented in Sec. 3.1, we selected
OPUS for implementation in a real-time encoding envi-
ronment. The implementation was carried out in Rust us-
ing the audiopus crate with libopus 1.4. Every channel is
encoded separately (mono). Initial testing revealed a con-
stant sample offset between the original and reconstructed
signals. This offset is independent of the frame size but
depends on the sample rate, amounting to 52 · fsc/8 kHz
samples. To compensate, the input signal was padded with
a sufficient number of frames to cover the offset. The
padding marginally increases the encoded data size and is
removed in the decoder. Frame sizes can be 2.5, 5, 10, 20,
40 or 60 ms, which results in different amount of samples
for the same frame size and different sample rates. For the
encoding process, inband forward error correction (FEC)
and variable bit rate (VBR) were disabled. A constant bit
rate (CBR) setting was used to preallocate memory. The
encoder complexity parameter, which ranges from 0 to 10,
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Figure 1. QMASE vs compression rate R. The dataset is Brady Hot Springs PoroTomo as specified in Sec. 1.1.
The bit/sample given in the parentheses. MP3 and Opus were sampled at fsc = [8, 16, 24, 48] kHz, the higher
fsc, the bigger the marker size.

Figure 2. Power spectral density (PSD) using Welch’s method of white noise, original (black) and encoded and
reconstructed by OPUS and MP3. The PSDs in the red shades are for MP3, and in the blue shades for OPUS.
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Figure 3. QMASE vs compression rate R. The dataset is Brady Hot Springs PoroTomo as specified in Sec. 1.1.
The frame size in milliseconds is indicated by color, the fsc by marker.

was set to 0 since experiments showed negligible influ-
ence on the output. From the three modes - audio, voice-
over-IP (VoIP) and low-delay, that can be selected for the
opus codec, we decided to use audio. VoIP will high pass
filter the signal, which would not be target-oriented for
DAS. Low-delay on the other hand will disable the speech
optimized mode, which could also negatively affect the
quality of the signal.

In the subsequent parameter study, various combina-
tions of frame size, bit rate, and sample rate were evalu-
ated. Even for equal bit/sample, minor variations in com-
pression ratio R were observed. These variations stem
from the fact that the frame size in samples does not nec-
essarily divide the signal length evenly, padding to ac-
commodate both the offset and full frame alignment is
required and under CBR, only complete frames are en-
coded into the bitstream. Figure 3 shows the trade-off
between R and QMASE across various parameter combi-
nations, grouped by bit/sample ratios from 1 to 4. The
60 ms frame size consistently yields the poorest perfor-
mance, aside from isolated outliers, while shorter frame
sizes exhibit better results in both R and QMASE. For the
PoroTomo dataset, OPUS achieves optimal performance
at a sampling rate of fsc = 48kHz across all bit/sample
settings. This is likely due to the concentration of signal

energy in lower frequencies, where accurate PSD recon-
struction outweighs bandwidth extension. Although other
datasets occasionally favour different fsc values, the per-
formance differences are small. We therefore recommend
using fsc = 48kHz with a 20 ms frame length for most
applications.

Classification Accuracy. We analyse the performance
of the OPUS codec on a multi-class classification prob-
lem in relationship with the achievable compression rates.
The processing pipeline consists of MFCC feature extrac-
tion on overlapping windows, and the subsequent training
on the resulting vectors using a random forest classifier.
In the following table, identity refers to the identity func-
tion, i.e., no processing whatsoever. We show that training
on OPUS-compressed data has only minor effects in com-
parison with the baseline of truncating the input data to
i16.

3.3 Comparison to Related Work

We compare our results to the work described in Sec. 1.2
in Tab. 2. Both [9] and [8] used long time periods of DAS
data for their tests. We instead used single files, contain-
ing 30 seconds to one minute of data, depending on the
dataset. For the FOSSA dataset, data from the time span
used in [8] is not available in the public repository Pub-
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Table 1. Accuracy of a multi-class classification
problem using original, truncated and OPUS com-
pressed data.

algorithm bit/sample accuracy
identity (f32) 32 88.44%
truncation (i16) 16 87.65%

OPUS
(i16)

0.5 86.53%
2 87.38%
4 87.38%

DAS [10]. Instead, data from September, 7th 2017 at
00:00:29 A.M. was used, to be comparable to the night-
time compression values achieved. The zfp-floating point
compression was calculated for the FORESEE dataset by
the authors. The difference in QNFNE can not be explained.

Overall, our results show that the compression rates
and errors due to compression differ between datasets. It
can also be seen, that OPUS can compete with the zfp-
floating point fixed accuracy compression.

4. CONCLUSION

In this paper, we presented a real-time capable DAS com-
pression system with adjustable quality settings that can
be tailored to specific application requirements. The qual-
ity assessment demonstrates only minor degradation of
classification performance in comparison to the uncom-
pressed data. Our compression rates and quality measures
compare well with the (sparse) existing literature. We pro-
pose the Mean Absolute Scaled Error (MASE) as a robust
and scale-invariant metric for evaluating compression-
induced distortion. Furthermore, we recommend using
the PubDAS database or the Brady Hot Springs Data as
a standardized benchmark for future comparative studies.
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