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ABSTRACT

Although there are various analytical approaches and nu-
merical methods for solving sonic crystal problems, ana-
lytical expressions for modelling the band structure prop-
erties are limited to a few special cases. The access to a
numerical model offers a solid foundation for data-driven
discovery. In our approach, we employed the Webster
equation for the unit cell and Floquet-Bloch theory for
periodic structures, with the waveguide parametrized by
cubic splines. To extract analytical formulae linking the
waveguide geometry to the corresponding dispersion re-
lation, we applied methods of physics-informed machine
learning, such as coordinate transformation and symbolic
regression. These results provide a deeper understanding
of the underlying principles and serve as an efficient al-
ternative to computationally demanding numerical opti-
mization. Moving toward a Schrödinger-like equation and
parametrization by Gaussian curvature allows for a more
multiphysical approach, yet it also presents challenges re-
lated to the feasibility limits of the geometry.
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1. INTRODUCTION

This research aims to analytically model acoustic trans-
mission and band structure properties in sonic crystals.
So far, the transmission was solved mainly numerically.
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To propose an optimized design for a desired band gap
width, one has to opt for numerical optimization repeat-
edly going back and forth from geometry to the dispersion
relation. Since this approach is computationally demand-
ing, we proposed a method how to discover analytical for-
mulae for design of one-dimensional sonic crystals with
smooth geometry [1]. Our goal is to explore further pos-
sibilities of this approach and transform our problem to a
Schrödinger-like equation, which is a common ground for
various problems of propagation through inhomogeneous
structures. If the data-driven discovery shows to be feasi-
ble also for this transformed problem, the applications of
this follow-up would have potential to be multiphysical.

This short paper focuses on the discovery of the first
bandgap width and is organized as follows: first, the gov-
erning equations are introduced. Next, the methods from
[1] are revisited and applied to our newly defined prob-
lem. Finally, the discovered equations are presented and
the conclusions are drawn.

2. GOVERNING EQUATIONS

Throughout this paper, we consider an axis-symmetric
waveguide with cross-sectional area function A(x) =
πR(x)2 and we assume the time-harmonic behavior (with
the sign convention e−iωt)). The Webster wave equation
holds for the propagation of quasi-plane waves:

p′′ +
2R′

R
p′ + κ2p = 0 , (1)

where x, p = p(x, κ), R = R(x) and κ = ωℓ/c0 denote
the axial coordinate, complex amplitude of the acoustic
pressure, local radius and wavenumber, respectively, with
ℓ being the axial characteristic length. All of the variables
are non-dimensional, except for ℓ.
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Introducing a transformation ψ = pR, we can map
Eq. (1) to a Schrödinger-like equation:

ψ′′ + (κ2 +G)ψ = 0 , (2)

where the condition on transformation is

G = −R
′′

R
. (3)

Compare Eq. (3) with the formula for Gaussian curvature
of a smooth surface in three-dimensional space:

K = k1k2 =
1

R

R′′

(1 +R′2)3/2
≈ R′′

R
, (4)

where k1, k2 are the principal curvatures of the waveguide
(see Fig. 1).

From this comparison, we can conclude, that the
transformation conditionG(x) can be geometrically inter-
preted as a Gaussian curvature (or, to be precise, negative
Gaussian curvature).

Note, that this specific interpretation is possible only
for transformation condition from the Webster equation
to Schrödinger-like eq. by a coincidence. When map-
ping different equations to Schrödinger-like eq., the trans-
formation condition G(x) might have different physical
meanings or no physical meaning at all.

The caveat of parametrizing the unit cell geometry
by Gaussian curvature G(x) and not the radius function
R(x) is the following: for a given G(x), the R(x) is not
always realizable. Furthermore, the realizability differs
from one application to another and therefore, needs to be
checked based on the field of physics one wants to apply
this method to.

3. METHODS

The first step of the previously established approach was
preparing the dataset, which consisted of the four param-
eters controlling the geometry and the bandgap widths.
Then, the bandgap widths were related to geometry con-
trol parameters by employing symbolic regression, imple-
mented in an open-source library PySR [2].

Following this approach, it is needed to choose a
parametrization of the waveguide geometry. The require-
ments for the parametrization stem from the governing
equations of transmission in locally periodic structures.
Due to combined prerequisites of the Webster equation
validity and the Floquet-Bloch theory, a smooth, slowly
varying radius function R(x) is needed, and the unit cells

Figure 1. Illustration of Gaussian curvature G(x) on
a unit cell.

have to be connected periodically and continuously to
form a waveguide.

Considering this, it was decided to begin with a piece-
wise constant Gaussian curvature which allows feasible
control that R(x) exists. Previously, when dealing with
geometries defined by R(x), we parametrized them by
cubic splines with four control parameters [1]. Hence,
we decided to choose for four parameters again: the val-
ues g1, . . . g4 parametrize the problem. This number of
parameters allows the geometry to be sufficiently vari-
able, while the equation discovery algorithm is transparent
enough. Example of such geometry is shown in Fig. 2.

To prevent the symbolic regression from focusing on
too small values of w1, we decided to regularize the rel-
ative error by one-tenth of the mean band gap width, and
take its third quartile:

L = Q3

( |ŵ1 − w1|
w1 + 0.1w̄1

)
, (5)

where w1, w̄1, ŵ1 stand for the dataset value for first
bandgap width, the mean w1, and the predicted value, re-
spectively.

4. RESULTS & DISCUSSION

The discovered formula for first bandgap width w1 reads

w1 = 0.085

√
|g22 + g23 −

2

3
(g1g3 + g2g4)|+ 0.006(g2 + g3) .

(6)
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Figure 2. Top: Gaussian curvature G(x), bottom:
corresponding radius function R(x).

To confirm that Eq. (6) is physically interpretable,
consider a narrow waveguide. Such waveguide has all ge-
ometry control parameters equal to zero: g1 = g2 = g3 =
g4 = 0 and hence, w1 equals to zero as expected. More-
over, the formula respects that the locally periodic struc-
tures are in this case independent of the mirror symmetry
of the unit cell, i.e. the system description is independent
of swapping g1 ↔ g4 simultaneously with g2 ↔ g2.

For comparison, we show formula from [1], that is
written in terms of

w1 = 2.61 [max(rm, rd)−min(0, rm)] . (7)

The relative error of the newly discovered formula
and the formula published in [1] is shown in Fig. 3. Note
that this is a comparison done on different datasets to ob-
tain at least some error estimation of the new follow-up.
The mean relative error is comparable: previously, it was
achieved 7.32 % and now 5.41 %. These results show, that
eventhough when we are relating the bandgap width to pa-
rameters controlling the Gaussian curvature, it is possible
to achieve results of similar precision as before in [1].

5. CONCLUSION

We have confirmed that the previously established ap-
proach can be applied to the transformed problem, al-
lowing us to fit a formula using symbolic regression to
link the first bandgap width with geometry control pa-
rameters, now redefined in terms of Gaussian curvature.
Although the influence of each control parameter on the
radius function is not as easily visible as before, having
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Figure 3. Relative error for bandgap width pre-
diction. The box is indicating the median and the
interquartile range, the whiskers 8th and 92th per-
centile of error. The subscripts R and G denote the
way, how the geometry is defined: by radius function
R(x) and by Gauss curvature G(x), respectively.

the problem defined through the Schrödinger-like equa-
tion offers wider range of application possibilities not only
in acoustics, but also, e.g., in optics. Therefore, future
work will focus on finding formulae for the second and
third bandgap width and improving their accuracy, while
maintaining the interpretability.

6. ACKNOWLEDGMENTS

This work was supported by the Grant Agency of
the Czech Technical University in Prague, grant No.
SGS25/136/OHK3/3T/13.

7. REFERENCES
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