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ABSTRACT

Over the last decade, there has been a marked increase in the
use of drones for various applications including emergency and
natural disaster response, payload delivery, aerial imaging and
surveillance. There are currently many private and public initia-
tives that aim to further increase the number of drones and di-
versify their tasks, offering many associated benefits such as re-
duction in emissions by replacing traditional and more polluting
options with electric unmanned aerial vehicles (UAVs). How-
ever, several challenges have to be addressed before a broader
implementation is accomplished. One of such challenges is the
reported noise annoyance produced by UAVs. This study fo-
cuses on the development of data-driven models to predict the
dynamics of noise metrics during real UAV operations. Exten-
sive outdoor experimental campaigns were conducted, where
array-based measurements were recorded during several ma-
noeuvres performed by different types of drones. Beamforming
techniques were applied to improve data quality and signal-to-
noise ratio (SNR), and to synchronize telemetry and acoustics
data streams. Using the improved experimental data, an ini-
tial machine learning model was developed to predict the back-
propagated OSPL as function of telemetry-derived operational
parameters for ascent, hover, and descent. The model managed
to accurately predict the experimental data, and it was found that
the elevation angle was the most important predictor of O.SPL
for the considered manoeuvres.
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1. INTRODUCTION

Several factors have led to a sharp increase in the number of
drones and tasks, some of which are due to the reduction of
production costs, the development of more efficient and smaller
technologies, critical for the manufacturing and control of these
systems, and their versatility performing a large variety of tasks.
Among these, photography and video recording capabilities have
enabled drones to support, for example, infrastructure develop-
ment and surveillance and security. Drones have also been em-
ployed to provide assistance in emergencies and natural disas-
ters, in agricultural applications, and goods transportation [1].
Generally, they are considered to have great potential to serve
as greener and more sustainable options to replace traditional,
more contaminating methods. The number of tasks that UAVs
can perform exceeds this list, but the critical natures of certain
applications signify their importance.

However, one of the main barriers to the broader adoption
and applications of UAVs is the reported acoustic annoyance
caused by their operation [2—4]. To allow for the sector to sus-
tainably grow, it is essential to address such reported acoustic
annoyance. A predictive tool is needed to estimate representa-
tive psychacoustic metrics. Given the wide range in drone types
and operational conditions, outdoor drone noise measurements
are considered an important element in the efforts of working
towards such a tool. These need to be developed based on stud-
ies of typical real UAV operations to understand the connections
between operational parameters and the acoustics, as well as the
influence of environmental factors.

The resulting tools will allow for adequate mission planning,
manoeuvre optimization, and design improvements to mitigate
acoustic annoyance. As the acoustics vary for different drone
types and manoeuvres, these differences must be taken into ac-
count as well. At the same time, these tools need to remain
computationally inexpensive for fast calculations and seamless
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integration into optimization frameworks. Studying drone noise
with the drone operating under realistic conditions is essential to
ensure a realistic overview of the expected noise. Recent studies
have explored UAV noise in such realistic and uncontrolled en-
vironments [5-7]. These works focused on measuring and char-
acterising noise from specific drones under realistic conditions.
In this study, we describe the development and initial results
of a data-driven model that managed to predict experimentally
measured acoustic features using telemetry-based variables, and
identified important operational parameters as main predictors.

2. METHODS
2.1 Experimental campaigns

An experimental campaign was conducted in April 2024 at an
airfield on the outskirts of Prague, Czechia. The site was chosen
for its isolation from populations centers, and it was only close
to a seldom-used road. Additionally, the airspace in the area was
not crowded by air traffic, with only a few aircraft flying over-
head throughout the campaign. These occurrences were noted
in the experimental logs to account for their contributions, or re-
measure if necessary. Taken all together, these conditions met
the site goal which was to constitute a highly isolated environ-
ment in terms of additional noise sources, while still being an
outdoor environment with its inherent variability, including oc-
casional wind currents and gusts. The tested flight plan consisted
of a series of manoeuvres including ascent, hover, descent, hori-
zontal flights, and sudden changes in direction. All manoeuvres
were performed by three different multirotor UAVs.

To start the model development, operations involving as-
cent, hover, and descent were analysed. Each operation was
performed as follows: The drone took off and ascended verti-
cally to 10 m above ground level (AGL), where it hovered for 15
seconds. It then ascended to 30 m where it hovered again for the
same duration, and repeated the process at 50 m and 70 m. Once
the hover at the last altitude was completed, the drone descended
continuously until landing. The altitude profile, as a function of
time, for this operation is shown in figure 1.

This operation was repeated for five different take off posi-
tions, where the ascent position, relative to the microphone array,
was changed. The take off positions were located north, south,
west, and east of the microphone array, at approximately 25 m
distance, and an additional site at 50 m east of the array, result-
ing in five total take off positions. The combined altitude profile
of these operations can be observed in figure 2. Differences in
altitudes corresponding to different operations occurred due to
pilot operations. The selected drone was a co-rotational (X8)
quadcopter Gorgon, built, developed, and piloted by AgentFly
Technologies, which can be observed in figure 3.

To measure the acoustic signal while the manoeuvre was
performed, an array of 4 m of aperture, consisting of 64 micro-
phones, with a sampling frequency of 62500 Hz was used. To
attenuate ground reflections, a foam was placed under the entire

array, and a secondary foam was placed in the central part of the
array between the microphones and the array structure to avoid
these reflections, had they appeared.

To record the operational parameters of the drone, the au-
topilot telemetry and ESCs were used. Among several others,
these included the GPS-based information, position, velocity,
and acceleration, the RPMs of individual rotors, and thrust, all
recorded as a function of time.

Figure 1. Altitude profile for a single ascent-hover-
descent operation performed by the Gorgon X8.

Figure 2. Altitude profile for five ascent-hover-descent
operations performed by the Gorgon X8. The horizon-
tal axis represents a sequential arrangement of time-series
data rather than the actual time. Variability among signals
is evident due to the manual piloting of these operations.
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Figure 3. Photo of the selected drone, Gorgon X8, de-
veloped and operated by AgentFly Technologies. Credits:
Dr. Milan Rollo, AgentFly Technologies.

2.2 Beamforming techniques

Given the goal of developing a data-driven model to describe the
time dynamics of different acoustic metrics, it is necessary to
first address two points. i) As explained in the previous section,
different measures were taken to reduce the effect of ground re-
flections. However, it was impossible to eliminate them entirely
during the data acquisition. ii) It is important to accurately syn-
chronize all telemetry variables and acoustic data to increase the
model validity. This involves both properly synchronizing the
data and correcting the GPS readouts due to their uncertainties.
To address the above issues, beamforming was used.

To do this, a beamformer for a fixed source position &; is
defined based on the following functional structure [8]:

g (pp")g;
B(r,0,¢) = ﬁ (1)
J

where (pp*) is the Cross-Spectral Matrix (CSM) of the mea-
sured pressures, which is generated by averaging the Fourier
transforms of sample blocks of 0.1 s in our case, with no overlap
considered, and g7 is the steering vector

exp (—2mifAtjn)
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with At; ,, the delay between the emission at the position &; and
the receiver position x,,. The beamformer (1) establishes a cor-
relation between the actual location information of the source,
contained within the CSM, and the source position considered,
represented by the steering vector in Equation 2. By considering
many potential source locations &;, the location corresponding to
the maximum of Equation 1 is used as the estimate of the source
position from the array measurements.

This methodology was used to reconstruct the UAV trajec-
tory, independent from the GPS information. Then, the acoustic

localization-based and GPS-based trajectories were compared to
estimate the corrections needed in the GPS telemetry data.

Once the corrections were implemented, the steering vec-
tor was no longer defined based on the estimated position, but
rather in terms of the GPS-corrected trajectory. As the beam-
forming considers all microphones, while compensating for de-
lays to effectively focus on the source, it generates a much
cleaner spectrogram with improved SNR compared to single
microphone measurements. Once the beamformed spectrogram
was obtained, the signals were back-propagated for each beam-
formed frequency band according to:

SPLSD’U,TC&(f) t) = SPLground(f7t + ict)) (3)

+201og % + a(f)r(t) 4)
where 7 is the distance between the array and the drone, ro = 1
m, c the sound speed, and «(f) is the coefficient of atmospheric
absorption, which depends on the frequency, and also on relative
humidity and temperature, both of which were recorded during
the measurement campaign.

This procedure generated a cleaner, back-propagated to the
source spectrogram, where ground reflections are attenuated.
The single microphone and beamformed spectrograms for a sin-
gle operation can be observed in figure 4

3. RESULTS
3.1 Correlation study

From the telemetry data, different observables were computed as
inputs for the data-driven models. These were:

* Azimuthal angle ¢(t): The angular position between the micro-
phone array and the drone measured on the horizontal plane (on
the ground).

* Elevation angle 6(¢): The polar angle between the microphone
array and the drone, with & = 0 when the drone is on the ground,
and 0 = g if the drone is overhead.

* Velocity vector absolute value |o(t)]
* Acceleration vector absolute value |a(t)|

¢ Thrust percentage T’
* Each of the eight rotors rpm {n,, ;(t) }i=1...8

As the acoustic metrics were back-propagated to the source
hemisphere, the range between the array and drone and altitude
were not considered.

Since ascent, hover, and descent were the initially tested
maneuvers, it is expected that under isolated, ideal conditions,
all rpms should have the same absolute value at corresponding
times. In the cases of ascent and descent, the absolute rpm of
all rotors should be identical at each moment, whereas for hover,
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Figure 4. Top: Single microphone spectrogram from
an ascent-hover-descent operation. Despite the mea-
sures taken during the experiments to attenuate reflec-
tions, some effects are still clear. These reflections how-
ever, do not appear to be due to ground effects but rather
from the outermost parts of the array, which appear to act
as spurious sources. Bottom: Beamformed spectrogram
from a single ascent-hover-descent operation. Compared
with the top, the reflections are greatly attenuated. The dB
values increase as this spectrogram is back-propagated to
the source. The tones are clearer than the top frame, and
in particular, they are present up to 2 kHz. In this range,
and for higher levels, the noise is dominated by its broad-
band component.

the rpm of all rotors would remain constant also during the du-
ration of the manoeuvre. Therefore, the rpms time series were
replaced, and the following observables were generated:

1 &
(np(t)) = N Z [ np(t) | 5)

Ny
ony(t) = 3| - Do) | = ()2 ©
Ti=1
where the average and standard deviations were calculated at
equal times, thereby resulting in time series as well.

The (n,(t)) measures the overall rpm, and o7, (t) is used to
quantify how far from the ideal hover, ascent or descent the rpm
activities are; a value of o, (t;) = 0 indicates that at the time
t;, all the rotors had the same rpm. In other words, variations
given by factors such as wind gusts and pilot-induced perturba-
tions will cause this observable to vary from zero. The time over
which each effect takes place depends on factors such as pilot

reaction time, and wind gust intensity and duration.
The first step towards studying relations between both sets of

variables (acoustic metrics and telemetry data) was to compute
pair-wise correlations between each of the inputs and OSPL,
considering a single ascent-hover-descent operation. The Spear-
man correlation was used as it can test for the existence of gen-
eral monotonic correlations. The results are shown in figure 5.

As it can be observed from the correlation coefficients, the
correlation between the O.SPL and the elevation angle 0 is sig-
nificantly increased. To validate the results, Pearson correlation
was also used and displayed approximately the same coefficient
between both of these variables (data not shown).

This study is a sufficient condition to establish that the ele-
vation angle is a variable of importance to predict the OSPL,
but it does not necessarily mean that the other variables are not
relevant, as this is a pair-wise study and does not capture any
coupling between input variables. Additionally, both metrics
have limitations, with Spearman correlation allowing for non-
linear but monotonic relations, and Pearson looking exclusively
to linear relations; both could be excluding the discovery of more
complex relations.

Figure 5. Spearman correlation of the OSPL with each
of the tested input parameters. A considerable increase is
observed for the elevation angle. This implies the exis-
tence of a monotonic relation between both signals.
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3.2 Model results

Because drone operations in uncontrolled environments tend to
show a higher variability in terms of the drone flight dynamics
and therefore in the generated acoustic signals, it is important to
understand the model performance in representing this variabil-
ity. To this end, all five ascent-hover-descent operations were
integrated together into the dataset for the model. The altitude
profile corresponds in this case with the one observed in figure 2
in the section 2.1.

As the correlation analysis showed that relations exist be-
tween at least one of the telemetry variables considered and the
measured OSPL, the main goal was to find such relations and
use them to predict this acoustic metric. To create a model capa-
ble of capturing complex relations between the operational pa-
rameters and the acoustic metrics, machine learning techniques
were employed. In this work, we report the model results for
the case of random forest regression (RFR). This method was
chosen after comparing the prediction accuracy of different ML
regression models, from which RFR proved to be the most ac-
curate while remaining relatively simple. Additionally, Random
Forest has also been used in other works related to assesment
and prediction of aviation noise [9].

Initially, a series of studies were performed to optimize the
number of decision trees. The optimization consisted of gener-
ating training, validation, and quality assessment of prediction
procedures for each number of decision trees. Randomization
and splitting were done before the optimization starts; dividing
the randomized data into 80% training and 20% for validation.
After the model for each number of trees is trained on the train-
ing set, the prediction is computed by applying it to the vali-
dation data and generating the model estimation. R?, RM SE,
and M AFE were calculated based on the prediction and stored
for each decision trees number. The optimal number of deci-
sion trees was set based on the highest value of R?. It was also
checked that the values of RM SE and M AFE have a local min-
imum at the chosen value. These results can be observed in the
figures 6, 7, 8.

The optimization resulted in an optimal number of trees,
which was then used to produce the optimal model predictions,
which can be observed in figures 9 and 10, and the accuracy in
figure 11. From figure 10, the dynamics of the OSPL is accu-
rately recovered by the model. There are sources of deviations
arising from extreme values and stochastic experimental noise.

To assess the robustness of the model results, the optimiza-
tion was repeated for different randomization of the dataset and
the R?, RMSE, and M AE were extracted again. No signifi-
cant difference was observed for the optimized model, present-
ing similar values up to the 3 decimal place of R?. The results
obtained from the initial optimization are then robust relative to
changes in the data randomization. Therefore, the model man-
aged to generate accurately predictions of the experimentally ob-
tained O.S P L when all operations are considered together.

To assess the relevance of each of the input variables to pre-

R? from prediction

0.8394
0.8384
0.837 1
‘> 0.836
0.8354
0.834 4
0.8334

500 1000 1500 2000

Number of decision trees

Figure 6. Optimization of the number of decision trees
based on the highest R2. In red, this maximum is shown.
It can be observed that the variations on the R? are small,
as it only changes a maximum of 0.007.

Figure 7. Values of the M AFE calculated on the model
prediction from each optimization run based on the high-
est R2. In red, the number of decision trees for which the
highest R? is obtained is displayed. It was observed that it
corresponded to a local minima of the function. The vari-
ation on the M AF is small, with a maximum of 0.025 dB.

dict the OSPL, the feature importance of the model was stud-
ied, analyzing the mean decrease impurity (MDI). This metric
measures how much each input variable reduces the variance of
the target values after it is used to split the data. The results from
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Figure 8. RM SE of the prediction from each optimiza-
tion run based on the highest R?. In red, the number of
decision trees for which the highest R? is obtained is dis-
played. The variation on the RM S E is small, with a max-
imum of 0.05 dB across all tree values.
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Figure 9. Trained RFR of the O.SPL data using the opti-
mal number of decision trees.

this analysis can be observed in figure 12

As the M DI results show, the elevation angle results in the
most important predictor of the O.S P L, which implies that the
information of both the OSPL dynamics and intensity can be
greatly explained by the elevation angle. Since all acoustic data
was back-propagated to the 1 m hemisphere, the elevation angle
is the angle between the horizontal plane of the drone and the
field point.

This result implies that the OSPL hemisphere behaviour
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Figure 10. RFR prediction of the OSPL using the opti-
mal number of decision trees.

Figure 11. RFR prediction of the OSPL plotted as func-
tion of the validation data, for the case where all the oper-

ations were used. The model manage to capture most of
the behaviour of the OSPL, with R?2 = 0.84

takes over other sound generating mechanisms when assessing
predictor importance during realistic environmental conditions.
The observed behaviour of the model in terms of R?, deviation
relative to the validation data, and feature importance, indicate
that the prediction is accurate and robust to the high variabil-
ity allowed. Furthermore, the ascent-hover-descent manoeuvres
were performed manually, which adds a level of variability that
is not usually present in systematic drone operations. Because
of this, the model could show more accurate results when the
automatic pilot commands the drone.

To visually verify the behaviour of the elevation angle, it
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Figure 12. RFR parameter importance. The elevation an-
gle scores the maximum M DI.

can be observed OSPL for all the operations can be observed
in figure 13.
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Figure 13. Comparison between the elevation angle (0)
and the OS PL of all the ascent-hover-descent operations.

It is observed that the OS P L increases as the elevation an-
gle increases, which indicates that more frequency-integrated

acoustic energy is measured when the field point is located closer
to the bottom of the drone. As it can be observed in figure 13,
this behaviour is not linear and the OSPL increases more for
smaller elevation angles, and it reaches an asymptotic behaviour
for larger elevation angles.

4. CONCLUSIONS AND DISCUSSIONS

During the present work a machine learning model was devel-
oped and tested to predict the OSPL caused by ascent, hover
and descent operations of an X8 multirotor drone. The model
managed to predict most of the variation observed in the acous-
tic metric calculated directly from experimental data, taken in
realistic outdoor operational conditions. The elevation angle
was found to be the most important predictor of the OSPL in
the tested manoeuvres, which indicates that the geometry of the
hemisphere is more relevant than the other telemetry-based vari-
ables.

Consequently, the model is able to represent an effective ge-
ometry of the radiation lobe of the drone’s O.S P L. In particular,
based on the observed non-linear behaviour, where the OSPL
increases more for smaller angles, and much less for larger an-
gles, the model could indicate a sinusoidal/shifted-cosine de-
pendency on the angle, which points at a dipolar behaviour of
the sound propagation. This effect will be validated and further
studied for other acoustic metrics in the future, as well as for the
other manoeuvres and drones recorded during the experimental
campaign.

This paper presents a method to generate predictions of total
OSPL prior to operations, involving ascent, hover, and descent.
As these are critical manoeuvres for real UAV operations, they
are highly relevant for assessing the impact of these operations
on human populations nearby. During ascent and hover in real
conditions, the drone has to accelerate or maintain an altitude,
while adapting the rotors activities to compensate for any wind
distortions, which in turn generate a fast variation of the acous-
tic dynamics. This first model managed to represent most of
these variations based on telemetry-based features, accomplish-
ing a good degree of accuracy and robustness, when analyzing
all operations together.

Since the input features are directly derived from telemetry
data, the model shows the potential to be also used as a way of
interrogating the importance of physical drivers and guide the
development of physics-based theories that can study from first
principles, the dominant sound generating mechanisms in realis-
tic, uncontrolled, conditions.

In a broader aspect, these results represent a first step into
the development of a predictive tool to quantify the acoustic im-
pact of drone operations. During the measurements campaign
explained in section 2.1, several horizontal flight and changes in
directions were measured, which are being used to extend the
model to these different manoeuvres, hence more comprehen-
sively studying a full flight envelope. To study how general the
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predictors are, other multirotor systems that were used in the
measurements campaign will be analysed.

Based on the measured manoeuvres, a series of uncertainty
quantification studies are being developed with two objectives.
Firstly, to quantify the accuracy of the model as well as its uncer-
tainty for the different studied manoeuvres. Secondly, to study
the role of wind gusts in the acoustic metrics and to quantify the
effect on the model predictions.
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