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ABSTRACT

Air Source Heat Pumps (ASHPs) are pivotal in
decarbonising domestic heating and air conditioning, yet
noise emissions remain a significant barrier to their
wider adoption. This paper presents a machine learning-
based approach to predicting annoyance caused by
ASHP noise emissions to address the complexity of
human perception of noise by integrating psychoacoustic
metrics, emotional responses, and demographic factors.
Seven predictive models were evaluated, including tree-
based methods (Gradient Boosting and Random Forest)
and traditional regression approaches (Support Vector
Machine, Lasso, Linear Regression, Ridge, and
ElasticNet). Among these, the Gradient Boosting method
demonstrated superior performance (test R? = 0.846,

RMSE = 0.910) compared to linear methods,
highlighting the non-linear nature of annoyance
response. Feature importance analysis revealed

emotional responses (Arousal and Valence) as the
dominant predictors, collectively accounting for 92.3%
of the model's predictive capability, while Zwicker’s
Psychoacoustic Annoyance (PA) and Tonality showed
moderate correlations with these emotional factors,
suggesting indirect influence and mediation effect.
Despite limitations in available training data that did not
allow full implementation of neural network approaches,
the current model provides a robust foundation for
predicting annoyance caused by ASHP noise emissions
and highlighting the impact of subjective perception
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1. INTRODUCTION

Switching from fossil fuels to renewable options is key
for reducing carbon emissions in domestic heating and
air conditioning around the globe. In Europe, buildings
are the largest consumers of energy. Most of these
buildings waste energy. They account for 36% of
greenhouse gas emissions and 40% of total energy use
[1]. One way to tackle this issue is by replacing old fossil
fuel heating systems with energy-efficient options like
air source heat pumps (ASHPs).

ASHPs are easy to maintain and cost-efficient. The
thermal energy produced by an ASHP can be well over
100% of the amount of energy they use[2]. However,
noise emissions from these units have raised concerns
among the public. The spectrum of the ASHP noise
varies depending on the operating condition of the unit.
Low-frequency content dominates the ASHP signal, but
it also typically includes both narrowband and tonal
components [3], with becoming particularly more tonal
in the low-frequency region. These components can
significantly contribute to the annoyance caused by noise
emissions.

The most common policy around ASHP noise emissions
is regulating the A-weighted sound pressure levels. In
addition, some countries, such as Germany, Finland, and
the Netherlands, included tonal penalties in their noise
assessment regulations to address the annoyance that
could be caused by the tonal character of the signal [4].
These policies, in general, fell short of including the
human perception of ASHP noise and solely relied on
objective measures. People’s subjective responses should
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be used alongside the A-weighted sound pressure level-
based measurement to ensure best practice in the policy.

This paper presents the preliminary results of a more
extensive study to incorporate Machine Learning (ML)
based models to predict the noise annoyance caused by
ASHP noise emissions. This paper aims to investigate
which acoustics and non-acoustic factors and ML
methods are most suitable for developing a robust model
that accurately predicts noise annoyance caused by
ASHP noise emissions. By incorporating additional data
from diverse datasets in the future, this research aims to
develop a fast and accessible tool for supporting
decision-making based on relevant acoustic and non-
acoustic metrics. This will facilitate effective planning
and placement of ASHP units to minimise noise impact
on communities.

2. METHODS

The data used for this study were gathered through a
listening test conducted at the Acoustics Research Centre of
the University of Salford. This listening test was concerned
with human perception of ASHP noise at various source
distances, background noise levels, and under different
loads. It consisted of two parts, each examining different
aspects of the ASHP noise under different background
noise levels and source distances. The first part of the
experiment considered people's reactions to continuous
ASHP noise. In contrast, the second part concerned the
response to transient ASHP noise. However, the scope of
this study does not include the investigation of the
responses to continuous and transient noise, source
distances or the effect of different background noise levels.
Instead, the focus is on understanding how the subjective
response and psychoacoustic character of ASHP noise
affects perception and how it can be used to develop an
ML-based prediction model. Therefore, only a brief
overview of the experimental procedure is provided.

2.1 Audio Stimuli

The audio stimuli used in this experiment were based on
recordings conducted as part of the IAE HPT Annex
51[4][5]. These recordings had a sampling rate of 96 kHz
and were calibrated to the original levels based on a 94
dB(A) 1 kHz calibration tone.

Two recordings were selected from this original recording
dataset and trimmed into shorter segments of two different
lengths for two distinct parts of the experiment (20 s for
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Part 1 and 60 s for Part 2). Responses to both parts of the
experiment were used in this ML implementation. The
sound levels (Lueg20s and Lacgsos) of these excerpts were
calibrated in the Listening Room of the University of
Salford’s Acoustics Labs to ASHP-receiver distance
attenuation target levels (36.5 dB(A) at 15 m, 40 dB(A) at
10 m, and 46 dB(A) at 5 m).

In addition, ambient background noise is added to the
ASHP signal. Instead of a soundscape recording, a shaped
pink noise is used as the ambient background noise. To
achieve this, pink noise is filtered to represent a typical
traffic noise spectrum based on the filter curve detailed in
the BS EN ISO 717-2020 [7]. The shaped-pink noise was
then calibrated to 39.5 dB(A) and 31.5 to represent the
ambient daytime and nighttime background noise levels of
a typical rural area [8].

Lastly, these stimuli were propagated indoors through a
partially open window (0.05 m?) following a filter curve
provided by [9]. A total of 114 audio stimuli were used for
parts one (84 stimuli) and two (30 stimuli). The participants
were pseudo-randomly presented with half of the stimuli
(57 stimuli) from the stimulus sets for each part of the
experiment. Additionally, three control stimuli (2 stimuli for
Part 1 and 1 stimulus for Part 2), which only included the
shaped pink noise as ambient background noise, were
presented to each participant.

2.2 Experimental Procedure

Listening tests were conducted in the University of
Salford’s Listening Room following ethical approval (Ref:
2024-0145-228). Participants listened to 60 audio stimuli
across two parts (Part 1: 42 audio stimuli + 2 control
stimuli; Part 2: 15 Audio stimuli and one control stimulus),
with responses submitted via a custom Python GUI. The
playback system included a Motu 4Pre interface, Genelec
8030A loudspeaker, and 7020B subwoofer, with
participants seated 2 m from the source.

Each session lasted approximately 70 minutes and included
breaks between parts. Before starting, participants
completed consent forms, demographic questions, and the
NoiSeQ noise sensitivity scale. After each stimulus, they
rated Valence and Arousal on a 9-point Self-Assessment
Manikin (SAM) scale, reflecting pleasantness and alertness.
Annoyance was rated using a 0-10 scale (0 — “Not
Annoying at All,” 10 — “Extremely Annoying”) adapted
from ISO/TS 15666:2021 [10].
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In Part 2, participants responded to two temporal points per
stimulus to capture perceptual changes, resulting in 75 total
responses per participant.

2.3 Participants

The dataset used for research consisted of 50 volunteers that
participated in the experiment: 35 male (70%) and 15
female (30%), aged between 19 and 57 years (mean = 32.1,
SD = 8.95). Nearly half of the participants reported having
expertise in audio or music (n= 24, 48%), while just over
half stated they had no previous experience (n= 26, 52%).
Most participants lacked expertise in environmental noise
or urban planning (n=40, 80%). In terms of housing, 18
participants resided in apartments (36%), nine in terraced
houses (18%), six in semi-detached houses (12%), five in
detached houses (10%), and the rest lived in student
accommodation or shared housing.

2.4 Data Analysis

ArtemiS Suite 15.6 is used to calculate the sound quality
metrics (SQM) of the audio stimuli, including Loudness,
Sharpness, Roughness, Fluctuation Strength, and Tonality.
Loudness and Sharpness metrics are calculated according to
DIN 45631/A1[11] standard, while ECMA 418-2(1%)/(2")
[12] is used for calculating Roughness, Tonality and
Fluctuation Strength.

In addition to SQM, Zwicker’s Psychoacoustic Annoyance
(PA)model [13] is calculated using the formula:

PA = Ns (1 + (wé+ wgﬁ)

(M
Where:
- N5 percentile loudness in Sone
Ny
We = ( — 1.75) -0.25log (— + 10)
acum sone
for S=> 1.75acum
@
- describing the effect of Sharpness in S and
_ 2.18 (0 4 F P R )
WER = (N5 /sone)®4+\ ™" vacil asper
3

- describing Roughness R and Fluctuation F.
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To quantify the application of ML methods to predict
annoyance from ASHP noise emissions, Python 3.13.1 was
used with relevant data analysis and visualisation libraries,
including scikit-learn, statsmodels, matplotlib, and seaborn.

As previously mentioned, the dataset used for this
experiment consisted of responses from 50 participants,
each submitting a total of 75 responses, resulting in 3750
data points. Because of this relatively small sample size,
ANN-based models were not considered in the prediction
model. Instead, the study employed a range of ML-based
linear regression models, including Ridge, Lasso, Elastic
Net and Linear; tree-based models, including Random
Forest and Gradient Boosting; and Support Vector Machine
regression (SVR). These models were selected to compare
performance across different regression approaches,
balancing interpretability and prediction accuracy.

To optimise the hyperparameters of these models,
GridSearchCV from the scikit-learn library was employed.
This tool is commonly used for tuning the hyperparameters
for ML algorithms by automating the process of finding the
optimal combination of hyperparameters by exploring a
predefined grid of parameter values and evaluating each
combination using cross-validation [14]

To ensure the robustness of the results, 5-fold cross-
validation (k=5) was used. This method partitions the
dataset into five subsets, using each one for validation while
the remaining four subsets are used for training. The use of
cross-validation helps mitigate overfitting and provides a
more reliable estimate of model performance, particularly
given the relatively limited sample size in this study.

3. RESULTS AND DISCUSSION

The main focus of developing this prediction model was to
incorporate the subjective response and psychoacoustic
characteristics of ASHP noise using SQM. Performances of
different feature combinations are compared across the
previously listed regression and tree-based ML methods to
determine which features to include in addition to the
subjective response variables of Valence and Arousal and
the SQM.
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Table 1: Comparison of VIF values for training
features that include Psychoacoustic Annoyance
(PA) and Sound Quality Metrics (SQM)

Variance Inflation Factor (VIF) values:

Feature SQM as Predictors PA as a Predictor
Tonality 8.673 8.456

Valence 8.08 6.161

Arousal 13.668 5.751

Age 12.258 10.231

PA NA 10.539

Loudness 27.238 NA

Roughness 23.52 NA

Sharpness 27.557 NA

Fluctuation 4.618 NA

Multicollinearity analysis was conducted as part of the
model  comparisons, which revealed substantial
interdependence among the original SQM. VIF values for
Loudness (27.238), Sharpness (27.557), and Roughness
(23.52) in the initial model exceeded recommended
thresholds, indicating problematic collinearity (Table 1).
When these metrics were replaced with the composite
Psychoacoustic Annoyance (PA) parameter, the model's
multicollinearity was substantially reduced. The PA-
inclusive model demonstrated improved VIF values across
predictor variables, with Arousal showing the most
dramatic reduction (from 13.668 to 5.751). Although PA
exhibited a VIF (10.539) value right at the cutoff value, it
remains considerably lower than the metrics it replaced.
The replacement of individual sound quality metrics with
PA not only addresses multicollinearity concerns but also
provides a more compact model while preserving essential
psychoacoustic information. A-weighted sound levels are
not included in this model, as they provided extreme VIF
values and did not significantly contribute to the predictive
power in any of the tested models.

The only demographic variable included in the models was
Age. While other demographic variables were initially
considered, such as gender and noise sensitivity data from
NoiSeQ responses, they either produced extremely high
VIF values (e.g. NoiSeQ VIF 32,780 when used
alongside the final features) or were found to not
meaningfully contribute to the model based on correlation
and feature importance analysis.
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Figure 1: Heatmap representing the correlation
matrix between the final set of predictor

variables.

Figure 1 shows the correlation matrix between the final set
of predictor variables used in the model comparison,
providing further justification for the variable selection
strategy explained in the VIF analysis. PA and Tonality are
the strongest predictors in the matrix. The moderate
correlation between PA and subjective response variables
(Valence: -0.30, Arousal: 0.37) indicates that while PA
effectively consolidates the SQM, it remains sufficiently
distinct from other subjective response variables. Age
shows the weakest correlation among all the predictors. It is
kept as an independent factor in the model since a
correlation matrix only captures the linear relationships,
while models like Gradient Boosting and Random Forest
can capture non-linear patterns and interaction effects that
may not be evident in a correlation matrix.

A comprehensive evaluation of predictive models was
conducted to identify the optimal approach for estimating
acoustic responses. Performance metrics, including RZ,
Mean Absolute Error (MAE), Mean Squared Error (MSE),
and Roost Mean Squared Error (RMSE), were calculated
for training and test datasets across seven distinct modelling
techniques (Table 2). Among all the models compared, the
Random Forest achieved the highest training R? (0.917),
suggesting excellent data fitting; however, the slightly
lower test performance (R* = 0.834) indicated potential
overfitting. Linear models (SVR, Lasso, Linear Regression,
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Table 2: Comparison of train and test performance of different models.

Model Train Test Train Test Train Test Train Test
R? R? MAE MAE MSE MSE RMSE RMSE

Gradient Boost 0.902 0.846 0.543 0.677 0.525 0.829 0.725 0.910
Random Forest 0.917 0.834 0.500 0.703 0.447 0.889 0.668 0.943
SVR 0.758 0.757 0.875 0.877 1.298 1.301 1.139 1.140
Lasso 0.751 0.750 0.892 0.892 1.339 1.341 1.157 1.158
Linear Regression  0.754 0.753 0.888 0.889 1.321 1.326 1.149 1.151
Ridge 0.754 0.753 0.888 0.889 1.321 1.325 1.150 1.151
ElasticNet 0.753 0.752 0.890 0.891 1.330 1.331 1.153 1.154

Ridge, and ElasticNet) exhibited comparable performance
patterns, with test R? values ranging from 0.750 to 0.757,
substantially lower than the ensemble methods. The
consistency between training and test metrics for these
linear models, particularly SVR (training R? = 0.758, test R?
= (.757), suggests stable performance despite lower overall
accuracy. A significant performance gap between tree-
based ensemble methods and linear models was observed,
with approximately 10% improvement in explained
variance and almost 20% reduction in prediction error,
highlighting important non-linear relationships in the data.

Gradient Boost - Actual vs Predicted Annoyance
: 10
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Figure 2: Heatmap showing the normalised
frequency of predicted vs annoyance ratings for
the Gradient Boost model. Each cell's colour
represents the proportion of test samples falling
into the corresponding (actual, predicted) bin.
The red dashed line diagonal represents the
perfect prediction.
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The consistency between training and test metrics for these
linear models, particularly SVR (training R? = 0.758, test R?
=0.757), suggests stable performance despite lower overall
accuracy.

Among the models compared, the Gradient Boosting model
demonstrated the best balance between predictive accuracy
and generalisation. It achieved the highest test R? (0.846)
while maintaining the lowest test error metrics (MAE =
0.677, RMSE = 0.910), indicating superior performance on
unseen data and capturing potentially non-linear
relationships. While Random Forest showed a slightly
better prediction power over the training data, as it showed
evidence of overfitting, the Gradient Boosting model was
chosen to be used. In addition, the Gradient Boost method
effectively handles multicollinearity. Based on the VIF
values shown in Table 01, this is a requirement of the
model, as both PA and Age are at the critical thresholds for
multicollinearity.

Figure 2 illustrates the predictive performance of the model
by comparing the actual and predicted values. The heatmap
demonstrates a strong linear relationship between predicted
and actual Annoyance values. Overall, the model aligns
strongly with the prediction diagonal (red dashed line) but
shows some deviation and mild underprediction for higher
annoyance values.

Finally, feature importance scores were computed for the
Gradient Boost model to wunderstand the relative
contribution of each predictor. The highest feature
importance scores were observed for Arousal (0.550) and
Valence (0.373), which accounted for 92.3% of the
predictive power, which are also affected by the ASHP
noise. Feature importance scores show that Age contributed
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0.0659, while PA (0.0078) and Tonality (0.0026) had
minimal impact. While these results indicate that
psychoacoustic factors and tonality have a minimal direct
impact on this model, their role in shaping the primary
predictors should not be overlooked. When these results are
considered with the insights from the correlation matrix
(Figure 1), it shows that PA and Tonality are moderately
correlated with Arousal and Valence, which are the most
influential features. This indicates a potential mediating
effect, where PA and Tonality influence the prediction
indirectly via Arousal and Valence. This emphasises the
importance of gaining a deeper understanding of the
subjective responses to ASHP noise emissions and
considering the soundscape approach.

4. LIMITATIONS AND FUTURE WORK

The main aim of this research was to create a robust ML-
based prediction model and leverage ANN models. At
the time of writing this paper, this is only partially
achieved due to the lack of access to relevant datasets.
The first step in future work will be supplementing this
research with further data from similar acoustic studies.
This will allow the development of more sophisticated
ANN-based models capable of capturing the complex
non-linear relationships observed in the Gradient Boost
implementation. The significant performance gap
between ensemble and linear models suggests that deep
learning approaches offer additional predictive power
with sufficient training data.

Future iterations of the model can also include temporal
dynamics ASHP operation cycles. While the dataset from
this study included different operating conditions and
transient events, possibly due to sample size limitations,
they were not found to be significant in any of the top-
performing models. The temporal dynamics of SMQ and
PA should also be further investigated. Incorporating time-
varying acoustic features could better represent real-world
ASHP operational conditions.

5. CONCLUSION

This study investigated the prediction of Annoyance
responses to Air Source Heat Pump (ASHP) noise using
machine learning (ML) approaches. The comparison of
various regression models demonstrated that tree-based
models, particularly Gradient Boosting, outperformed linear
regression techniques. This superior performance highlights
complex non-linear relationships in the perception of
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annoyance that simpler models fail to capture adequately.
The PA is implemented as a composite metric to address
multicollinearity issues present in the original SQM,
resulting in a more compact and robust model.

Feature importance analysis revealed that emotional
responses, specifically Arousal (0.550) and Valence
(0.373), were the dominant predictors of annoyance,
collectively accounting for over 92% of the model's
predictive power. While PA and Tonality showed
minimal direct contributions, their moderate correlations
with the primary predictors suggest an indirect influence
through emotional responses. This finding underscores
the complex interplay between objective acoustic
parameters and subjective emotional responses,
supporting the adoption of soundscape approaches in
noise annoyance research. The observed relationships
emphasise the necessity of considering both acoustic and
non-acoustic factors when evaluating and mitigating
ASHP noise impacts.

The successful development of this predictive model
represents a significant step toward practical applications
in sustainable urban development. Despite limitations in
available training data, the model demonstrates
considerable potential for real-world implementation.
Future work will focus on expanding the dataset to
enable more sophisticated neural network
implementations and incorporating temporal variations
in acoustic features. The ultimate goal remains the
integration of these predictive capabilities into accessible
tools for optimal ASHP placement, thereby supporting
the widespread adoption of this sustainable technology
while minimising community noise impacts. This
balanced approach could substantially contribute to
meeting climate goals without compromising acoustic
comfort in residential environments.
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