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ABSTRACT* 

Air Source Heat Pumps (ASHPs) are pivotal in 

decarbonising domestic heating and air conditioning, yet 

noise emissions remain a significant barrier to their 

wider adoption. This paper presents a machine learning-

based approach to predicting annoyance caused by 

ASHP noise emissions to address the complexity of 

human perception of noise by integrating psychoacoustic 

metrics, emotional responses, and demographic factors. 

Seven predictive models were evaluated, including tree-

based methods (Gradient Boosting and Random Forest) 

and traditional regression approaches (Support Vector 

Machine, Lasso, Linear Regression, Ridge, and 

ElasticNet). Among these, the Gradient Boosting method 

demonstrated superior performance (test R² = 0.846, 

RMSE = 0.910) compared to linear methods, 

highlighting the non-linear nature of annoyance 

response. Feature importance analysis revealed 

emotional responses (Arousal and Valence) as the 

dominant predictors, collectively accounting for 92.3% 

of the model's predictive capability, while Zwicker’s 

Psychoacoustic Annoyance (PA) and Tonality showed 

moderate correlations with these emotional factors, 

suggesting indirect influence and mediation effect. 

Despite limitations in available training data that did not 

allow full implementation of neural network approaches, 

the current model provides a robust foundation for 

predicting annoyance caused by ASHP noise emissions 

and highlighting the impact of subjective perception 
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1. INTRODUCTION 

Switching from fossil fuels to renewable options is key 

for reducing carbon emissions in domestic heating and 

air conditioning around the globe. In Europe, buildings 

are the largest consumers of energy. Most of these 

buildings waste energy. They account for 36% of 

greenhouse gas emissions and 40% of total energy use 

[1]. One way to tackle this issue is by replacing old fossil 

fuel heating systems with energy-efficient options like 

air source heat pumps (ASHPs). 

  

ASHPs are easy to maintain and cost-efficient. The 

thermal energy produced by an ASHP can be well over 

100% of the amount of energy they use[2]. However, 

noise emissions from these units have raised concerns 

among the public. The spectrum of the ASHP noise 

varies depending on the operating condition of the unit. 

Low-frequency content dominates the ASHP signal, but 

it also typically includes both narrowband and tonal 

components [3], with becoming particularly more tonal 

in the low-frequency region. These components can 

significantly contribute to the annoyance caused by noise 

emissions.  

 

The most common policy around ASHP noise emissions 

is regulating the A-weighted sound pressure levels. In 

addition, some countries, such as Germany, Finland, and 

the Netherlands, included tonal penalties in their noise 

assessment regulations to address the annoyance that 

could be caused by the tonal character of the signal [4]. 

These policies, in general, fell short of including the 

human perception of ASHP noise and solely relied on 

objective measures. People’s subjective responses should 
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be used alongside the A-weighted sound pressure level-

based measurement to ensure best practice in the policy.  

 

This paper presents the preliminary results of a more 

extensive study to incorporate Machine Learning (ML) 

based models to predict the noise annoyance caused by 

ASHP noise emissions.  This paper aims to investigate 

which acoustics and non-acoustic factors and ML 

methods are most suitable for developing a robust model 

that accurately predicts noise annoyance caused by 

ASHP noise emissions. By incorporating additional data 

from diverse datasets in the future, this research aims to 

develop a fast and accessible tool for supporting 

decision-making based on relevant acoustic and non-

acoustic metrics.  This will facilitate effective planning 

and placement of ASHP units to minimise noise impact 

on communities.  

2. METHODS 

The data used for this study were gathered through a 

listening test conducted at the Acoustics Research Centre of 

the University of Salford. This listening test was concerned 

with human perception of ASHP noise at various source 

distances, background noise levels, and under different 

loads. It consisted of two parts, each examining different 

aspects of the ASHP noise under different background 

noise levels and source distances. The first part of the 

experiment considered people's reactions to continuous 

ASHP noise. In contrast, the second part concerned the 

response to transient ASHP noise. However, the scope of 

this study does not include the investigation of the 

responses to continuous and transient noise, source 

distances or the effect of different background noise levels. 

Instead, the focus is on understanding how the subjective 

response and psychoacoustic character of ASHP noise 

affects perception and how it can be used to develop an 

ML-based prediction model. Therefore, only a brief 

overview of the experimental procedure is provided. 

2.1 Audio Stimuli 

The audio stimuli used in this experiment were based on 

recordings conducted as part of the IAE HPT Annex 

51[4][5]. These recordings had a sampling rate of 96 kHz 

and were calibrated to the original levels based on a 94 

dB(A) 1 kHz calibration tone.  

 

Two recordings were selected from this original recording 

dataset and trimmed into shorter segments of two different 

lengths for two distinct parts of the experiment (20 s for 

Part 1 and 60 s for Part 2). Responses to both parts of the 

experiment were used in this ML implementation. The 

sound levels (LAeq20s and LAeq60s) of these excerpts were 

calibrated in the Listening Room of the University of 

Salford’s Acoustics Labs to ASHP-receiver distance 

attenuation target levels (36.5 dB(A) at 15 m, 40 dB(A) at 

10 m, and 46 dB(A) at 5 m).  

 

In addition, ambient background noise is added to the 

ASHP signal. Instead of a soundscape recording, a shaped 

pink noise is used as the ambient background noise. To 

achieve this, pink noise is filtered to represent a typical 

traffic noise spectrum based on the filter curve detailed in 

the BS EN ISO 717-2020 [7]. The shaped-pink noise was 

then calibrated to 39.5 dB(A) and 31.5 to represent the 

ambient daytime and nighttime background noise levels of 

a typical rural area [8].  

 

Lastly, these stimuli were propagated indoors through a 

partially open window (0.05 m2) following a filter curve 

provided by [9]. A total of 114 audio stimuli were used for 

parts one (84 stimuli) and two (30 stimuli). The participants 

were pseudo-randomly presented with half of the stimuli 

(57 stimuli) from the stimulus sets for each part of the 

experiment. Additionally, three control stimuli (2 stimuli for 

Part 1 and 1 stimulus for Part 2), which only included the 

shaped pink noise as ambient background noise, were 

presented to each participant.  

2.2 Experimental Procedure 

Listening tests were conducted in the University of 

Salford’s Listening Room following ethical approval (Ref: 

2024-0145-228). Participants listened to 60 audio stimuli 

across two parts (Part 1: 42 audio stimuli + 2 control 

stimuli; Part 2: 15 Audio stimuli and one control stimulus), 

with responses submitted via a custom Python GUI. The 

playback system included a Motu 4Pre interface, Genelec 

8030A loudspeaker, and 7020B subwoofer, with 

participants seated 2 m from the source. 

 

Each session lasted approximately 70 minutes and included 

breaks between parts. Before starting, participants 

completed consent forms, demographic questions, and the 

NoiSeQ noise sensitivity scale. After each stimulus, they 

rated Valence and Arousal on a 9-point Self-Assessment 

Manikin (SAM) scale, reflecting pleasantness and alertness. 

Annoyance was rated using a 0–10 scale (0 – “Not 

Annoying at All,” 10 – “Extremely Annoying”) adapted 

from ISO/TS 15666:2021 [10].  
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In Part 2, participants responded to two temporal points per 

stimulus to capture perceptual changes, resulting in 75 total 

responses per participant. 

2.3 Participants 

The dataset used for research consisted of 50 volunteers that 

participated in the experiment: 35 male (70%) and 15 

female (30%), aged between 19 and 57 years (mean = 32.1, 

SD = 8.95). Nearly half of the participants reported having 

expertise in audio or music (n= 24, 48%), while just over 

half stated they had no previous experience (n= 26, 52%). 

Most participants lacked expertise in environmental noise 

or urban planning (n=40, 80%). In terms of housing, 18 

participants resided in apartments (36%), nine in terraced 

houses (18%), six in semi-detached houses (12%), five in 

detached houses (10%), and the rest lived in student 

accommodation or shared housing. 

2.4 Data Analysis 

ArtemiS Suite 15.6 is used to calculate the sound quality 

metrics (SQM) of the audio stimuli, including Loudness, 

Sharpness, Roughness, Fluctuation Strength, and Tonality. 

Loudness and Sharpness metrics are calculated according to 

DIN 45631/A1[11]  standard, while ECMA 418-2(1st)/(2nd) 

[12] is used for calculating Roughness, Tonality and 

Fluctuation Strength.  

 

In addition to SQM, Zwicker’s Psychoacoustic Annoyance 

(PA)model [13] is calculated using the formula:  

 

 
(1) 

 

Where:  

- N5 percentile loudness in Sone 

 

 

 
(2) 

- describing the effect of Sharpness in and  

 

 

 

 
(3) 

- describing Roughness R and Fluctuation F.  

To quantify the application of ML methods to predict 

annoyance from ASHP noise emissions, Python 3.13.1 was 

used with relevant data analysis and visualisation libraries, 

including scikit-learn, statsmodels, matplotlib, and seaborn.  

 

As previously mentioned, the dataset used for this 

experiment consisted of responses from 50 participants, 

each submitting a total of 75 responses, resulting in 3750 

data points. Because of this relatively small sample size, 

ANN-based models were not considered in the prediction 

model. Instead, the study employed a range of ML-based 

linear regression models, including Ridge, Lasso, Elastic 

Net and Linear; tree-based models, including Random 

Forest and Gradient Boosting; and Support Vector Machine 

regression (SVR). These models were selected to compare 

performance across different regression approaches, 

balancing interpretability and prediction accuracy.  

 

To optimise the hyperparameters of these models, 

GridSearchCV from the scikit-learn library was employed. 

This tool is commonly used for tuning the hyperparameters 

for ML algorithms by automating the process of finding the 

optimal combination of hyperparameters by exploring a 

predefined grid of parameter values and evaluating each 

combination using cross-validation [14] 

 

To ensure the robustness of the results, 5-fold cross-

validation (k=5) was used. This method partitions the 

dataset into five subsets, using each one for validation while 

the remaining four subsets are used for training. The use of 

cross-validation helps mitigate overfitting and provides a 

more reliable estimate of model performance, particularly 

given the relatively limited sample size in this study. 

 

3. RESULTS AND DISCUSSION 

The main focus of developing this prediction model was to 

incorporate the subjective response and psychoacoustic 

characteristics of ASHP noise using SQM. Performances of 

different feature combinations are compared across the 

previously listed regression and tree-based ML methods to 

determine which features to include in addition to the 

subjective response variables of Valence and Arousal and 

the SQM.   
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Table 1: Comparison of VIF values for training 

features that include Psychoacoustic Annoyance 

(PA) and Sound Quality Metrics (SQM) 

Variance Inflation Factor (VIF) values: 

Feature SQM as Predictors PA as a Predictor 

Tonality 8.673 8.456 

Valence 8.08 6.161 

Arousal 13.668 5.751 

Age 12.258 10.231 

PA NA 10.539 

Loudness 27.238 NA 

Roughness 23.52 NA 

Sharpness 27.557 NA 

Fluctuation 4.618 NA 

 

Multicollinearity analysis was conducted as part of the 

model comparisons, which revealed substantial 

interdependence among the original SQM. VIF values for 

Loudness (27.238), Sharpness (27.557), and Roughness 

(23.52) in the initial model exceeded recommended 

thresholds, indicating problematic collinearity (Table 1). 

When these metrics were replaced with the composite 

Psychoacoustic Annoyance (PA) parameter, the model's 

multicollinearity was substantially reduced. The PA-

inclusive model demonstrated improved VIF values across 

predictor variables, with Arousal showing the most 

dramatic reduction (from 13.668 to 5.751). Although PA 

exhibited a VIF (10.539) value right at the cutoff value, it 

remains considerably lower than the metrics it replaced. 

The replacement of individual sound quality metrics with 

PA not only addresses multicollinearity concerns but also 

provides a more compact model while preserving essential 

psychoacoustic information. A-weighted sound levels are 

not included in this model, as they provided extreme VIF 

values and did not significantly contribute to the predictive 

power in any of the tested models.  

 

The only demographic variable included in the models was 

Age. While other demographic variables were initially 

considered, such as gender and noise sensitivity data from 

NoiSeQ responses, they either produced extremely high 

VIF values (e.g. NoiSeQ VIF = 32.780 when used 

alongside the final features) or were found to not 

meaningfully contribute to the model based on correlation 

and feature importance analysis.  

 

Figure 1 shows the correlation matrix between the final set 

of predictor variables used in the model comparison, 

providing further justification for the variable selection 

strategy explained in the VIF analysis. PA and Tonality are 

the strongest predictors in the matrix. The moderate 

correlation between PA and subjective response variables 

(Valence: -0.30, Arousal: 0.37) indicates that while PA 

effectively consolidates the SQM, it remains sufficiently 

distinct from other subjective response variables. Age 

shows the weakest correlation among all the predictors. It is 

kept as an independent factor in the model since a 

correlation matrix only captures the linear relationships, 

while models like Gradient Boosting and Random Forest 

can capture non-linear patterns and interaction effects that 

may not be evident in a correlation matrix.  

 

A comprehensive evaluation of predictive models was 

conducted to identify the optimal approach for estimating 

acoustic responses. Performance metrics, including R², 

Mean Absolute Error (MAE), Mean Squared Error (MSE), 

and Roost Mean Squared Error (RMSE), were calculated 

for training and test datasets across seven distinct modelling 

techniques (Table 2). Among all the models compared, the 

Random Forest achieved the highest training R² (0.917), 

suggesting excellent data fitting; however, the slightly 

lower test performance (R² = 0.834) indicated potential 

overfitting. Linear models (SVR, Lasso, Linear Regression,  

 

Figure 1: Heatmap representing the correlation 

matrix between the final set of predictor 

variables. 
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Table 2: Comparison of train and test performance of different models.  

Model   Train  

R²    

Test  

R²   

Train 

MAE   

Test 

MAE   

Train 

MSE   

Test 

MSE 

Train 

RMSE 

Test 

RMSE 

Gradient Boost 0.902 0.846 0.543 0.677 0.525 0.829 0.725 0.910 

Random Forest 0.917 0.834 0.500 0.703 0.447 0.889 0.668 0.943 

SVR 0.758 0.757 0.875 0.877 1.298 1.301 1.139 1.140 

Lasso 0.751 0.750 0.892 0.892 1.339 1.341 1.157 1.158 

Linear Regression 0.754 0.753 0.888 0.889 1.321 1.326 1.149 1.151 

Ridge 0.754 0.753 0.888 0.889 1.321 1.325 1.150 1.151 

ElasticNet 0.753 0.752 0.890 0.891 1.330 1.331 1.153 1.154 

 

Ridge, and ElasticNet) exhibited comparable performance 

patterns, with test R² values ranging from 0.750 to 0.757, 

substantially lower than the ensemble methods. The 

consistency between training and test metrics for these 

linear models, particularly SVR (training R² = 0.758, test R² 

= 0.757), suggests stable performance despite lower overall 

accuracy. A significant performance gap between tree-

based ensemble methods and linear models was observed, 

with approximately 10% improvement in explained 

variance and almost 20% reduction in prediction error, 

highlighting important non-linear relationships in the data.  

 

The consistency between training and test metrics for these 

linear models, particularly SVR (training R² = 0.758, test R² 

= 0.757), suggests stable performance despite lower overall 

accuracy.  

 

Among the models compared, the Gradient Boosting model 

demonstrated the best balance between predictive accuracy 

and generalisation. It achieved the highest test R² (0.846) 

while maintaining the lowest test error metrics (MAE = 

0.677, RMSE = 0.910), indicating superior performance on 

unseen data and capturing potentially non-linear 

relationships. While Random Forest showed a slightly 

better prediction power over the training data, as it showed 

evidence of overfitting, the Gradient Boosting model was 

chosen to be used.  In addition, the Gradient Boost method 

effectively handles multicollinearity.  Based on the VIF 

values shown in Table 01, this is a requirement of the 

model, as both PA and Age are at the critical thresholds for 

multicollinearity. 

 

Figure 2 illustrates the predictive performance of the model 

by comparing the actual and predicted values. The heatmap 

demonstrates a strong linear relationship between predicted 

and actual Annoyance values. Overall, the model aligns 

strongly with the prediction diagonal (red dashed line) but 

shows some deviation and mild underprediction for higher 

annoyance values.  

 

Finally, feature importance scores were computed for the 

Gradient Boost model to understand the relative 

contribution of each predictor. The highest feature 

importance scores were observed for Arousal (0.550) and 

Valence (0.373), which accounted for 92.3% of the 

predictive power, which are also affected by the ASHP 

noise. Feature importance scores show that Age contributed 

Figure 2: Heatmap showing the normalised 

frequency of predicted vs annoyance ratings for 

the Gradient Boost model. Each cell's colour 

represents the proportion of test samples falling 

into the corresponding (actual, predicted) bin. 

The red dashed line diagonal represents the 

perfect prediction.    
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0.0659, while PA (0.0078) and Tonality (0.0026) had 

minimal impact. While these results indicate that 

psychoacoustic factors and tonality have a minimal direct 

impact on this model, their role in shaping the primary 

predictors should not be overlooked. When these results are 

considered with the insights from the correlation matrix 

(Figure 1), it shows that PA and Tonality are moderately 

correlated with Arousal and Valence, which are the most 

influential features. This indicates a potential mediating 

effect, where PA and Tonality influence the prediction 

indirectly via Arousal and Valence. This emphasises the 

importance of gaining a deeper understanding of the 

subjective responses to ASHP noise emissions and 

considering the soundscape approach. 

4. LIMITATIONS AND FUTURE WORK 

The main aim of this research was to create a robust ML-

based prediction model and leverage ANN models. At 

the time of writing this paper, this is only partially 

achieved due to the lack of access to relevant datasets. 

The first step in future work will be supplementing this 

research with further data from similar acoustic studies. 

This will allow the development of more sophisticated 

ANN-based models capable of capturing the complex 

non-linear relationships observed in the Gradient Boost 

implementation. The significant performance gap 

between ensemble and linear models suggests that deep 

learning approaches offer additional predictive power 

with sufficient training data. 

 

Future iterations of the model can also include temporal 

dynamics ASHP operation cycles. While the dataset from 

this study included different operating conditions and 

transient events, possibly due to sample size limitations, 

they were not found to be significant in any of the top-

performing models. The temporal dynamics of SMQ and 

PA should also be further investigated. Incorporating time-

varying acoustic features could better represent real-world 

ASHP operational conditions.  

5. CONCLUSION 

This study investigated the prediction of Annoyance 

responses to Air Source Heat Pump (ASHP) noise using 

machine learning (ML) approaches. The comparison of 

various regression models demonstrated that tree-based 

models, particularly Gradient Boosting, outperformed linear 

regression techniques. This superior performance highlights 

complex non-linear relationships in the perception of 

annoyance that simpler models fail to capture adequately. 

The PA is implemented as a composite metric to address 

multicollinearity issues present in the original SQM, 

resulting in a more compact and robust model.  

 

Feature importance analysis revealed that emotional 

responses, specifically Arousal (0.550) and Valence 

(0.373), were the dominant predictors of annoyance, 

collectively accounting for over 92% of the model's 

predictive power. While PA and Tonality showed 

minimal direct contributions, their moderate correlations 

with the primary predictors suggest an indirect influence 

through emotional responses. This finding underscores 

the complex interplay between objective acoustic 

parameters and subjective emotional responses, 

supporting the adoption of soundscape approaches in 

noise annoyance research. The observed relationships 

emphasise the necessity of considering both acoustic and 

non-acoustic factors when evaluating and mitigating 

ASHP noise impacts. 

 

The successful development of this predictive model 

represents a significant step toward practical applications 

in sustainable urban development. Despite limitations in 

available training data, the model demonstrates 

considerable potential for real-world implementation. 

Future work will focus on expanding the dataset to 

enable more sophisticated neural network 

implementations and incorporating temporal variations 

in acoustic features. The ultimate goal remains the 

integration of these predictive capabilities into accessible 

tools for optimal ASHP placement, thereby supporting 

the widespread adoption of this sustainable technology 

while minimising community noise impacts. This 

balanced approach could substantially contribute to 

meeting climate goals without compromising acoustic 

comfort in residential environments. 
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