

FORUM ACUSTICUM EURONOISE 2025

METHOD FOR ASSESSING THE IMPACT OF AGING OF SELECTED BUILDING MATERIALS ON THEIR ACOUSTIC PROPERTIES

Elzbieta Nowicka*

Department of Therma Physics, Acoustics and Environment, Instytut Techniki Budowlanej, Poland

ABSTRACT

The aim of the work is to assess the impact of aging on selected different building materials. Natural climatic exposures of building materials result in the deterioration of their acoustic properties. Laboratory tests performed on small samples, including acoustic tests correlated with climatic exposures in laboratory conditions, will allow for the assessment of the durability of the functional properties of building materials at the stage of introducing the product to the market. Assessment of the durability of acoustic properties of building materials is to consist in changes in acoustic parameters as a result of exposing samples to various weather conditions. This paper presents the results of preliminary tests carried out on small samples in an impedance tube. Based on the tests performed, an analysis of the results will be carried out in terms of the impact of exposure on the acoustic properties of the elements, mainly in terms of parameters specific to road screens..

Keywords: aging, building materials, sound properties)

1. INTRODUCTION

The assessment of the durability of the acoustic properties of road noise barriers is one of the elements in evaluating the functional performance of these structures. Currently, there are standards related to such assessment; however, they remain very general and describe the evaluation procedure in an ambiguous manner. Various approaches have been proposed in the existing literature, yet a clearly defined and standardized methodology is still lacking. Each of the considered

proposals exhibits both advantages and shortcomings. To date, methods have primarily focused on testing elements already installed and exposed to natural environmental factors [1]. However, such methods are not suitable for application at the stage of product introduction to the market.

Large-scale sample testing has been undertaken, for instance, at the Silesian University of Technology, where the first assessments of the durability of road noise barriers were performed on samples with a surface area of approximately 5 m². This is the only study of this kind currently referenced in the literature [2].

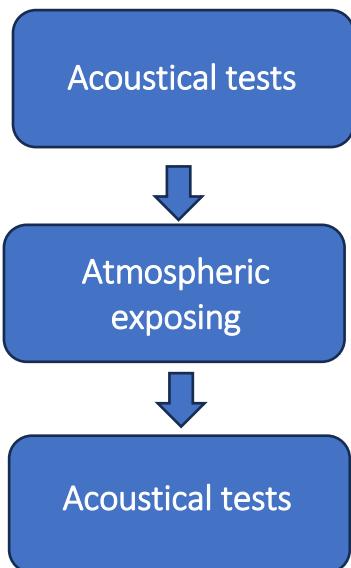
Numerous publications address the ageing of construction materials and their impact on the acoustic properties of building components. Nonetheless, these studies do not concern road noise barriers and do not account for parameters directly related to this product – namely, the DL_R and DL_a indices [3,4].

The innovation of the proposed methodology lies in the use of small samples, approximately 15 cm² in size. This approach enables broader application, particularly under various environmental exposure conditions. Although previous literature indicates certain correlations between the absorption properties of large and small samples, the studies do not specifically address parameters associated with the evaluation of road noise barriers. [5,6]

2. EXPERIMENTAL WORK

The assessment of the durability of the acoustic properties of the barrier is to be based on the change in acoustic parameters resulting from exposing the samples to various atmospheric conditions: alternating UV radiation and rain, UV and condensation-based humidification, elevated temperature, heating–raining cycles and humid atmosphere. The preliminary research were conducted on the simple samples: mineral wool with cover made of textile. Based on the conducted tests, the results will be analyzed in terms of the impact of environmental exposure on the

*Corresponding author: e.nowicka@itb.pl


Copyright: ©2025 First author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

FORUM ACUSTICUM EUROTOISE 2025

acoustic performance of the elements – see the test cycle on the fig. 1.

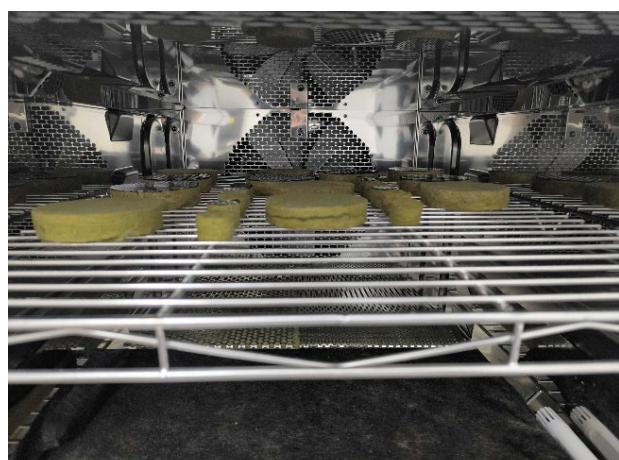


Figure 1. The cycle of test.

Sound absorption tests were carried out in accordance with PN-EN ISO 10534-2 [7], and airborne sound insulation was assessed based on ASTM E1050 [8] and ASTM E2611 [9] standards. Both tests were performed in the impedance tube (see Fig.2).

Figure 2. Impedance tube used for measurement of the acoustical parameters

Figure 3. Atmospheric exposing

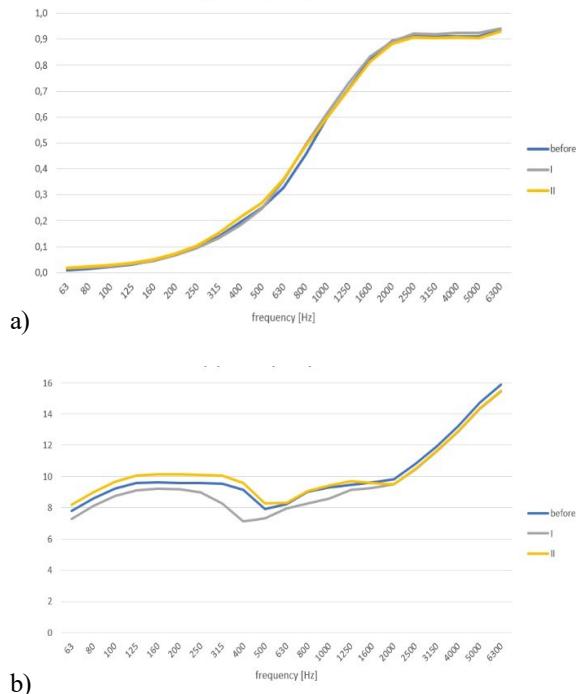
Atmospheric exposing was performed in the following setups:

Setup I – UV + rain: 336 cycles according to EN ISO 4892-3 [10],

Setup II – Temperature and humidity: 1008 hours according to TR024 [11].

Figure 3 presents the samples during atmospheric exposure.

11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •



FORUM ACUSTICUM EURONOISE 2025

3. RESULTS AND DISCUSSION

Figure 4 presents sound absorption and sound insulation of the samples before and after atmospheric exposing. It is seen, that applied exposing to the mineral wool doesn't change it's acoustical properties.

Figure 4. Sound absorption (a) and sound insulation (b) of samples before and after atmospheric expositions I and II

The results presented above are consistent with the findings reported by Nowoświat et al. [2]. They conducted similar tests on large samples with a surface area of 5 m², which were exposed to heat, cold, and rain. A total of 1000 exposure cycles were performed. Comparable changes in the parameters characterizing road noise barriers were observed — either no change or a decrease of 1 dB. These parameters are presented in Table 1. It means, that the sample size has no influence on this type of researches.

Table 1. Table captions should be placed above the table.

Acoustical parameter	ΔDL_R	ΔDL_a
Setup I	0 dB	0 dB
Setup II	0 dB	0 dB

4. SUMMARY

The method of assessing the impact of aging on selected different building materials and it's acoustical parameters. The preliminary research were conducted on the simple samples: mineral wool with cover made of textile. The applied cycle test included acoustical test of sound absorption and sound insulation with atmospheric exposing. Results confirm previous findings, that there is no influence despite of the sample size.

Future studies will involve samples made from different materials. It is also worth noting the duration of the exposure tests conducted so far, which correspond to approximately five years of natural environmental ageing. The standard requires data after 5, 10, 15, and 20 years of exposure. In the coming years, further research will be undertaken to address these timeframes.

5. REFERENCES

- [1] CEDR Transnational Road Research Programme Call 2012: Noise: Integrating strategic noise management into the operation and maintenance of national road networks QUESTIM Assessing the acoustic durability of noise barriers on NRA road networks, 2014.
- [2] A. Nowoświat, J. Bochen, L. Dulak, R. Żuchowski, Investigation studies involving sound absorbing parameters of roadside screen panels subjected to aging in simulated conditions, *Applied Acoustics* 111 (2016) 8–15. <https://doi.org/https://doi.org/10.1016/j.apacoust.2016.04.001>.
- [3] A. Luciani, C. Todaro, D. Martinelli, D. Peila, Long-term durability assessment of PVC-P waterproofing geomembranes through laboratory tests, *Tunnelling and Underground Space Technology* 103 (2020) 103499. <https://doi.org/10.1016/j.tust.2020.103499>.
- [4] M. Caniato, C. Schmid, A. Gasparella, A comprehensive analysis of time influence on floating floors: Effects on acoustic performance and occupants' comfort, *Applied Acoustics* 166 (2020) 107339. <https://doi.org/10.1016/j.apacoust.2020.107339>.
- [5] L. Shtrepi, A. Prato, Towards a sustainable approach for sound absorption assessment of building materials: Validation of small-scale reverberation room measurements, *Applied Acoustics* 165 (2020) 107304. <https://doi.org/10.1016/j.apacoust.2020.107304>.

FORUM ACUSTICUM EURONOISE 2025

- [6] H.M. Lee, Z. Wang, K.M. Lim, H.P. Lee, Investigation of the effects of sample size on sound absorption performance of noise barrier, *Applied Acoustics* 157 (2020) 106989. <https://doi.org/10.1016/j.apacoust.2019.07.037>.
- [7] ISO 10534-2, Acoustics — Determination of acoustic properties in impedance tubes Part 2: Two-microphone technique for normal sound absorption coefficient and normal surface impedance, 2023.
- [8] ASTM E1050, Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System, 2024.
- [9] ASTM E2611, Standard Test Method for Normal Incidence Determination of Porous Material Acoustical Properties Based on the Transfer Matrix Method, 2019.
- [10] EN ISO 4892-3, Plastics. Methods of exposure to laboratory light sources Fluorescent UV lamps, 2016.
- [11] TR 024, Technical description and assessment of reactive products effective in case of fire, 2019.

