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ABSTRACT* 

The modelling approach presented here aims at developing 

accurate, yet computationally efficient, numerical models of 

brass instrument resonators including nonlinear 

propagation, viscothermal losses and 2D radiation effects. 

Firstly, we propose the use of the Blackstock equation to 

model the nonlinear acoustic propagation inside the 

resonator, a more appropriate choice when dealing with 

nonlinear standing wave patterns, compared to the 

commonly used Burger’s equation. The initial step of the 

approach consists in obtaining a complex modal basis from 

a 2D-axisymmetric finite element model of the linearized 

equations. Here, we include a bounded domain outside the 

resonator with a nonreflecting boundary condition as well 

as the effect of viscothermal losses at the interior walls. The 

nonlinear Blackstock equation is then projected onto the 

resulting 2D complex modal basis, leading to a compact set 

of nonlinear ODEs. This leads to exploitable reduced 

formulations adapted to quick temporal simulations, 

bifurcation analysis or parametric studies, retaining 

nevertheless the accuracy of 2D models. The explicit 

account of the exterior acoustic field also allows for the 

calculation of radiated sound pressures as well as directivity 

patterns. Experimental validation and illustrative numerical 

results are presented for a simplified trumpet geometry in 

both linear and nonlinear scenarios. 
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1. INTRODUCTION 

The physical modelling of brass wind instruments has 

received considerable attention in the last few decades [1]. 

These instruments constitute complex physical systems that, 

from the point of view of physical modelling, still present 

many challenging aspects. Here our focus is on the 

modelling of the instrument itself, i.e. without the influence 

of the lip vibration and the associated control by the 

musician. 

Widely used and relatively simple models (typically in 1D 

frameworks) are able to qualitatively reproduce measured 

behavior. However, simplified models often present 

inherent limitations that prevent them from capturing the 

more subtle features of real instruments. For example, 1D 

models often rely on the assumption of plane wave 

propagation which, albeit reasonable in the narrower parts 

of the instrument bore, clearly breaks down at the exit of the 

instrument. Another important aspect is related to nonlinear 

acoustic propagation inside the resonator, a particularly 

relevant feature influencing the timbre of brass instruments 

[2]. Although some numerical studies have dealt with this 

topic, they almost exclusively rely on the Burgers equation 

[3][4]. However, this equation assumes only forward or 

backward propagating waves and its use in the context of 

brass instruments is questionable since standing waves are 

formed inside the instrument.  

In commercial contexts, where manufacturers are interested 

in optimizing/fine-tuning certain aspects of their 

instruments, the accuracy provided by these simplified 

models often falls short of the desired goals. The motivation 

behind this work lies on the need to build a physical model 

that provides: (1) an accurate description of the pertinent 

acoustic phenomena, including an appropriate nonlinear 

acoustic propagation model, viscothermal losses at the 

walls as well as 2D propagation and radiation effects and 
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(2) an efficient and exploitable framework (low 

computational cost) that can be used for quick temporal 

simulations, parametric studies, optimization, bifurcation 

analysis, etc. The approach proposed here aims to bridge 

the accuracy provided by 2D-axisymmetric models and the 

efficiency of reduced-order modal approaches. The general 

idea consists in using a 2D finite element (FE) model of the 

linearized equations to obtain a suitable modal basis that 

can then be used to project the nonlinear equations, leading 

to exploitable reduced-order models (composed of a set of 

nonlinear ODEs). Due to the localized nature of the 

involved energy dissipation mechanisms (viscothermal and 

radiation losses), the eigenvalue problem stemming from 

the linearized 2D FE model leads to a complex modal basis 

[5]. In this particular context, the full potential of modal 

decomposition is highlighted. Firstly, the modal basis 

serves to spatially discretize the problem. Secondly, 

because modes have characteristic natural frequencies, they 

also serve to “discretize” the system in the frequency 

domain, i.e. modes whose natural frequencies fall outside 

the frequency bands of interest can generally be neglected. 

Thirdly, modes have characteristic damping ratios which 

encapsulate, in a simple manner, the often-times intricate 

dissipation mechanisms. For example, viscothermal losses 

are notably difficult to model in the time-domain since they 

give rise to fractional-order derivatives [6]. These can 

however be easily represented in a modal framework, suited 

for both frequency and time domain analysis. Finally, 

modal approaches have also been proven useful to treat 

nonlinear terms in an efficient manner [7] as well as for 

mitigating numerical dispersion, a common problem when 

solving stiff wave equations using finite difference or finite 

elements methods in the time domain [8].  

2. MODEL DESCRIPTION 

2.1 Nonlinear acoustics in 3D domains 

In most applications, not involving explosions or other 

supersonic events, nonlinear acoustics are typically 

modelled through what are called weakly-nonlinear models. 

Starting from the set of irrotational compressible Euler 

equations and a state equation for the fluid, a wide variety 

of models have been proposed over the years, well 

documented in an historical review by Jordan [9]. Of 

particular interest to us, are the so-called wave equations, 

where the acoustic field is represented by a single scalar 

variable. In this work we propose the use of the Blackstock 

equation, written here in terms of the velocity potential 

( , )t x

      2 2( )( ) ( ( )c  (1) 

where the over-dot denotes temporal derivatives,  and  

 are the gradient and Laplacian operators, c  is the speed 

of sound in the fluid and  its adiabatic index. This 

second-order approximation of the more general Söderholm 

formulation is bound to be valid for acoustic Mach numbers 

up to 0.1M . Note that this equation is equivalent to the 

more commonly used Kuznetsov equation [10].  

Assuming the curved bents in typical brass instruments are 

acoustically negligible, Eq.(1) can be written in 

axisymmetric cylindrical coordinates ( , )r z  as 
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Additionally, because of the larger cross-section at the 

exit of the instrument, acoustic levels are relatively 

weaker. Hence, large amplitude acoustic perturbations 

and nonlinear propagation are known to occur primarily 

at the narrower parts of the horn [2], where the plane 

wave assumption is reasonable. This leads us to the 

conclusions that, in the context of brass instruments, the 

nonlinear terms in Eq.(2) involving the radial derivative 

r  can confidently be neglected, leading to 
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where only two quadratic nonlinear terms subsist.  

2.2 Finite element axisymmetric model 

As mentioned before, our first aim is to use a finite element 

discretization of the linearized model in order to obtain a 

suitable modal basis, which will serve as a basis of 

functions on which to subsequently project the nonlinear 

Blackstock equation. With regards to the acoustic domain 

then, we have simply the Helmholtz equation (linear wave 

equation in frequency domain). But furthermore, we need to 

consider two important dissipative boundary conditions 

representing: (1) radiation of energy towards the free-field 

and (2) the viscothermal losses occurring at the inner walls 

of the instrument. Concerning the former, we consider an 

exterior spherical domain whose outer boundary will 
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contain a nonreflecting condition, aimed at simulating an 

anechoic environment, as illustrated in Figure 1. For the 

viscothermal losses we have used the model proposed by 

Berggren et al. [11], which is based on the fact that, in air, 

viscothermal acoustic boundary layers (where losses take 

place) tend to be very small compared to reference 

dimensions/wavelengths and can hence be accurately 

approximated via an impedance boundary condition.  

The complete linearized axisymmetric problem to be solved 

can then be written in the frequency domain as 
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where the acoustic boundary layer lengths are given by 

                      
2 2
,v t

pC
                   (5) 

with  the fluid static density,  its kinematic viscosity, 

 its thermal conductivity and pC  the coefficient of 

specific heat at constant pressure. 

 

Figure 1. Diagram of the considered axisymmetric model. The 

dashed and dash-dotted lines correspond to the viscothermal vt  

and radiative r  boundaries, respectively. 

It is worth noting that the problem is here formulated in 

terms of acoustic velocity potential , )r z , but an 

equivalent formulation for the acoustic pressure can be 

obtained by replacing directly ( , )r z  by ( , )p r z .  

For compactness, we do not derive here the weak 

formulation or the FE discretization procedures, as these 

can be found in reference literature [12]. We simply note 

that second-order (6-node) triangular elements were used 

and the maximal size of each element maxh  was set to at 

least one-fifth of the smallest considered wavelength. 

2.3 Complex modal decomposition 

After the FE spatial discretization, we obtain a 

dynamical system in the following form 

( ) ( ) ( ) ( )t t t tM C K f                 (6) 

where  is a column vector of the velocity potential 

located at nodes of the FE discretized field and ( )tf  is a 

generic force vector that can represent external and/or 

nonlinear forces. Because of the localized nature of the 

modeled dissipative phenomena (radiation and 

viscothermal losses), our system belongs to a class of 

problems said to have non-classical damping. In 

practice, this prevents us from using typical modal 

approaches based on the real-valued modes shapes (w ), 

as these are not able to decouple the damped equations 

of motion. Here, we need to resort to complex modal 

analysis which is based around the state-space version of 

Eq.(6), arrived at by defining ( ) ( )t t , leading to 

( ) ( ) ( )t t tAz Bz F                          (7) 
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Solving the associated eigenvalue problem  

( )A Bu 0                             (9) 

leads us to the complex eigenvalues n  and 

complex eigenvectors nu . Since A  and B  are 

symmetric, eigensolutions occur in pairs of complex 

conjugates 

( , ) ; ( , ) ,
n n

n n n n
n n n n

v v
u u

v v
                (10) 

where the overbar denotes complex conjugation. The full 

modal matrix of the first-order system is then  

1

1

,
ˆ with

diag ,

N

N

V v vV V
U

V V
      (11) 

Then, the complex modal transformation can be written 

in the following forms, due to its conjugate symmetry 

1

( ) [ ( ) ( )] ( ) ( )
N

n n n n
n

t q t q t t tz u u Uq Uq       (12) 
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where ( )tq  are the modal coordinates and 

[ ]TU V V  is the reduced modal matrix of size 

2N N  pertaining to only one side of the conjugate 

pairs. Finally, replacing Eq.(12) in Eq.(7) and pre-

multiplying by TU  leads to the reduced decoupled 

system 

( ) ( ) ( )Tt t tq q V f                       (13) 

which is of size N  (using only one mode of each 

conjugate pair), first-order in time and where coefficients 

and variables are complex-valued.  

2.4 Projection of external forces and nonlinear terms 

Since we can obtain an (approximate) continuous 

representation of modes shapes nv  from the FE model, 

the same procedure can be performed in a continuous 

framework where associated integrations (modal 

projections) can be performed numerically using 

Gaussian quadrature. With that said, the generic force 

terms presented in Eq.(13) can also be represented in 

continuous form 

( ) ( , , ) ( , )T
n nt f r z tV r z drdzv f             (14) 

where ( , , )f r z t  is a generic force term and ( , )nV r z  is the 

continuous version of the -thn  complex mode shape. If 

we now consider an expanded force term composed of a 

generic external force as well as the nonlinear terms in 

Eq.(3), expanded in modal coordinates, we obtain 

ext

2

,

( , , ) ( ) ( , )

2 ( ( ) ( )
N

m k m k m k
k m

f r z t g t S r z

V V V V q t q t
    (15) 

where, to simplify notation, we use the over-dash 

represent the partial derivative / z . Note that we 

considered here an external force with separable spatial 

and temporal components, i.e. ext( ) ( , )g t S r z . Finally, 

replacing the expansion (15) into (13) yields the final set 

of N  nonlinear complex-valued ODEs 
2

ext
,

( ) ( ) ( ) ( ) ( )
N

n n n n kmn m k
k m

q t q t g t S A q t q t       (16) 

for 1,2...n N , where the constant terms associated 

with the modal projection are given by 

2 (kmn m k m k nA V V V V V drdz      (17) 

( , ) ( , )n nS S r zV r z drdz                   (18) 

At this point, there are a few important aspects of the 

derived system (16) that should be underlined. Firstly, 

the nonlinear tensor kmnA  is constant and is calculated 

“off-line”, i.e. prior to any temporal integrations, 

nonlinear analysis, etc. Secondly, note that even though 

the original equations have two distinct nonlinear terms, 

these have the same temporal character. Therefore, when 

expanded in modal coordinates, they can be combined in 

a single nonlinear tensor kmnA . On the other hand, 

because we are using a complex modal basis (as opposed 

to real modes), nonlinear terms need to be calculated 

using both modes in each conjugate pair, leading to a 

complex tensor kmnA  of size 2 2N N N . Thirdly, by 

choosing an appropriate truncation N , we can build 

reduced models that are tailored to specific applications, 

e.g. large N  (say 50-100) for strongly nonlinear 

scenarios or smaller N  (say 10-20) for linear, or 

weakly-nonlinear ones. 

2.5 Illustrative results: complex modes of a trumpet 

with simplified geometry 

Complex mode shapes are awkward to illustrate in a 

static image. This is because, contrary to the motion of 

real modes where all points move in unison, complex 

modes contain phase shifts between different spatial 

regions. Hence, while real modes represent standing 

wave patterns, complex modes are a combination of 

standing and travelling waves. They are generally 

represented by their real Re[ ( , )]nV r z  and imaginary 

Im[ ( , )]nV r z  parts separately. Moreover, complex modes 

are defined up to a multiplicative complex factor. In this 

case, it is often useful to “rotate” the complex mode by 

an angle  (i.e. multiply by ie ) such that it maximizes 

its real part [13]. In this way, we can assess the “degree 

of complexity” of each mode by examining how large is 

its imaginary part. Examples of some complex mode 

shapes of a simplified trumpet model are shown in 

Figure 2. We note that lower order modes have a nearly 

null imaginary part, meaning that they represent almost 

perfect standing waves (i.e. real modes). Higher order 

modes however have much larger imaginary parts, 

representing their radiative character. That is, these 

modes reflect essentially waves travelling out of the horn 

towards the free-field. 
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3. EXPERIMENTAL VALIDATION 

To explore the effects of nonlinear propagation, an 

experimental set-up was prepared to excite the trumpet 

prototype harmonically. Acoustic excitation was provided 

by a BMS 4599 compression chamber placed at the 

entrance of the experimental prototype (without 

embouchure – i.e. only the cylindrical section plus the 

flaring horn section). Note however that this sort of set-up 

will inevitably influence the studied resonator since these 

drivers have an internal volume that is non-negligible. This 

volume was taken into account in the model, for validation 

purposes. However, naturally, the studied system in this 

case is not the same as that described in the previous 

section. The modal frequencies of the system were first 

identified via the exponential sine-sweep method. 

Subsequently, the system was excited at various modal 

frequencies at different amplitudes. A pressure sensor 

(Endevco 8507C-5) was placed iteratively on 40 locations 

along the resonator’s length aimed at giving a spatial 

illustration of the nonlinear standing wave patterns. A 

second reference pressure sensor was fixed inside the cavity 

of the compression chamber to get a phase reference. The 

spatial distribution of the pressure inside the resonator when 

excited at the frequency of mode 3n  (503 Hz) at 

different excitation amplitudes is shown in Figure 4. 

Analogous results from the model, obtained through 

temporal integrations using 100 complex modes are shown 

in Figure 5. Comparison of the experimental and modelled 

results are very satisfactory, with the model correctly 

representing the trends of the distorted standing wave 

patterns observed experimentally. Not only qualitatively, 

but also quantitatively, as the appearance and “level of 

distortion” appear to be congruent for the same values of 

the acoustic pressure. In a future work, different aspects of 

these results will be analyzed more thoroughly, as there are 

many more subtle aspects to be discussed.  

 
Figure 4. Experimental results: Snapshots of the measured 

pressure fields inside the trumpet at different amplitudes. Dots 

denotes the actual measurements while connecting lines were 

interpolated.  

Figure 2. Some illustrative complex mode shapes ( , )nV r z  of the simplified trumpet. The real and imaginary parts are represented in the 

top and bottom of each plot, respectively. Note: modes shapes were rotated such that their real part is maximized (imaginary part 

minimized).  
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Figure 5. Modelling results: Snapshots of the modelled on-axis (r 

= 0) pressure fields inside the trumpet, excited harmonically at 

different amplitudes.  

4. CONCLUSIONS 

In this work we have shown how refined models of brass 

instruments, in a 2D axisymmetric framework, can be used 

to efficiently predict the behavior of real instruments, 

including a variety of complex physical phenomena like 

viscothermal losses at the walls, 2D radiation effects as well 

as nonlinear acoustic propagation. Within a reduced-order 

modal framework, these refined models convey essentially 

the same computational costs as the more typical 1D 

models used widely in the field. Moreover, the use of 

complex modes enables one to encapsulate intricate 

dissipative phenomena, like localized radiation or 

thermoviscous losses, in each modal component. This 

allows one to easily treat the problem in both the frequency 

and time domain, be that through temporal integrations, 

harmonic balance, numerical continuation, etc. The use of 

the Blackstock nonlinear acoustics equation instead of the 

more common Burger’s equation allows us to calculate 

nonlinear standing wave patterns that can eventually be 

used to characterize brass instruments in terms of their 

capacity to produced “brassy” sounds. It is hoped that the 

developments shown here can stimulate a transition from 

descriptive towards predictive models of brass instruments.    
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