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ABSTRACT

The modelling approach presented here aims at developing
accurate, yet computationally efficient, numerical models of
brass  instrument  resonators including  nonlinear
propagation, viscothermal losses and 2D radiation effects.
Firstly, we propose the use of the Blackstock equation to
model the nonlinear acoustic propagation inside the
resonator, a more appropriate choice when dealing with
nonlinear standing wave patterns, compared to the
commonly used Burger’s equation. The initial step of the
approach consists in obtaining a complex modal basis from
a 2D-axisymmetric finite element model of the linearized
equations. Here, we include a bounded domain outside the
resonator with a nonreflecting boundary condition as well
as the effect of viscothermal losses at the interior walls. The
nonlinear Blackstock equation is then projected onto the
resulting 2D complex modal basis, leading to a compact set
of nonlinear ODEs. This leads to exploitable reduced
formulations adapted to quick temporal simulations,
bifurcation analysis or parametric studies, retaining
nevertheless the accuracy of 2D models. The explicit
account of the exterior acoustic field also allows for the
calculation of radiated sound pressures as well as directivity
patterns. Experimental validation and illustrative numerical
results are presented for a simplified trumpet geometry in
both linear and nonlinear scenarios.
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1. INTRODUCTION

The physical modelling of brass wind instruments has
received considerable attention in the last few decades [1].
These instruments constitute complex physical systems that,
from the point of view of physical modelling, still present
many challenging aspects. Here our focus is on the
modelling of the instrument itself, i.e. without the influence
of the lip vibration and the associated control by the
musician.

Widely used and relatively simple models (typically in 1D
frameworks) are able to qualitatively reproduce measured
behavior. However, simplified models often present
inherent limitations that prevent them from capturing the
more subtle features of real instruments. For example, 1D
models often rely on the assumption of plane wave
propagation which, albeit reasonable in the narrower parts
of the instrument bore, clearly breaks down at the exit of the
instrument. Another important aspect is related to nonlinear
acoustic propagation inside the resonator, a particularly
relevant feature influencing the timbre of brass instruments
[2]. Although some numerical studies have dealt with this
topic, they almost exclusively rely on the Burgers equation
[3][4]. However, this equation assumes only forward or
backward propagating waves and its use in the context of
brass instruments is questionable since standing waves are
formed inside the instrument.

In commercial contexts, where manufacturers are interested
in optimizing/fine-tuning  certain  aspects of their
instruments, the accuracy provided by these simplified
models often falls short of the desired goals. The motivation
behind this work lies on the need to build a physical model
that provides: (1) an accurate description of the pertinent
acoustic phenomena, including an appropriate nonlinear
acoustic propagation model, viscothermal losses at the
walls as well as 2D propagation and radiation effects and
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(2) an efficient and exploitable framework (low
computational cost) that can be used for quick temporal
simulations, parametric studies, optimization, bifurcation
analysis, etc. The approach proposed here aims to bridge
the accuracy provided by 2D-axisymmetric models and the
efficiency of reduced-order modal approaches. The general
idea consists in using a 2D finite element (FE) model of the
linearized equations to obtain a suitable modal basis that
can then be used to project the nonlinear equations, leading
to exploitable reduced-order models (composed of a set of
nonlinear ODEs). Due to the localized nature of the
involved energy dissipation mechanisms (viscothermal and
radiation losses), the eigenvalue problem stemming from
the linearized 2D FE model leads to a complex modal basis
[5]. In this particular context, the full potential of modal
decomposition is highlighted. Firstly, the modal basis
serves to spatially discretize the problem. Secondly,
because modes have characteristic natural frequencies, they
also serve to “discretize” the system in the frequency
domain, i.e. modes whose natural frequencies fall outside
the frequency bands of interest can generally be neglected.
Thirdly, modes have characteristic damping ratios which
encapsulate, in a simple manner, the often-times intricate
dissipation mechanisms. For example, viscothermal losses
are notably difficult to model in the time-domain since they
give rise to fractional-order derivatives [6]. These can
however be easily represented in a modal framework, suited
for both frequency and time domain analysis. Finally,
modal approaches have also been proven useful to treat
nonlinear terms in an efficient manner [7] as well as for
mitigating numerical dispersion, a common problem when
solving stiff wave equations using finite difference or finite
elements methods in the time domain [8].

2. MODEL DESCRIPTION

2.1 Nonlinear acoustics in 3D domains

In most applications, not involving explosions or other
supersonic events, nonlinear acoustics are typically
modelled through what are called weakly-nonlinear models.
Starting from the set of irrotational compressible Euler
equations and a state equation for the fluid, a wide variety
of models have been proposed over the years, well
documented in an historical review by Jordan [9]. Of
particular interest to us, are the so-called wave equations,
where the acoustic field is represented by a single scalar
variable. In this work we propose the use of the Blackstock
equation, written here in terms of the velocity potential

%)
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$— DG+ 2AVH) (V) + (v —1)HAH) =0 (1)
where the over-dot denotes temporal derivatives, V and
A are the gradient and Laplacian operators, ¢ is the speed
of sound in the fluid and ~ its adiabatic index. This
second-order approximation of the more general S6derholm
formulation is bound to be valid for acoustic Mach numbers
upto M < 0.1. Note that this equation is equivalent to the
more commonly used Kuznetsov equation [10].

Assuming the curved bents in typical brass instruments are

acoustically negligible, Eq.(1) can be written in
axisymmetric cylindrical coordinates (r, z) as
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Additionally, because of the larger cross-section at the
exit of the instrument, acoustic levels are relatively
weaker. Hence, large amplitude acoustic perturbations
and nonlinear propagation are known to occur primarily
at the narrower parts of the horn [2], where the plane
wave assumption is reasonable. This leads us to the
conclusions that, in the context of brass instruments, the
nonlinear terms in Eq.(2) involving the radial derivative
8¢/8r can confidently be neglected, leading to
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where only two quadratic nonlinear terms subsist.

2.2 Finite element axisymmetric model

As mentioned before, our first aim is to use a finite element
discretization of the linearized model in order to obtain a
suitable modal basis, which will serve as a basis of
functions on which to subsequently project the nonlinear
Blackstock equation. With regards to the acoustic domain
then, we have simply the Helmholtz equation (linear wave
equation in frequency domain). But furthermore, we need to
consider two important dissipative boundary conditions
representing: (1) radiation of energy towards the free-field
and (2) the viscothermal losses occurring at the inner walls
of the instrument. Concerning the former, we consider an
exterior spherical domain whose outer boundary will
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contain a nonreflecting condition, aimed at simulating an
anechoic environment, as illustrated in Figure 1. For the
viscothermal losses we have used the model proposed by
Berggren et al. [11], which is based on the fact that, in air,
viscothermal acoustic boundary layers (where losses take
place) tend to be wvery small compared to reference
dimensions/wavelengths and can hence be accurately
approximated via an impedance boundary condition.

The complete linearized axisymmetric problem to be solved
can then be written in the frequency domain as
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where the acoustic boundary layer lengths are given by

2w 2K
6,:1’— , 6 = f 5
v ) t prp ( )

with p the fluid static density, v its kinematic viscosity,
 its thermal conductivity and C, the coefficient of
specific heat at constant pressure.

Figure 1. Diagram of the considered axisymmetric model. The
dashed and dash-dotted lines correspond to the viscothermal T°,,
and radiative I", boundaries, respectively.

It is worth noting that the problem is here formulated in
terms of acoustic velocity potential ¢(r,z), but an
equivalent formulation for the acoustic pressure can be
obtained by replacing directly ¢(r,z) by p(r,2).

For compactness, we do not derive here the weak
formulation or the FE discretization procedures, as these
can be found in reference literature [12]. We simply note
that second-order (6-node) triangular elements were used
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and the maximal size of each element h_,  was set to at
least one-fifth of the smallest considered wavelength.

2.3 Complex modal decomposition

After the FE spatial discretization,
dynamical system in the following form
Mg(t) + C(t) + Keft) = £() (6)
where ¢ is a column vector of the velocity potential
located at nodes of the FE discretized field and f(¢) is a
generic force vector that can represent external and/or
nonlinear forces. Because of the localized nature of the
modeled  dissipative  phenomena (radiation and
viscothermal losses), our system belongs to a class of
problems said to have non-classical damping. In
practice, this prevents us from using typical modal
approaches based on the real-valued modes shapes (w),
as these are not able to decouple the damped equations
of motion. Here, we need to resort to complex modal
analysis which is based around the state-space version of
Eq.(6), arrived at by defining oft) = ¢(t) , leading to

we obtain a

Ai(t) + Bz(t) = F(t) @)
with
|cMmM - K 0
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t) = ; Ft) =
Solving the associated eigenvalue problem
A +Bu=0 9)
leads us to the complex eigenvalues A\, € C and

complex eigenvectors u, € C. Since A and B are
symmetric, eigensolutions occur in pairs of complex
n n

conjugates
Vn )\nvn

where the overbar denotes complex conjugation. The full
modal matrix of the first-order system is then

vV V ) V:[vl,...vN]
——| with
VA VA A =diag A;,... \y

Then, the complex modal transformation can be written
in the following forms, due to its conjugate symmetry

) = > fug,(6) + 8,3,0)] = Uglt) + Tg0)

n=1
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)5 (u,q, (10)

",

(11)

(12)
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where q(f) are the modal coordinates and
U=[V VA]" is the reduced modal matrix of size
2N x N pertaining to only one side of the conjugate
pairs. Finally, replacing Eq.(12) in Eq.(7) and pre-
multiplying by U7 leads to the reduced decoupled
system

q(t) + Aq(t) = VTE(R) (13)
which is of size N (using only one mode of each

conjugate pair), first-order in time and where coefficients
and variables are complex-valued.

2.4 Projection of external forces and nonlinear terms

Since we can obtain an (approximate) continuous
representation of modes shapes v, from the FE model,
the same procedure can be performed in a continuous
framework where associated integrations (modal
projections) can be performed numerically using
Gaussian quadrature. With that said, the generic force
terms presented in Eqg.(13) can also be represented in
continuous form

vIE)) [ fr 20V, 2)rdz (14)
where f(r,z 1) is a generic force term and V,(r,z) is the
continuous version of the n-th complex mode shape. If
we now consider an expanded force term composed of a
generic external force as well as the nonlinear terms in
Eq.(3), expanded in modal coordinates, we obtain

f(r,2,1) = go()S(r, 2)

}:[ Jdl)astt)

where, to S|mpI|fy notation, we use the over-dash
represent the partial derivative 0 /0z. Note that we
considered here an external force with separable spatial
and temporal components, i.e. ¢, (0)S(r,z). Finally,
replacing the expansion (15) into (13) yields the final set
of N nonlinear complex-valued ODEs

08) + N0t) = 9uaDS, + D A ®ail?)

for n=1,2...N, where the constant terms associated
with the modal projection are given by

A= [ VIV G =W W Vidrdz (1)
Q

v (15)
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= f S(r, 2)V.(r, z)drdz

At this point, there are a few important aspects of the
derived system (16) that should be underlined. Firstly,
the nonlinear tensor A4, is constant and is calculated
“off-line”, i.e. prior to any temporal integrations,
nonlinear analysis, etc. Secondly, note that even though
the original equations have two distinct nonlinear terms,
these have the same temporal character. Therefore, when
expanded in modal coordinates, they can be combined in
a single nonlinear tensor A4, . On the other hand,
because we are using a complex modal basis (as opposed
to real modes), nonlinear terms need to be calculated
using both modes in each conjugate pair, leading to a
complex tensor A4, of size 2N x2N x N . Thirdly, by
choosing an appropriate truncation N, we can build
reduced models that are tailored to specific applications,
e.g. large N (say 50-100) for strongly nonlinear
scenarios or smaller N (say 10-20) for linear, or
weakly-nonlinear ones.

(18)

2.5 lllustrative results: complex modes of a trumpet
with simplified geometry

Complex mode shapes are awkward to illustrate in a
static image. This is because, contrary to the motion of
real modes where all points move in unison, complex
modes contain phase shifts between different spatial
regions. Hence, while real modes represent standing
wave patterns, complex modes are a combination of
standing and travelling waves. They are generally
represented by their real Re[V,(r,z)] and imaginary
Im[V,(r, 2)] parts separately. Moreover, complex modes
are defined up to a multiplicative complex factor. In this
case, it is often useful to “rotate” the complex mode by
an angle g (i.e. multiply by e-#) such that it maximizes
its real part [13]. In this way, we can assess the “degree
of complexity” of each mode by examining how large is
its imaginary part. Examples of some complex mode
shapes of a simplified trumpet model are shown in
Figure 2. We note that lower order modes have a nearly
null imaginary part, meaning that they represent almost
perfect standing waves (i.e. real modes). Higher order
modes however have much larger imaginary parts,
representing their radiative character. That is, these
modes reflect essentially waves travelling out of the horn
towards the free-field.
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Figure 2. Some illustrative complex mode shapes V,(r, z) of the simplified trumpet. The real and imaginary parts are represented in the
top and bottom of each plot, respectively. Note: modes shapes were rotated such that their real part is maximized (imaginary part

minimized).

3. EXPERIMENTAL VALIDATION

To explore the effects of nonlinear propagation, an
experimental set-up was prepared to excite the trumpet
prototype harmonically. Acoustic excitation was provided
by a BMS 4599 compression chamber placed at the
entrance of the experimental prototype (without
embouchure — i.e. only the cylindrical section plus the
flaring horn section). Note however that this sort of set-up
will inevitably influence the studied resonator since these
drivers have an internal volume that is non-negligible. This
volume was taken into account in the model, for validation
purposes. However, naturally, the studied system in this
case is not the same as that described in the previous
section. The modal frequencies of the system were first
identified via the exponential sine-sweep method.
Subsequently, the system was excited at various modal
frequencies at different amplitudes. A pressure sensor
(Endevco 8507C-5) was placed iteratively on 40 locations
along the resonator’s length aimed at giving a spatial
illustration of the nonlinear standing wave patterns. A
second reference pressure sensor was fixed inside the cavity
of the compression chamber to get a phase reference. The
spatial distribution of the pressure inside the resonator when
excited at the frequency of mode n =3 (503 Hz) at
different excitation amplitudes is shown in Figure 4.
Analogous results from the model, obtained through
temporal integrations using 100 complex modes are shown
in Figure 5. Comparison of the experimental and modelled
results are very satisfactory, with the model correctly
representing the trends of the distorted standing wave
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patterns observed experimentally. Not only qualitatively,
but also quantitatively, as the appearance and “level of
distortion” appear to be congruent for the same values of
the acoustic pressure. In a future work, different aspects of
these results will be analyzed more thoroughly, as there are
many more subtle aspects to be discussed.

\
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Figure 4. Experimental results: Snapshots of the measured
pressure fields inside the trumpet at different amplitudes. Dots
denotes the actual measurements while connecting lines were
interpolated.
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Figure 5. Modelling results: Snapéhots of the modelled on-axis (r
= 0) pressure fields inside the trumpet, excited harmonically at
different amplitudes.

4. CONCLUSIONS

In this work we have shown how refined models of brass
instruments, in a 2D axisymmetric framework, can be used
to efficiently predict the behavior of real instruments,
including a variety of complex physical phenomena like
viscothermal losses at the walls, 2D radiation effects as well
as nonlinear acoustic propagation. Within a reduced-order
modal framework, these refined models convey essentially
the same computational costs as the more typical 1D
models used widely in the field. Moreover, the use of
complex modes enables one to encapsulate intricate
dissipative phenomena, like localized radiation or
thermoviscous losses, in each modal component. This
allows one to easily treat the problem in both the frequency
and time domain, be that through temporal integrations,
harmonic balance, numerical continuation, etc. The use of
the Blackstock nonlinear acoustics equation instead of the
more common Burger’s equation allows us to calculate
nonlinear standing wave patterns that can eventually be
used to characterize brass instruments in terms of their
capacity to produced “brassy” sounds. It is hoped that the
developments shown here can stimulate a transition from
descriptive towards predictive models of brass instruments.
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