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ABSTRACT

Fluctuating sounds are easily recognizable and have a
significant impact on sound quality. It is therefore essential
to quantify them in a way that reflects human perception.
Extensive research in the literature has been conducted on
the perception of fluctuating sounds. However, there is
currently no standardized calculation method. There was no
reliable approach for estimating the perceived fluctuation
strength, especially for technical sounds. This paper
presents an algorithm for calculating the perceived
fluctuation strength of technical sounds, extending a
method previously presented in DAGA 2023. The
algorithm is based on the Sottek Hearing Model Roughness
published in the ECMA-418-2 standard (3" edition) and the
HSA (High-resolution Spectral Analysis) to identify low-
rate modulations. It was improved and validated using the
results of listening experiments with technical sounds and
synthetic data. The algorithm is proposed for inclusion in
the 4™ edition of the ECMA-418-2 standard.

Keywords: Fluctuation strength, Sottek Hearing Model,
High-resolution Spectral Analysis (HSA), ECMA-418-2,
psychoacoustics.

1. INTRODUCTION

Temporal variations in sounds easily attract the listener's
attention and significantly affect sound quality. Therefore,
their proper quantification with respect to human perception
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is an important task. The auditory sensations roughness and
fluctuation strength describe the perception of such
temporal variations in sounds. While fluctuation strength
covers slow variations (typically below 20 Hz), roughness
is produced by faster variations up to about 500 Hz. The
maximum of the auditory sensation is located at a
modulation rate of about 4 Hz for the fluctuation strength
and 70 Hz for the roughness.

Fluctuation strength is used for the perceptual evaluation
of sound characteristics as well as for sound design, e.g.,
for warning sounds. As fluctuation strength increases,
sounds become more noticeable and are perceived as
increasingly annoying, without any difference in
loudness or A-weighted sound pressure level.

Fluctuation strength depends on the modulation rate
fmod» the degree of modulation m and the sound pressure
level. Frequency modulated sounds produce a similar
fluctuation strength as amplitude modulated sounds.
Compared to roughness, fluctuation strength is only
slightly dependent on the carrier frequency. The unit of
fluctuation strength is “vacilyys”. As reference signal
with F = 1 vacilgyg, an amplitude modulated sinusoid of
1 kHz carrier frequency, m =1, fn.q=4Hz and a
sound pressure level of 60 dB was chosen.

The perception of fluctuating sounds has been widely
studied [1-5]. However, there is currently no standardized
calculation method. This paper describes an algorithm for
calculating the perceived fluctuation strength of synthetic
and technical sounds that is proposed for inclusion in the
4" edition of the ECMA-418-2 standard. The validation of
the new method is published in [6].

2. SOTTEK HEARING MODEL FLUCTUATION
STRENGTH VS. ROUGHNESS

The fluctuation strength algorithm is similar to the
roughness calculation based on the Sottek Hearing Model
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as described in the ECMA-418-2 standard [7] using the
specific basis loudness Ny ..is(l, z) as the starting point for
the calculation. The specific basis loudness, depending on
the block index [ resulting from the segmentation of the
bandpass signals (overlap 75%) and the critical band rate
scale values z (53 critical band filters with an overlap of
50%), is determined from the original time signal p(n) by
the steps shown in Figure 1. This model considers many
aspects of auditory perception [7-8], such as the filtering of
the outer and middle ear, the auditory filter bank, and the
compressive non-linearity of human hearing.

outer and middle ear filtering

auditory filter bank with i = 1.. CBF overlapping critical bands

 segmentation in overlapping blocks (index I} J

k half-wave rectification J
I
L root-mean-square J
|
ke compressive non-linearity J
I
! ideration of threshold in quiet |
1 ........ l !- ........ CBF

Figure 1. Structure of the Sottek Hearing Model for
the calculation of the specific basis loudness,
including the auditory filter bank, where CBF is the
number of critical band filters in the filter bank.

Figure 2 shows all processing steps for calculating the
specific fluctuation strength F’(ls,,z), where I, is the
block index after interpolation, which starts the last
processing step as for the roughness calculation. The
fluctuation strength calculation is based on scaled envelope
power spectra, which are calculated using the envelope of
the segmented critical band signals p, ,(n"). The spectral
weighting of the envelope spectra in each critical band for
the fluctuation strength modeling was adjusted compared to
the roughness algorithm to obtain weighting factors
compatible with the lower modulation rates of fluctuating
sounds.

envelope calculation and downsampling J

T

L

. determination of the envelope analysis windows J
T

High-resolution Spectral Analysis (HSA) 1

identification of prominent spectral line pairs

determination of the weighted power spectrum 1

fine tuning of the modulation rate of max. component
harmonic analysis of the power spectrum 1

weighting the sum of the harmonic complex J

L

scaling with HSA-based loudness J

T

L

calculation of specific fluctuation strength

CBF

Figure 2. Calculation of specific fluctuation strength
based on segmented critical band signals.

In addition, spectral analysis is more challenging at low
modulation rates because the constant part of the envelope
interferes with the spectral estimation, especially at low
modulation rates. To improve the spectral estimation, High-
resolution Spectral Analysis (HSA) [9] is introduced along
with envelope-dependent analysis windows in order to
reduce artifacts due to the envelope calculation and to
reduce the influence of quieter periods in the signal. A
quieter period within a block of a discrete-time signal is an
interval in which all values are below a threshold value and
the values to the left and right of this interval are greater
than or equal to this threshold value. If the quieter period is
at the beginning or end of a block, only the value to the
right or left of this interval must be greater than or equal to
this threshold value. By using HSA instead of DFT for
spectral analysis, the noise reduction step used in the
roughness algorithm [7] is eliminated.

The HSA method is an approach to extract periodic
components from the signal with very high time and
frequency resolution. It works by deconvolution of the
original signal spectrum into different sinusoids (with
possible interaction between them) and can achieve
theoretically infinite resolution for signals without noise and
considerably high resolution for signals with noise.
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3. FLUCTUATION STRENGTH ALGORITHM

3.1 Envelope calculation and downsampling

The low-frequency envelopes are calculated from the
segmented bandpass filtered sound pressure signals p, ,(n")
using the Hilbert transform (denoted A (+)). The envelopes
pr..(n") are taken as magnitude of the analytic signals

PEL(n") = |P1.z(n’) +j‘7{(pl,z(n’))|- 1)

Since the envelope curves contain only low modulation
rates, they are downsampled by a factor of 32, leaving the
1%t sample and then every 32" sample without anti-aliasing
low-pass filtering to achieve higher efficiency, which,
however, is accompanied by a very slight deviation. The
resulting downsampled envelopes of the bandpass signals
are denoted pg,, (%), 7 refers to the index of the
downsampled signal. With this step, the sampling rate
changes from r, = 48 kHz to #, = 1500 Hz. The block size
§, = 2048 and a hop size of §, =512 are the values
corresponding to the block size of s, = 65536 and the hop
size of 5, = 16384 for the segmentation.

3.2 Determination of envelope analysis windows

For the spectral analysis of the envelopes pg, (i) only a
portion of the samples in each block (size 3,) is considered.
Due to the Hilbert transform in Eqn. (1) there may be
distortions at the beginning and end of a block. The
influence of these distortions shall be reduced by defining

an  envelope-dependent  analysis  window  for
ﬁ = 0""'§b —1:

~N 1! Nob,1z =A< §b -1- Nye 1,z
Wy () = {7 T @)

where n,, ,.and n,,, , correspond to the number of zeros in
the analysis window at the beginning and at the end. As a
starting point both variables are set to §,/32 = 64 to reduce
possible distortion due to the Hilbert transform. The
number of ones in the analysis window then equals
flopes = 3 * 15/16 = 1920.

The effects of quieter periods shall also be considered. To
detect quieter periods, the envelopes pg, ,(#) are smoothed
by a moving median filter' with a length of
5p/64 4+ 1 = 33 and then rounded to 8 digits to the right of
the decimal point in order to reduce differences due to

1 A sliding window is centered about the element in the current
position. The window size is automatically truncated at the endpoints
when there are not enough elements to fill the window. When the
window is truncated, the median is taken over only the elements that
fill the window.
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different implementations. Next, pz, () is multiplied by
wg (A1) with the initial parameters of n,,;,.and n,.,,,
resulting in py, (7). Then p ... is calculated as the
maximum of p,., () forii = 0,...,3, — 1.

If Praxs, > 5 - 107 Pa, the detection of quieter periods

is continued. Otherwise the entire block is considered
to be a quieter period: wg,,(7) is set to zero for
i=0,.,5—1and ng,, as well as n,,,, are set to
$,/2 = 1024.

A quieter period of py, (%) is defined such that the
following relationship holds

A
A (3)

< Py, fOT 7L € [nqpb,l,z ”qpe,l,z]

5E,Z,Z(ﬁ)
EE,g,Z(ﬁqpb,l,z - 1) 2 EEth]',Lz
pE,Lz(ﬁqpe«l«Z + 1) = pEthr.Z.z

with pp.,, =0.01-p . also rounded to 8 digits to

the right of the decimal point. There can be several
quieter periods, each starting at a different value for

fl = figp1, and ending at a different value for
ﬁ = ﬁqpe,l,z‘
In the next step, quieter periods at the beginning and the end
are determined. The parameters ng,,, and n,;, are
updated:
Mtz = Naggminl(ﬁg,m(ﬁ) 2 5Ethr.a.z)

n=0,...sp—

N S 4)
Ngel,z S,—1- argmax (pE,L,z(n) = pEthr.Lz)

n=0,...Sp—1

Only the quieter period [figpmb 1.z Fgpme,.z] With the longest
duration  flyepos = flgperz = Agpniz +1 I the updated
interval 7 € [nzb,l,z nze,l,z] is determined, where #,,,,, must
also be greater than e os min = 5y * 5/32 = 320. In the
following only the parameters gy, , and 7 of the
longest quieter period are required.

If a valid quieter period [7iypump 12 Aigpme.rz| Was found in the
last step, there are two candidates for the analysis window
parameters n, , ,.and n,.; ,. Depending on the parameters
Tlqpmb,1.z AN figpme . OF this quieter period within the entire
block under consideration, the part on the left or right that
leads to a longer part with ones is used to further update the
parameters n,; ,.and n,., , of wg () in Eqn. (2).

If the difference between the beginning of the quieter period
and n,,,,+ 64 is greater than the difference
between $, —1 —n,,;, — 64 and the end of the quieter
period Ay ,yei, then only n,,, is updated to
=1 — A,z + 64, otherwise only n,,, , is updated to

qpme,l,z

nqpmb,l,z

Sp
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Tlopme,- + 64. The updated values also take into account
that possible distortions due to the Hilbert transform are
reduced by adding §, /32 = 64 zeros.

The final step is to check whether the remaining interval
A€ [y, i) With iy, =105 o= 8 — 1= Nae iz
contains enough information to estimate the envelope
spectrum at lower modulation rates. The first constraint
is iy, —fiy,,+1=5§,-5/32=320 and the second
constraint is #,,, = §,/4— 1 =511. The final proof is
to calculate the relative standard deviation of a linear
regression analysis of p,, () based on a least-squares
error minimization for A = #,,, + 10, ...,7,,;, — 10. The
relative standard deviation should be at least 0.1%.

If these requirements are not fulfilled, the complete block is
considered to be a quieter period: wg; , (1) is set to zero for
A=0,..,5—1 and ng,;,a well as n,,;, to
§,/2 = 1024.

3.3 High-resolution Spectral Analysis (HSA)

The envelopes pg,,(A) are windowed with wg,,(7) as
described in Eqgn. (2) (using the parameters n,, , and n,,, ,
as determined in the last section) and both the
corresponding spectrum Pg,,(k) and power spectrum
g, ,(k) are calculated:

PE,l,z(k) = DFT, (pE,l,z(ﬁ) : WE,l,z(ﬁ))
2
(DE,l,z(k) = |PE,z,z(k)|

where DFT; ~denotes the §,-point Discrete Fourier
Transform?, k is the index corresponding to a
modulation rate of k -Af with Af = = Hz.

Sb

Only values for k = 0, ...,48 are used to predict the result of
the HSA, the vector Py ys,,, consisting of a constant part
(modulation rate equal to 0) and M, spectral lines at an
arbitrary modulation rate® f.=(0,f.1, .., fom,), (nOt
limited to the discrete resolution of the DFT). The
corresponding conjugate complex spectral lines* at the
corresponding negative frequencies (—f; ,,,, €.g., for the mth
complex line) are considered for the mathematical
derivation of the following equations, but are omitted in the
result, as they provide no additional information.

®)

2DFT of length N is defined as: X(k) = DFTy(x(n)) =
NZdx(n) - e 2N withk = 0,1,...,N — 1.

3Here f. denotes the vector of modulation rates of the

candidates for a spectral line pair under consideration.

4 The complex conjugate of a complex variable z is denoted as
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Py usar, represents the spectrum predicted by the HSA
with the influence of the analysis window removed, thus
providing not only a result at an arbitrary modulation
rate, but also with amplitudes at very high resolution.
This is a major advantage of the HSA over standard
spectral analysis such as DFT, and also provides more
accurate and useful results for other spectral analysis
applications. It works by deconvolution of the original
signal spectrum into different sinusoids (with possible
interaction between them) and can achieve theoretically
infinite resolution for signals without noise and
considerably high resolution for signals with noise.

The result at the modulation rate 0 is real, the other spectral
lines are complex and described by their real and imaginary
parts . To simplify the notation, the variable x is used

instead of Py s, x = (x4, - ,xz,MCH)T with the elements

Porz 1=1

R (ﬁfc’m,l,z)

X, = , mod(i,2) =0

(6)
J('%m’) mod(;,2) # 0 Ai > 1

where p,,, is the real constant, p, .., is the mth
complex line (m =1, .., M.) and mod(i,n) returns the
remainder after dividing i by n, where i is the dividend
and n is the divisor (modulo operation).

The vector x is determined for a given set of modulation
rates f. in order to obtain the smallest error

1= 2
E;,(f) = 25201|PEzlzz,fc(k) — Py ()],

with 6

™

K, = min (max(17, round(max(f./Af)) + 8 ),49). ®)

The spectrum ﬁE‘lJZJfC(k) in Eqn. (7) corresponds to
Ppusay, including the influence of the analysis
window. ’

For the calculation of Pgysa,, the matrix
W = (W, ..., Wy, ) is required with the elements

Wi izo(k), i=1
VVik = WErl-Z-fCTm(k)’ L = 2 m (9)

Wﬁ,l,z,fcjm(k), i=2-m+1

593(z) is the real part of the complex valued variable z and
3(z) is the imaginary part.

6 The round function rounds to the nearest integer.

" The calculation of ?Ei‘zzfc(k) is only necessary for deriving
the algorithm.
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that can be calculated using the following equation

WElZf (k) - e_jZ”ﬁl(k)'(gb_nze,l,z"'nzb,l,z_l) .
Sjn(n'fn(k)'(SNb_nze,l,z_nzb,l,z)) (10)
sin(rmfu(k))
where f,,(k) = 5 me + &, is a normalized frequency; &,
the smallest posmve computer number so that

1+ ¢, > 1, is added to avoid division by zero, Wy ; , o (k) is
calculated using Egn. (10) with f,.,,, = 0 and

W) = Weiap () + Wy (k)
WE.szcjm(k) = Wg,, fclm(k) - WE,Lz,—fc_m(k)

The optimal values of P s, 1, can be calculated by solving
a system of 2 - M.+ 1 equations. This results in a matrix
equation of the type A - x = b, with a symmetric matrix
A= (al-j) and a vector x as described in Eqgn. (6):

(11)

@i = Yty RIW) - R(Wi) + SWa) - S(Wye) (12)
for (i, j) € 1], else:
@y = Tty S - R(W) + RW) - 3(W)  (13)

using the elements of W according to Eqn. (9) and the

following set of indices defined for i = 1,...,2 - M. + 1 and
j=1i.,2 M+ 1

I ={ili=1 Vv mod(i,2) = 0}

Jr ={ilj=1 Vv mod(j,2) = 0} (14)

g={GnIteknjejrVv(i€lrAj&]p)}

The elements of the vector b can be calculated as

b; = KL lm(PElzk) RWad) + S(Peyzr) - SWa)  (15)
for i € I, else

b = Tt S(Paizn) - RWi) + R(Peyzn) - SWa)  (16)

With Pg ;. = Py, (k).

The error function £, ,(f.) can be expressed advantageously
with the already calculated coefficients a;;, b; and the
elements x; of the solution of the system of equations:

- 2Mct
E () = KL @, (k) + 3,2, a, x4+
ZMC 2-Me+1
2-3 Y Hi Qg - X X — (17
9. ZZMC+1 o,

The calculation of the error function E;,(f.) is necessary
for a further step of the HSA, the fine tuning of the

Méalaga, Spain
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modulation rates in an optimization process as described
later. In this case, only one spectral line pair is considered.

3.4 ldentification of prominent spectral line pairs

In the next two steps prominent spectral line pairs are
identified searching for two cases.

3.4.1 Local maxima of the power spectrum

Local maxima @y, ,(k,(L,z)) of the power spectrum
&g, ,(k) fulfilling the condition

cI)E,l,z(kp,i(l' Z)) = maX(O'O()l ’ (DE,l,z(O)' cI)Emin) (18)
with &g, =0.15 and i = 1, ..., L,. Here, the number of
local maxima I, cannot exceed 24 due to the limited
number of spectral lines considered (48 for positive
modulation rates). The modulation rates of the remaining
local maxima are predicted as

J==a(kp i1 2)+))-Pe1a(kpib2)+])
Yl PEra(kp (L) +))

IS ( )-Af. (19)

3.4.2 Local minima of an error function

Local minima of an error function El,Z((O, ﬁ)) according to
Egn. (17) are calculated for modulation rates
fi = 0.25- 2023 Hz, with i = 1,...,16, setting the actual
frequency f., = f; of the only candidate of the prominent
spectral line pair (f.=(0,f;)). At the end, only the
component with the modulation rate f,;.(L2z)
corresponding to the minimum of all local minima of
E,,((0,f;)) is taken as a candidate for a prominent spectral
component in addition to the local maxima Py, Lz(kp,i(l, z))
at the modulation rates f,,; (1, z). All modulation rates of the
candidates for a prominent spectral component are set as
elements of the vector f. in ascending order, starting with
the modulation rate 0.

If there is no local minimum f£, ;. (, z), all local maxima are
considered as candidates for prominent spectral line pairs
and the spectrum Py, s, iS obtained using the HSA,
providing the constant part and all spectral line pairs at the
modulation rates f. and the corresponding error E;,(f.).
Except for the case of no local maximum (1, = 0), there is
no modulation in this block (Pg;,usa @nd E,,(f.) is set to
zero) and further processing for this block is stopped.

3.4.3 Selection of optimal spectral line pairs

If a local minimum £, (1, z) exists, it is further necessary to
check whether there are duplicates of spectral line pairs
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among the local maxima @y ,(k,,;(L, z)) at the modulation
rates f,,; (1, z). The set

Ly = {1l fun@ D=, (L 2)] < 125 Af} 20)

of the indices of duplicates of spectral line pairs may or may
not be empty. 8
If 1;, is not empty, two cases must be checked to remove

duplicates of spectral line pairs:

I consider £ ..(l, z) and all values of £, ;(l, z) for all
indices i =1, ...,I,,, except for the indices in I;,
and calculate the spectrum Pg,, s Using the
HSA, providing the constant part and all spectral
line pairs at the modulation rates f. and the
corresponding error £, ,(f.),

1. consider only all values of £, (1, z) for all indices
i=1,..,1, and calculate the spectrum Py, ysa
and the corresponding error E; ,(f.).

From the two cases choose the one that the gives the lower
error £, ,(f.).

If I;, is empty, then consider f,,,(l,z) and all values of
foi(l,z) for all indices i =1,..,I, and calculate the
spectrum Py, usa Using the HSA, providing the constant
part and all spectral line pairs at the modulation rates f, and
the corresponding error E; ,(f.).

In the next step, only spectral line pairs with a modulation
rate satisfying the condition

A;(l,z) > 0.05- mlax(Ai(l, z)) (1)

are considered, where A;(l,z) is the ith preselected
component of |13EJLZ,HSA(1‘CJE(1,z))|2 and f.;(1,z) is the
modulation rate of the ith preselected spectral line pair,
resulting in the subset f.;(1, z).

3.5 Determination of the weighted power spectrum

Then the weighted power spectrum of the remaining
spectral line pairs

ji(l: z) = |ﬁE,l,z,HSA(f::,i(l' Z))|2 ' th(fc,i(lu Z)) (22)

and the modulation rate £, (Lz) of the maximum
of the weighted power spectrum are determined:

8 Duplicates of spectral line pairs can only occur at slightly higher

modulation rates in the given range for f...(,z) (here:
13

f, =025Hz<f,;.(1,z) <f;s = 0.25- 25 =~ 5.0397 Hz), where also

local maxima in the spectrum can be observed.

Imax = argmax (ﬁi(l,z)); Wi, (fc,i(l, z)) weights the power

spectrum in relation to lower and higher modulation rates
(bandpass characteristic of fluctuation strength): wy, (0) = 0,

~ 1
Win (fc,i(l' Z)) = N US| (23)
Feill?)  fiax
(1+(( JSmax _?c,i(l,Z)).qL]) )
for f.;(1,2) < fuax(2), Gu1 = 0.33048, g, = 0.85902,
1+0.092623log, F(Z)Z Lz
( roea(52)|") -

Win (fc,i(ll Z)) = N 2\92h
Teil?)  fmax \.
(1+(( fmax 75,1'(1,2)) ql’h) )

for foi(L7) < fox(@), qun = 021792, q,, = 4.6728,
fmax = 4.8659 Hz is the modulation rate at which the
weighting factor reaches the maximum of one and F(z) is
the center frequency of the auditory filter bank as described
in [7].

3.6 Fine tuning of the modulation rate of the maximum
component

The modulation rate of the maximum of the weighted
power spectrum ﬁ,im(l, z) is used as a starting point x, for
a fine tuning based on the constant part and only one
spectral line pair. The modulation rate f. , (1, z), giving
the minimum error E,,(f.), is determined by a modified
damped Newton method applied to E[,(f.), the
1% derivative of E,,(f.) with f. = (0,x;). E(f.), the
2" derivative of E, ,(f.) is also used. Both derivatives are
approximated by differential quotients with Ax = 107>, the
1% derivative as

(E[,z(xk—l+Ax)_El,z(xk—1_Ax))
2-Ax

El’,z(xk—l) = (25)
and the 2" derivative as

(El,z(xk—l+Ax)_2'El,z(xk—l)+El,z(xk—1_Ax))

B () = — (26)

The iteration is started for k = 1 and x, = fcjm(l, z)

Xp = Xp_q —Dxp_q (@7)
with
Axy_, = T k1) min( FiCi)l 10—4) 28)

4 ‘Ell,lz(xk—lﬂ"’go

1, x>0
% The signum function is defined as sign(x) = { 0, x=0.
-1, x<0
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and continued until [Ax,_;| > 1077 A k < 40.

If | £ opt — fein (b 2)] > 1.25 - Af, it is assumed that the
optimization failed and the fine tuning is cancelled,
otherwise ﬁ,imax(l, z) is replaced by f.,,.(l,z) and the
corresponding spectral component of Py, 54 as Well as
A;__(1, z) are updated accordingly.

If fe1.0pt < 0.125 Hz, then the modulation in this block is
discarded (Pg,,usa and E,,(f.) are set to zero) and
further processing for this block is stopped.

3.7 Harmonic analysis of the power spectrum

In this step, the weighted power spectra 4;(l, z) are further
analyzed. It is assumed that there is a dominant harmonic
complex (a fundamental modulation rate with harmonics at
multiples of the fundamental modulation rate) which is the
dominant cause of the fluctuation perception. The
fundamental modulation rate of such a harmonic complex is
estimated in this step. It is further assumed that f;; _ (1, 2)
or more precisely the tuned value f; ; ,..(1, z) is part of the
harmonic complex and that the maximum order of this
component is three, resulting in three cases to be tested:
feir. (L) is the fundamental modulation rate or 2™ or
3 order. Additionally, the highest order to be considered is
the 5 order.

For each block [ and band z, the fundamental modulation
rate of the envelope is estimated in the next processing step,
taking into account the modulation rates £.(I,z) and the
amplitudes 4; (1, z) of the block.

For each assumed order o = 1,2,3 of f.;,.(L,2), it is
tested whether the corresponding modulation rate
fer0z) = foaom(Lz)/0 is the best estimate for the
fundamental modulation rate of the envelope, assuming that
the sum over the harmonic complex corresponding to the
best estimate gives the highest value. The exact procedure
for each assumed order o is described below.

Initially, the integer ratios of all the modulation rates
fm(l, z) to the modulation rate £ , (I, z) are calculated

)

by rounding to the nearest integer. All integer ratios greater
than five are set to zero.

From all remaining values, a set [;, of indices of all
components belonging to a harmonic complex with
fundamental modulation rate £, ,(I, z) is defined (using a
tolerance of 4%):

fei(l2)
fea,0(l2)

R ,(,z) = round( (29)
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fc,i(l«z)
Rio (Lz)'fc,l,o(lrz)

(30)

I,(Lz) = {i ( - 1| < 0.04)}.

For this set of indices, the energy of the harmonic complex
is calculated as

Ei,o(lJ Z) = ZiEli'o A'i(l! Z)-

The order o leading to the highest energy is denoted in
the following as o,,.,,, the corresponding set of indices
I;,(l,z) is denoted as I,..(l,z). The fundamental
modulation rate of the envelope is f,(l,z) = fc,omax(l' Z).
In the following, only the components corresponding to the
indices in I.,., (I, z) are considered as part of the envelope.
The modulation rates of these remaining components, except
for . ,(l, z), are corrected according to their integer ratios
to f,,. . (1,z) and the corresponding spectral line pairs of
P;,,usa are calculated for the given orders (based on the
integer ratios, maximum up to the 5% order) using the HSA
with the constant part and one spectral line pair for each
order of interest. The constant part is predicted several times
for all orders. The mean value of all predictions is taken as
the corresponding final result. The weighted power spectra
A;(1, z) are updated for the improved modulation rates.

(31)

3.8 Weighting the sum of the harmonic complex

The sum of the harmonic complex is weighted according to
the distance between the center of gravity of its components
and the modulation rate of the component with the largest
amplitude:

A(l,z) = wa'ZiEImax(Lz)ji(l: z) (32)
with
Feill?) - €
Yiemaxa)| g AiL2) foronl2)
Wy =1+c" — L (33)

Cictmax 2 Ai(h2))+€o Hz

where ¢ = 0.79577 and e = 0.43461.

3.9 Scaling with HSA-based loudness

Finally, A(1,z) is weighted with a factor depending on the
power of the harmonic complex and the specific loudness
Niisa(l, z) based on the HSA:

’ 2 (Bark;
$p-A(L2) (NHSA(I’Z)) '(sone]]:[[];z
oLz +2-Lielmax (1) Ai(L2)+50 mZHX(NésA(LZ))Ho

)

Al,z) = 5 (34)
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Njsa(l,z) is calculated by applying the nonlinearity
described in [7, section 5.1.8] to the RMS value of the
harmonic complex:

ﬁﬁSA(l, z)=A (J

and taking into account the lower threshold of hearing
LTQ(z) according to [7, section 5.1.9] by subtraction,
whereby negative values are set to zero:

Nisa(l, 2) = max(Nys4 (1, z) — LTQ(2), 0). (36)

All values of A(l, z) below a threshold of 5.2519 are set to
zero. The corresponding fundamental modulation rates
f1 (L, z) are also set to zero.

oz +2-Vietmax.) Ai(l-l))
2

(35)

3.10 Calculation of specific fluctuation strength

The calculation of the time-dependent specific fluctuation
strength is mainly performed as for the roughness, starting
with the interpolation of A({,z) using a piecewise cubic
Hermitian function to a sampling rate of r,5, = 50 Hz as
described in [7] resulting in an uncalibrated estimate of the
specific fluctuation strength F/g; (I5,, z). The next step in the
calculation of the specific fluctuation strength is a nonlinear
transformation, depending on the distribution of F/ ,(l5,, 2)
over the critical bands z and a calibration:

ﬁ’(lsojl) =Cp- (Fést(lsmz))E(lS“) @37)

with the calibration factor ¢z = 0.003840572 Z22HMs
BarkHMs

. . (tanh(1.6407:(B(l55)—2.5804))+1)
E(ls) = 0.37106 . + (38)
0.58449
and B(ls,) as described in the following
E(ISO) _ Fest(Is0) (39)

Figt(ls0)+10712

where Fig(Io) and Fly(I5o) denote the RMS value and
the linear mean value of Fl(ls,, z), respectively. B(ls,)
is smoothed with a moving median filter of length 71,
resulting in B(lg,). Finally, the estimate of the time-
dependent specific fluctuation strength F’(ls,,2) is
smoothed by using a lowpass filter of order one with a time
constant of 0.75 s, resulting in the final estimate of the time-
dependent specific fluctuation strength F'(lx,, z).

3.11 Calculation of time-dependent fluctuation strength

The time-dependent fluctuation strength F(I5,) is calculated
by summing F’(Is,, z) over all 53 critical bands and taking

3332

the overlap Az = 0.5 into account by multiplying the result
with Az. The representative fluctuation strength value F is
calculated by taking the 90™ percentile of the time-
dependent fluctuation strength F(l.,), discarding the initial
36 values, i.e., for 0 < [, < 35.

4. CONCLUSIONS

The mathematical details of the improved fluctuation
strength algorithm based on the Sottek Hearing Model that
is proposed for the 4" edition of ECMA-418-2 are
presented. The validation results for different kinds of
synthetic and technical sounds are published in [6].
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