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ABSTRACT* 

Fluctuating sounds are easily recognizable and have a 

significant impact on sound quality. It is therefore essential 

to quantify them in a way that reflects human perception. 

Extensive research in the literature has been conducted on 

the perception of fluctuating sounds. However, there is 

currently no standardized calculation method. There was no 

reliable approach for estimating the perceived fluctuation 

strength, especially for technical sounds. This paper 

presents an algorithm for calculating the perceived 

fluctuation strength of technical sounds, extending a 

method previously presented in DAGA 2023. The 

algorithm is based on the Sottek Hearing Model Roughness 

published in the ECMA-418-2 standard (3rd edition) and the 

HSA (High-resolution Spectral Analysis) to identify low-

rate modulations. It was improved and validated using the 

results of listening experiments with technical sounds and 

synthetic data. The algorithm is proposed for inclusion in 

the 4th edition of the ECMA-418-2 standard. 

Keywords: Fluctuation strength, Sottek Hearing Model, 

High-resolution Spectral Analysis (HSA), ECMA-418-2, 

psychoacoustics. 

1. INTRODUCTION 

Temporal variations in sounds easily attract the listener's 

attention and significantly affect sound quality. Therefore, 

their proper quantification with respect to human perception 
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is an important task. The auditory sensations roughness and 

fluctuation strength describe the perception of such 

temporal variations in sounds. While fluctuation strength 

covers slow variations (typically below 20 Hz), roughness 

is produced by faster variations up to about 500 Hz. The 

maximum of the auditory sensation is located at a 

modulation rate of about 4 Hz for the fluctuation strength 

and 70 Hz for the roughness. 

Fluctuation strength is used for the perceptual evaluation 

of sound characteristics as well as for sound design, e.g., 

for warning sounds. As fluctuation strength increases, 

sounds become more noticeable and are perceived as 

increasingly annoying, without any difference in 

loudness or A-weighted sound pressure level. 

Fluctuation strength depends on the modulation rate 

, the degree of modulation  and the sound pressure 

level. Frequency modulated sounds produce a similar 

fluctuation strength as amplitude modulated sounds. 

Compared to roughness, fluctuation strength is only 

slightly dependent on the carrier frequency. The unit of 

fluctuation strength is “ ”. As reference signal 

with , an amplitude modulated sinusoid of 

1 kHz carrier frequency, ,   and a 

sound pressure level of 60 dB was chosen. 

The perception of fluctuating sounds has been widely 

studied [1-5]. However, there is currently no standardized 

calculation method. This paper describes an algorithm for 

calculating the perceived fluctuation strength of synthetic 

and technical sounds that is proposed for inclusion in the  

4th edition of the ECMA-418-2 standard. The validation of 

the new method is published in [6]. 

2. SOTTEK HEARING MODEL FLUCTUATION 

STRENGTH VS. ROUGHNESS 

The fluctuation strength algorithm is similar to the 

roughness calculation based on the Sottek Hearing Model 
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as described in the ECMA-418-2 standard [7] using the 

specific basis loudness  as the starting point for 

the calculation. The specific basis loudness, depending on 

the block index  resulting from the segmentation of the 

bandpass signals (overlap 75%) and the critical band rate 

scale values  (53 critical band filters with an overlap of 

50%), is determined from the original time signal  by 

the steps shown in Figure 1. This model considers many 

aspects of auditory perception [7-8], such as the filtering of 

the outer and middle ear, the auditory filter bank, and the 

compressive non-linearity of human hearing. 

 

Figure 1. Structure of the Sottek Hearing Model for 

the calculation of the specific basis loudness, 

including the auditory filter bank, where CBF is the 

number of critical band filters in the filter bank. 

Figure 2 shows all processing steps for calculating the 

specific fluctuation strength , where  is the 

block index after interpolation, which starts the last 

processing step as for the roughness calculation. The 

fluctuation strength calculation is based on scaled envelope 

power spectra, which are calculated using the envelope of 

the segmented critical band signals . The spectral 

weighting of the envelope spectra in each critical band for 

the fluctuation strength modeling was adjusted compared to 

the roughness algorithm to obtain weighting factors 

compatible with the lower modulation rates of fluctuating 

sounds. 

 

Figure 2. Calculation of specific fluctuation strength 

based on segmented critical band signals. 

In addition, spectral analysis is more challenging at low 

modulation rates because the constant part of the envelope 

interferes with the spectral estimation, especially at low 

modulation rates. To improve the spectral estimation, High-

resolution Spectral Analysis (HSA) [9] is introduced along 

with envelope-dependent analysis windows in order to 

reduce artifacts due to the envelope calculation and to 

reduce the influence of quieter periods in the signal. A 

quieter period within a block of a discrete-time signal is an 

interval in which all values are below a threshold value and 

the values to the left and right of this interval are greater 

than or equal to this threshold value. If the quieter period is 

at the beginning or end of a block, only the value to the 

right or left of this interval must be greater than or equal to 

this threshold value. By using HSA instead of DFT for 

spectral analysis, the noise reduction step used in the 

roughness algorithm [7] is eliminated. 

The HSA method is an approach to extract periodic 

components from the signal with very high time and 

frequency resolution. It works by deconvolution of the 

original signal spectrum into different sinusoids (with 

possible interaction between them) and can achieve 

theoretically infinite resolution for signals without noise and 

considerably high resolution for signals with noise. 
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3. FLUCTUATION STRENGTH ALGORITHM 

3.1 Envelope calculation and downsampling 

The low-frequency envelopes are calculated from the 

segmented bandpass filtered sound pressure signals  

using the Hilbert transform (denoted ). The envelopes 

 are taken as magnitude of the analytic signals 
 

.                             (1) 
 

Since the envelope curves contain only low modulation 

rates, they are downsampled by a factor of 32, leaving the 

1st sample and then every 32nd sample without anti-aliasing 

low-pass filtering to achieve higher efficiency, which, 

however, is accompanied by a very slight deviation. The 

resulting downsampled envelopes of the bandpass signals 

are denoted ,  refers to the index of the 

downsampled signal. With this step, the sampling rate 

changes from  to . The block size 

 and a hop size of  are the values 

corresponding to the block size of  and the hop 

size of  for the segmentation. 

3.2 Determination of envelope analysis windows 

For the spectral analysis of the envelopes  only a 

portion of the samples in each block (size ) is considered. 

Due to the Hilbert transform in Eqn. (1) there may be 

distortions at the beginning and end of a block. The 

influence of these distortions shall be reduced by defining 

an envelope-dependent analysis window for 

: 
 

                    (2) 

 

where .and  correspond to the number of zeros in 

the analysis window at the beginning and at the end. As a 

starting point both variables are set to  to reduce 

possible distortion due to the Hilbert transform. The  

number of ones in the analysis window then equals  

. 

The effects of quieter periods shall also be considered. To 

detect quieter periods, the envelopes  are smoothed 

by a moving median filter 1 with a length of 

 and then rounded to 8 digits to the right of 

the decimal point in order to reduce differences due to 

————————— 
1 A sliding window is centered about the element in the current 

position. The window size is automatically truncated at the endpoints 
when there are not enough elements to fill the window. When the 

window is truncated, the median is taken over only the elements that 

fill the window. 

different implementations. Next,  is multiplied by 

 with the initial parameters of .and , 

resulting in . Then  is calculated as the 

maximum of  for . 

If , the detection of quieter periods 

is continued. Otherwise the entire block is considered  

to be a quieter period:  is set to zero for  

 and  as well as  are set to  

. 

A quieter period of  is defined such that the 

following relationship holds 
 

  (3) 

 

with , also rounded to 8 digits to 

the right of the decimal point. There can be several 

quieter periods, each starting at a different value for 

 and ending at a different value for 

. 

In the next step, quieter periods at the beginning and the end 

are determined. The parameters  and  are 

updated: 
 

       (4) 

 

Only the quieter period  with the longest 

duration   in the updated 

interval  is determined, where  must 

also be greater than . In the 

following only the parameters and  of the 

longest quieter period are required. 

If a valid quieter period  was found in the 

last step, there are two candidates for the analysis window 

parameters .and . Depending on the parameters 

 and  of this quieter period within the entire 

block under consideration, the part on the left or right that 

leads to a longer part with ones is used to further update the 

parameters .and  of  in Eqn. (2). 

If the difference between the beginning of the quieter period 

 and  is greater than the difference 

between  and the end of the quieter 

period , then only  is updated to  

, otherwise only  is updated to 
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. The updated values also take into account 

that possible distortions due to the Hilbert transform are 

reduced by adding  zeros. 

The final step is to check whether the remaining interval 

 with , , 

contains enough information to estimate the envelope 

spectrum at lower modulation rates. The first constraint 

is  and the second 

constraint is . The final proof is 

to calculate the relative standard deviation of a linear 

regression analysis of  based on a least-squares 

error minimization for . The 

relative standard deviation should be at least 0.1%. 

If these requirements are not fulfilled, the complete block is 

considered to be a quieter period:  is set to zero for 

 and .as well as  to  

. 

3.3 High-resolution Spectral Analysis (HSA) 

The envelopes  are windowed with  as 

described in Eqn. (2) (using the parameters  and  

as determined in the last section) and both the 

corresponding spectrum  and power spectrum 

 are calculated: 
 

                           (5) 

 

where  denotes the -point Discrete Fourier 

Transform 2,  is the index corresponding to a 

modulation rate of  with  Hz. 

Only values for  are used to predict the result of 

the HSA, the vector  consisting of a constant part 

(modulation rate equal to 0) and  spectral lines at an 

arbitrary modulation rate 3 , (not 

limited to the discrete resolution of the DFT). The 

corresponding conjugate complex spectral lines 4 at the 

corresponding negative frequencies ( , e.g., for the th 

complex line) are considered for the mathematical 

derivation of the following equations, but are omitted in the 

result, as they provide no additional information. 

————————— 
2 DFT of length N is defined as:  

 with . 
3 Here  denotes the vector of modulation rates of the 

candidates for a spectral line pair under consideration. 
4 The complex conjugate of a complex variable  is denoted as 

. 

 represents the spectrum predicted by the HSA 

with the influence of the analysis window removed, thus 

providing not only a result at an arbitrary modulation 

rate, but also with amplitudes at very high resolution. 

This is a major advantage of the HSA over standard 

spectral analysis such as DFT, and also provides more 

accurate and useful results for other spectral analysis 

applications. It works by deconvolution of the original 

signal spectrum into different sinusoids (with possible 

interaction between them) and can achieve theoretically 

infinite resolution for signals without noise and 

considerably high resolution for signals with noise. 

The result at the modulation rate 0 is real, the other spectral 

lines are complex and described by their real and imaginary 

parts 5. To simplify the notation, the variable x is used 

instead of :  with the elements 
 

                         (6) 

 

where  is the real constant,  is the th 

complex line  and  returns the 

remainder after dividing  by , where  is the dividend 

and  is the divisor (modulo operation). 

The vector  is determined for a given set of modulation 

rates  in order to obtain the smallest error 
 

,                          (7) 
 

with 6 
 

      (8) 

 

The spectrum  in Eqn. (7) corresponds to 

 including the influence of the analysis 

window. 7 

For the calculation of , the matrix  

 is required with the elements 
 

                                 (9) 

 

————————— 
5  is the real part of the complex valued variable  and 

 is the imaginary part. 
6 The round function rounds to the nearest integer. 
7 The calculation of  is only necessary for deriving 

the algorithm. 
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that can be calculated using the following equation 
 

                  (10) 

 

where  is a normalized frequency; , 

the smallest positive computer number so that  

, is added to avoid division by zero,  is 

calculated using Eqn. (10) with  and 
 

               (11) 

 

The optimal values of  can be calculated by solving 

a system of  equations. This results in a matrix 

equation of the type , with a symmetric matrix 

 and a vector  as described in Eqn. (6): 
 

        (12) 
 

for , else: 
 

          (13) 
 

using the elements of  according to Eqn. (9) and the 

following set of indices defined for  and 

: 
 

          (14) 

 

The elements of the vector  can be calculated as 
 

 (15) 
 

for , else 
 

 (16) 
 

with . 

The error function  can be expressed advantageously 

with the already calculated coefficients ,  and the 

elements  of the solution of the system of equations: 
 

         (17) 

 

The calculation of the error function  is necessary 

for a further step of the HSA, the fine tuning of the 

modulation rates in an optimization process as described 

later. In this case, only one spectral line pair is considered. 

3.4 Identification of prominent spectral line pairs 

In the next two steps prominent spectral line pairs are 

identified searching for two cases. 

3.4.1 Local maxima of the power spectrum 

Local maxima  of the power spectrum 

 fulfilling the condition 
 

       (18) 

 

with  and . Here, the number of 

local maxima  cannot exceed 24 due to the limited 

number of spectral lines considered (48 for positive 

modulation rates). The modulation rates of the remaining 

local maxima are predicted as 
 

.     (19) 

3.4.2 Local minima of an error function 

Local minima of an error function  according to 

Eqn. (17) are calculated for modulation rates  

, with , setting the actual 

frequency  of the only candidate of the prominent 

spectral line pair ( ). At the end, only the 

component with the modulation rate  

corresponding to the minimum of all local minima of 

 is taken as a candidate for a prominent spectral 

component in addition to the local maxima  

at the modulation rates . All modulation rates of the 

candidates for a prominent spectral component are set as 

elements of the vector  in ascending order, starting with 

the modulation rate 0. 

If there is no local minimum , all local maxima are 

considered as candidates for prominent spectral line pairs 

and the spectrum  is obtained using the HSA, 

providing the constant part and all spectral line pairs at the 

modulation rates  and the corresponding error . 

Except for the case of no local maximum ( , there is 

no modulation in this block (  and  is set to 

zero) and further processing for this block is stopped. 

3.4.3 Selection of optimal spectral line pairs 

If a local minimum  exists, it is further necessary to 

check whether there are duplicates of spectral line pairs 
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among the local maxima  at the modulation 

rates . The set 
 

                      (20) 
 

of the indices of duplicates of spectral line pairs may or may 

not be empty. 8 

If  is not empty, two cases must be checked to remove 

duplicates of spectral line pairs: 
 

I. consider  and all values of  for all 

indices  except for the indices in  

and calculate the spectrum  using the 

HSA, providing the constant part and all spectral 

line pairs at the modulation rates  and the 

corresponding error , 

II. consider only all values of  for all indices 

 and calculate the spectrum  

and the corresponding error . 
 

From the two cases choose the one that the gives the lower 

error . 

If  is empty, then consider  and all values of 

 for all indices  and calculate the 

spectrum  using the HSA, providing the constant 

part and all spectral line pairs at the modulation rates  and 

the corresponding error . 

In the next step, only spectral line pairs with a modulation 

rate satisfying the condition 
 

                                           (21) 

 

are considered, where  is the th preselected 

component of  and  is the 

modulation rate of the th preselected spectral line pair, 

resulting in the subset . 

3.5 Determination of the weighted power spectrum 

Then the weighted power spectrum of the remaining 

spectral line pairs 
 

               (22) 
 

and the modulation rate  of the maximum  

of the weighted power spectrum are determined: 

————————— 
8 Duplicates of spectral line pairs can only occur at slightly higher 
modulation rates in the given range for  (here: 

, where also 

local maxima in the spectrum can be observed. 

;  weights the power 

spectrum in relation to lower and higher modulation rates 

(bandpass characteristic of fluctuation strength): , 
 

                   (23) 

 

for , , , 
 

                 (24) 

 

for , , , 

 is the modulation rate at which the 

weighting factor reaches the maximum of one and  is 

the center frequency of the auditory filter bank as described 

in [7]. 

3.6 Fine tuning of the modulation rate of the maximum 

component 

The modulation rate of the maximum of the weighted 

power spectrum is used as a starting point  for 

a fine tuning based on the constant part and only one 

spectral line pair. The modulation rate , giving 

the minimum error , is determined by a modified 

damped Newton method applied to , the  

1st derivative of  with . , the  

2nd derivative of  is also used. Both derivatives are 

approximated by differential quotients with , the 

1st derivative as 
 

                            (25) 
 

and the 2nd derivative as 
 

         (26) 

 

The iteration is started for  and  
 

                                                               (27) 
 

with 9 

    (28) 

 

————————— 

9 The signum function is defined as . 

3330



11th Convention of the European Acoustics Association 
Málaga, Spain • 23rd – 26th June 2025 •  

 

 

and continued until  
 

If , it is assumed that the 

optimization failed and the fine tuning is cancelled, 

otherwise  is replaced by  and the 

corresponding spectral component of  as well as 

 are updated accordingly. 

If , then the modulation in this block is 

discarded (  and  are set to zero) and 

further processing for this block is stopped. 

3.7 Harmonic analysis of the power spectrum 

In this step, the weighted power spectra  are further 

analyzed. It is assumed that there is a dominant harmonic 

complex (a fundamental modulation rate with harmonics at 

multiples of the fundamental modulation rate) which is the 

dominant cause of the fluctuation perception. The 

fundamental modulation rate of such a harmonic complex is 

estimated in this step. It is further assumed that  

or more precisely the tuned value  is part of the 

harmonic complex and that the maximum order of this 

component is three, resulting in three cases to be tested: 

 is the fundamental modulation rate or 2nd or  

3rd order. Additionally, the highest order to be considered is 

the 5th order. 

For each block  and band , the fundamental modulation 

rate of the envelope is estimated in the next processing step, 

taking into account the modulation rates  and the 

amplitudes  of the block. 

For each assumed order  of , it is  

tested whether the corresponding modulation rate 

 is the best estimate for the 

fundamental modulation rate of the envelope, assuming that 

the sum over the harmonic complex corresponding to the 

best estimate gives the highest value. The exact procedure 

for each assumed order  is described below. 

Initially, the integer ratios of all the modulation rates 

 to the modulation rate  are calculated 
 

,                                            (29) 

 

by rounding to the nearest integer. All integer ratios greater 

than five are set to zero. 

From all remaining values, a set  of indices of all 

components belonging to a harmonic complex with 

fundamental modulation rate  is defined (using a 

tolerance of 4%): 
 

.                (30) 

 

For this set of indices, the energy of the harmonic complex 

is calculated as 
 

.                                                (31) 
 

The order  leading to the highest energy is denoted in 

the following as , the corresponding set of indices 

 is denoted as . The fundamental 

modulation rate of the envelope is . 

In the following, only the components corresponding to the 

indices in  are considered as part of the envelope. 

The modulation rates of these remaining components, except 

for , are corrected according to their integer ratios 

to  and the corresponding spectral line pairs of 

 are calculated for the given orders (based on the 

integer ratios, maximum up to the 5th order) using the HSA 

with the constant part and one spectral line pair for each 

order of interest. The constant part is predicted several times 

for all orders. The mean value of all predictions is taken as 

the corresponding final result. The weighted power spectra 

are updated for the improved modulation rates. 

3.8 Weighting the sum of the harmonic complex 

The sum of the harmonic complex is weighted according to 

the distance between the center of gravity of its components 

and the modulation rate of the component with the largest 

amplitude: 
 

                                    (32) 
 

with 
 

       (33) 

 

where  and . 

3.9 Scaling with HSA-based loudness 

Finally,  is weighted with a factor depending on the 

power of the harmonic complex and the specific loudness 

 based on the HSA: 
 

  (34) 
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 is calculated by applying the nonlinearity 

described in [7, section 5.1.8] to the RMS value of the 

harmonic complex: 
 

                       (35) 

 

and taking into account the lower threshold of hearing 

 according to [7, section 5.1.9] by subtraction, 

whereby negative values are set to zero: 
 

.                      (36) 
 

All values of  below a threshold of  are set to 

zero. The corresponding fundamental modulation rates 

 are also set to zero. 

3.10  Calculation of specific fluctuation strength 

The calculation of the time-dependent specific fluctuation 

strength is mainly performed as for the roughness, starting 

with the interpolation of  using a piecewise cubic 

Hermitian function to a sampling rate of  Hz as 

described in [7] resulting in an uncalibrated estimate of the 

specific fluctuation strength  The next step in the 

calculation of the specific fluctuation strength is a nonlinear 

transformation, depending on the distribution of  

over the critical bands  and a calibration: 
 

                                     (37) 
 

with the calibration factor , 

 

         (38) 

 

and  as described in the following 
 

                                                       (39) 

 

where  and  denote the RMS value and 

the linear mean value of .  

is smoothed with a moving median filter of length 71, 

resulting in . Finally, the estimate of the time-

dependent specific fluctuation strength  is 

smoothed by using a lowpass filter of order one with a time 

constant of 0.75 s, resulting in the final estimate of the time-

dependent specific fluctuation strength . 

3.11  Calculation of time-dependent fluctuation strength 

The time-dependent fluctuation strength  is calculated 

by summing  over all 53 critical bands and taking 

the overlap  into account by multiplying the result 

with . The representative fluctuation strength value  is 

calculated by taking the 90th percentile of the time-

dependent fluctuation strength , discarding the initial 

36 values, i.e., for . 

4. CONCLUSIONS 

The mathematical details of the improved fluctuation 

strength algorithm based on the Sottek Hearing Model that 

is proposed for the 4th edition of ECMA-418-2 are 

presented. The validation results for different kinds of 

synthetic and technical sounds are published in [6]. 
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