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ABSTRACT

This study explores the use of sound directionality (DOA)
as a key feature for unsupervised classification of acoustic
events in industrial environments. A novel methodology
was developed, combining a custom microphone array with
SubWindowing to extract directional, spectral, and
statistical features from production noise. Acoustic events
were clustered using the k-means algorithm, with the
optimal number of clusters determined via the elbow and
silhouette methods. Feature importance was evaluated using
Principal Component Analysis (PCA), which consistently
identified sound directionality as the most influential
feature. The results showed that integrating DOA
significantly improved clustering performance and enabled
accurate identification of machine states. The detected
clusters aligned well with manually recorded operational
states, confirming the method's effectiveness. This approach
offers a robust and interpretable framework for real-time
monitoring and fault detection in industrial settings. Future
work will focus on extending this method to predictive

maintenance  systems and broader manufacturing
environments.
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1. INTRODUCTION

Current machine learning approaches for acoustic event
classification in industrial environments typically rely on
spectral, statistical, and temporal features. Traditional
supervised methods have been widely applied, but
unsupervised techniques, such as k-means clustering, are
gaining traction due to their ability to classify unlabeled
data and reduce dimensionality in high-dimensional
datasets [4]. For instance, Ding and Li [4] proposed a
feature selection framework for k-means, while Sun and
Wang [5] introduced improvements via an ADMM
algorithm to enhance clustering performance. Coates and
Ng [6] also emphasized the role of k-means in feature
learning, particularly due to its simplicity and effectiveness.
In audio classification specifically, deep learning methods
have been reviewed by Mesaros et al. [7], highlighting the
importance of robust feature representation. However, these
methods largely overlook spatial acoustic features, such as
sound directionality, also known as Direction of Arrival
(DOA). Despite its well-known role in human perception,
evident in the “cocktail party effect”, DOA remains
underexplored in unsupervised learning pipelines for
acoustic event classification [2]. Base on literature review
and our expertise we identified a research gap, placed a
hypothesis, detect challenges and placed objectives of this
study.

Research Gap: Current machine learning approaches for
acoustic event classification typically rely on spectral,
statistical, and temporal features. However, the role of
sound directionality has been underexplored as a key
feature for classification. Despite the relevance of
directionality in distinguishing sound sources, it remains
inadequately studied within unsupervised learning models,
such as k-means clustering, for acoustic event classification
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Hypothesis: Incorporating DOA as a core feature can
significantly improve clustering performance and enable
more accurate detection of machine states and process
deviations in industrial environments.

Challenges: Accurate measurement of DOA requires
precise sensor arrays and fast-response algorithms (<50
ms). Another challenge lies in combining DOA with time—
frequency features into a unified feature set and validating
its impact using robust dimensionality reduction methods
such as Principal Component Analysis (PCA).

Objective:

This study aims to investigate the role of DOA in the
classification of acoustic events using unsupervised
learning, specifically focusing on k-means clustering.

2. METHODOLOGICAL OVERVIEW

The classification system developed in this study consists of
three main stages: (1) data acquisition using a custom-
designed differential microphone array, (2) feature
extraction incorporating both time—frequency and
directionaly DOA, and (3) unsupervised classification using
the k-means algorithm. To enhance temporal resolution, a
SubWindowing technique was used to segment the acoustic
data. Features were extracted from both time and frequency
domains, including Direction of Arrival (DOA) information
computed via beamforming algorithms. Dimensionality
reduction techniques such as Principal Component Analysis
(PCA) was employed to assess feature importance and
ensure model interpretability. The proposed system enables
precise spatial classification of acoustic events and supports
real-time monitoring in industrial environments.

2.1 Feature Extraction

The feature extraction process is a critical step in the overall
methodology, converting raw sound signals into meaningful
descriptors that can be used for clustering and classification.
Key features are extracted from both the time and frequency
domains. Spectral features such as spectral centroid,
spectral bandwidth, spectral flatness, and spectral roll-off
are calculated for each SubWindow segment. Temporal
features, including Zero-Crossing Rate (ZCR), Root Mean
Square (RMS) energy, and Sound Pressure Level (SPL), are
also extracted. Additionally, statistical features like
skewness, kurtosis, and entropy are computed to capture
distributional properties of the signal. A unique contribution
of this study is the inclusion of sound directionality as a
feature, which is derived from the microphone array's
spatial configuration. This information is combined into a
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feature vector representing each time segment, enabling a
comprehensive representation of the acoustic event.

The feature set is subsequently refined using dimensionality
reduction techniques, including Principal Component
Analysis (PCA), to identify and retain only the most
influential features for clustering

2.2 Time
integration

Intervals of feature extraction and their

In industrial acoustic environments, sound signals are
inherently complex. They are composed of a combination
of impulsive, transient events, such as impacts, cutter
engagements, or part drops, and longer lasting background
or cyclical machine operations. Capturing this full acoustic
landscape using a single fixed time resolution would either
miss rapid changes or smooth over important long-term
patterns. To address this, we implemented a dual-time-
constant segmentation  strategy, which enables the
extraction of both fast-evolving and slowly varying features
from the signal.

2.2.1 Motivation for the Approach

The main rationale behind this two-level segmentation was
to construct a feature representation that simultaneously
captures the detail of transient events and the consistency of
long-term operational patterns. Many machine learning
models fail to distinguish between these layers of acoustic
behavior when using a single time scale, which leads to
suboptimal clustering or misclassification of machine states.
By layering feature extraction over both short and long
intervals, we aimed to provide the unsupervised algorithm
with richer and more distinguishable patterns for clustering.
This approach mirrors human auditory perception, where
the brain reacts to sudden sounds immediately while also
tracking longer sequences and rhythms over time. The short
segments allow us to detect quick, local fluctuations in
sound energy or frequency, while the longer segments offer
context highlighting how those fluctuations develop over
time.

2.2.2 Short-Term Segmentation (z;)

The sound signal was initially divided into short
overlapping windows of duration 1,. These segments were
small enough to preserve detail on the time scale of tens of
milliseconds, suitable for detecting tool strikes or abrupt
machine transitions. For each 1, segment, we applied a
Short-Time Fourier Transform (STFT) to compute sound
pressure level (SPL) values across multiple frequency
bands. This frequency-domain representation was essential
for identifying spectral structures linked to different
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machine behaviors. The use of overlapping windows
ensured smoother transitions between adjacent segments,
preventing the loss of critical information at boundary
points and improving temporal continuity in the feature
space.

2.2.3 2.2.3 Long-Term Aggregation (w)

To build a higher-level representation, we grouped i

consecutive T, segments into a longer interval w = i'1..

Within each t block, a set of statistical metrics was

computed for every frequency band and acoustic feature:

o Mean: representing the average energy or behavior in the
interval,

o Range: capturing variation or dynamics,

o Standard deviation and variance: indicating spread or
instability,

o First-order temporal derivatives: highlighting changes and
slopes.

This allowed us to extract a macro level picture of the

evolving sound environment, revealing whether the

machine operation was stable, variable, cyclic, or

anomalous.

2.2.4 2.2.4 Temporal Derivatives and Spectral Dynamics

To further enrich the feature set, we computed temporal
derivatives (differences between adjacent tz segments) for
each SPL value, capturing short-term dynamics like rising
or falling spectral power. These were aggregated in the
same way as raw SPL values, maintaining the temporal
structure of the sound while enabling detection of
directional changes in signal characteristics.

We also calculated the spectral length for each frequency
band, defined as the cumulative distance (or variation)
between successive SPL values. This served as a descriptor
of spectral "activity" or instability, providing a useful
contrast between steady and fluctuating sounds.

2.2.5 2.2.5 Feature Matrix Construction

The final step involved concatenating all extracted
descriptors—spectral, temporal, statistical, and derivative-
based—within each tk interval into a composite feature
vector. These vectors formed the rows of the feature matrix
used for unsupervised clustering with the k-means
algorithm. Importantly, we later appended the direction of
arrival (DOA) features (see Section 2.3) to this same
matrix, enabling the clustering to incorporate both spectral
content and spatial origin.

This dual-time approach, illustrated in Figures 1 and 2,
ensured that the model could effectively group acoustic
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events that were similar not only in sound quality, but also
in time structure and directional behavior—essential for

robust classification in complex industrial soundscapes.
N—1

L=>3 \/(;\.»")2 + (Lpjsr — Lp;)*

J=1

(1)

By using this methodology for the analysis of acoustic data,
numerous features of the sound can be extracted from the
frequency domain. Furthermore, by transforming the data
into a new time constant, it is possible to derive features that
also describe changes in the time domain. This dual-domain
approach ensures that both rapid and gradual changes in
sound are effectively captured, thereby improving the
clustering and classification of acoustic events.
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Figure 1: Grouping it time steps into a time constant
tk for each frequency band.
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Figure 2: Grouping (i-1)" derivatives into a time

constant « for each frequency band.

2.3 Directionality (DOA) Estimation with SubWindow
Beamforming

The process of measuring immission directivity necessitates
the use of a microphone array and a beamforming
algorithm, tools that aid in localizing sound sources or
determining the Direction Of Arrival (DOA) of sound.
Differential Microphone Arrays (DMAS), a distinct subset
in sound localization, have emerged as the most appropriate
beamforming method for a variety of applications that
require speech recognition over the past decade. These
applications include hands-free systems, mobile phones,
and hearing aids. Circular DMAs have undergone extensive

11 Convention of the European Acoustics Association
Malaga, Spain « 23" — 26™ June 2025 -

SOCIEDAD ESPANOLA
SEA DE ACUSTICA



FORUM ACUSTICUM
aila EURONOISE

examination for speech and audio applications, primarily
due to their adaptability in control, the capacity to establish
frequency-invariant  directivity —patterns, and superior
directivity factor [8] Their inherent benefits include
significant beam alignment, frequency independence, and a
compact geometrical configuration Several models have
been constructed where all the first-order DMA
computations are conducted in the time domain. This
approach offers a crucial advantage - the computations
exhibit minimal latency. This feature is particularly vital
and advantageous in real-time applications [9, 10, 11]. The
principle of merging microphone signals from a circular
array [12] sparked the development of our unique algorithm
[13, 14, 15, 16, 17]. This algorithm, designed to compute
the DOA, utilizes a simplified method based on timed delay
cascading pairs, as depicted in figure 3 and given by Eq.
(2). to form a DMA.

N

)} e

The differential beamforming algorithm based on sub-
windowing (SubW-DBA), is developed for this application
and is described in our previous work [13] SubW-DBA has
an advantage in that it is not limited to the low-frequency
range, at least theoretically. In practice, the low-frequency
limit is defined by the phase matching of the microphone
pairs. The high-frequency limit depends on the nature of the
sound. If the sound is random, there is no frequency limit. If
the sound is harmonic, the boundary is at the distance
between the microphone pairs, like the usage of sound
intensity probes.

The algorithm defined in Eq. (2) was used to compute the
instantaneous DOA to experimentally verify the hypothesis
that the 2D immission directivity pattern can be obtained by
associating the instantaneous total sound level (SPL) with
the instantaneous dominant direction (DOA) during sub-
windowing. The objective is to compile a collection of
immission vectors from which an immission directivity
pattern  can  be  derived through  consistent
integration/averaging of the immission vectors. Xmic1(n) and
Xmic2(N) in EQ. (2) represents the signals from microphone 1
and microphone 2 respectively. N denotes the number of
directions. D is the number of samples in the observed
window. The minimum value of D is defined by the speed
of sound ¢, the sampling frequency fs and the distance
between two microphones, which determine the time
resolution of direction detection. Index i represents the
steering value, i.e., An, which is proportional to the time
delay Az.

D .
n——=+1i

.. D
argminj =y 5

Xmic1 {n} — Xmic2 (
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D min — (3)

For the fastest possible response of detecting the direction
of arrival M = N.

Xmicfs
c

D min
7l (4)

Using a differential array with four microphones and a
diameter/side length of 0.04 m, it is possible to shorten the
length of the direction detection subwindow to  0.232 ms.
Shortening the subwindow to 0.232 ms provides 44 signal
values for calculating the DOA of the dominant sound
source. If the signals from two microphones placed 40 mm
apart are recorded at a sampling rate of 192 kHz, then 22
samples are needed to arrange the signals for the maximum
delay for each direction, and thus the time resolution of

detecting the dominant direction is 0.232 ms.
R,

Armin =

R2

X

Figure 3: Differential microphone array of the first
order, used during the experiment. Two pairs were
used for the calculation of DOA on the immission
plane.

2.4 Experimental setup

To optimize the quality of the acoustic data, a specific part
of the production facility was selected, focusing primarily
on the area where aluminum profiles are cut and processed
using CNC (Computer Numerical Control) machinery. This
decision assumed that these processes would produce
distinguishable and characteristic sound signatures suitable
for efficient clustering using the k-means algorithm.

The recording site was strategically positioned among seven
cutting machines where incoming aluminum profiles are cut
and mechanically processed before being automatically
stacked into metal containers by handling robots. This
location was chosen because it provided a rich source of
distinctive mechanical sounds while being sufficiently
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distant from the cluster of CNC machines, thereby reducing
potential background noise interference.

To further minimize sound reflections and possible echo
effects that could distort the acoustic data, the array of
microphones was placed in an open area, as far away from
wall surfaces as possible. The arrangement of microphones
was carefully planned to avoid obstructing factory
operations while ensuring the placement did not interfere
with worker movement or the transit of forklifts. The
selected recording site is depicted in figure. 5, where the
observed machines are labeled from 1 to 7. The microphone
array was oriented according to the layout shown in the
figure.

Figure 5: Recording site layout

Based on the microphone configuration, the expected
orientation of the dominant sound during the operation of
each machine was calculated. For machine 1, the sound
direction was expected to be between 110° and 120°, for
machine 2 it was estimated between 60° and 65°, and for
machine 3, around 45°. Machine 4 was expected to have a
dominant sound direction of around 30°, while machines 5,
6, and 7 had dominant sound directions expected to fall
between 270° and 290°.

The machines being observed were expected to produce
sharp, steady-frequency sounds caused by the milling
cutter, as well as loud impulsive sounds generated when
aluminum pieces were dropped into metal containers. To
capture these sound events effectively, four omnidirectional
microphones with polarized 6.35 mm condenser capsules
were utilized. These microphones had a frequency range of

2229

20 Hz to 20 kHz and a maximum sound pressure level
(SPL) of 132 dB. The microphones were mechanically
linked at equal distances to facilitate the calculation of the
dominant sound direction.

The system also included a Behringer soundboard for initial
pre-amplification and signal merging. For data storage, a
simple signal acquisition program was developed using the
LabVIEW software environment. This comprehensive
setup ensured high-quality data acquisition, enabling the
accurate capture of essential sound properties for
subsequent feature extraction and clustering analysis.

3. RESULTS

Figure 6 presents a typical 30-second sound recording from
the production environment. The upper panel shows the
spectrogram, illustrating the spectral energy distribution
over time. Several high-energy broadband events are
visible, especially between seconds 4-6, 10-12, 17-18, and
23-25, which correspond to distinct mechanical actions
such as cutting or part ejection.

“““““““““““““
i85 8 7 8 8 M0 5
yyyyyy

Figure 6. Spectrogram of a typical 30-second
recording segment from the manufacturing process
(top), with extracted dominant sound directions plotted
below (bottom). The spectrogram displays energy
distribution across frequencies, while the blue dots in
the lower plot represent the instantaneous direction of
arrival (DOA) of the sound.

The lower panel of the figure displays the corresponding
instantaneous direction of arrival (DOA) of the dominant
sound source, extracted using the SubWindow-DBA
algorithm. The DOA estimates exhibit clustered patterns in
both time and angular space, indicating repeated events
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with consistent spatial origin, likely associated with
recurring machine actions. Notably, transitions in DOA
correspond well with changes in spectral content, affirming
the relevance of including directionality as a classification
feature.

This visualization supports the hypothesis that
directionality  provides an  orthogonal, highly
discriminative feature not captured by traditional spectral
descriptors. The events clustered in the spectrogram are
reinforced by clear directional patterns in the lower plot,
validating the importance of sound directionality for
distinguishing machine states. This correlation is
consistent with the PCA results (Fig. 7), where DOA
was identified as the most influential feature.

3.1 Identification of the Most Influential Features
Using PCA

Typica spectrogram, together with extracted direction of
Arival (DOA) in blue dots is presented in figure 6 above.
To identify the most influential features in the dataset, a
PCA analysis was employed. This process provided an
assessment of the importance of each feature, which were
then ranked according to their significance and the fifteen
most important are displayed in Figure 7.
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Figure 7: Weighted importance of the 15 most influential
features below.
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The graph reveals a decline in the weighted importance of
features after the first few. This visualization serves as a
useful tool for selecting and recognizing features. It helps to
assess whether certain features contribute meaningfully to
the quality of the data input or if they represent unnecessary
noise. Figure 7 further allows for a clear understanding of
which features contribute most significantly to the diversity
of the data.

The analysis shows that the dominant feature is sound
directionality. It has by far the highest weighted importance.
This result is expected, as it is the only feature not directly
derived from the sound signal itself and the only one that
does not describe the characteristics or quality of the sound.
Consequently, it has the lowest correlation with the other
features, thereby contributing the most to the diversity of
the data - a key aspect for successful classification.
Following the dominant sound directionality, other key
features calculated at the time constant zk=1 second, such as
loudness, tonality, and spectral characteristics, also rank
highly.

Next, a set of features derived from the frequency domain at
a shorter time constant z,=50 milliseconds follow in terms
of importance. Among these features, those describing
higher frequency bands have the most significant influence.
While these individual features do not possess high
weighted importance on their own, together they still
contribute significantly to the diversity of the data. This
contribution underlines the relevance of combining features
from different time scales and frequency ranges, ensuring
the model captures both short-term and long-term acoustic
patterns crucial for effective classification.

The optimal number of clusters for the k-means method can
be determined in several ways. One common approach is an
iterative trial-and-error method, where clustering begins
with two clusters and gradually increases the number of
clusters, observing changes in the classification results. The
process continues until adding more clusters and no longer
provides new information about the dataset. Another widely
used approach involves the use of formal methods, such as
the elbow method and the silhouette coefficient method, to
identify the optimal number of clusters.

3.1.1 Elbow Method

The elbow method is visualized through a graph, as shown
in Figure 8, which plots the sum of squared distances within
each cluster as a function of the number of clusters k. The
“elbow” of the curve is the point where the rate of decrease
in the sum of squared distances slows down significantly,
indicating that adding more clusters provides diminishing
returns in reducing within-cluster variability. For this
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particular study, the elbow can be observed around k=3 or
k=4, as the addition of clusters beyond this point results in
only marginal reductions in the total within-cluster sum of
squares. This observation suggests that selecting 3 or 4
clusters would provide an optimal balance between
simplicity and classification performance.

800000 {

600000 |

400000

200000 {

Thesum of squared distances within each cluster [/]

2 a [ 8 10 12 14
Number of clusters - k [/]

Figure 8. Elbow method graph for finding the optimal
number of clusters - k.

3.1.2 Silhouette Coefficient Method

The silhouette coefficient method offers another perspective
on selecting the optimal number of clusters. The silhouette
coefficient measures how similar an object is to its own
cluster compared to other clusters. A higher silhouette score
indicates well-defined clusters. The silhouette graph for the
data used in this study is presented in Figure 9. The peak of
the graph is observed at k=2, indicating that, at this point,
the clustering achieves the highest coherence of points
within clusters. However, dividing the data into only two
clusters limits the classification utility, as it would only
distinguish between operational and non-operational states
of the production process. This segmentation could still be
useful for monitoring downtime, including pauses, breaks,
and shift changes.

0.6

0.5-
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0.3
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2 4 6 8 10 12 14
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Figure 9. Silhouette coefficient graph for finding the
optimal number of clusters - k.

As the number of clusters increases, the silhouette score
gradually decreases, but it remains above zero, indicating
that the cluster structure is still meaningful even with a

larger number of clusters. Notably, local peaks are observed
at k=4 and k=6, which correspond to improved clustering
results relative to other values of k. Given that the elbow
method also indicated a clear break at k=4, it can be inferred
that selecting k=4 would provide the most interpretable and
effective clustering solution for this dataset. This selection
ensures a balance between model simplicity and
classification accuracy, offering meaningful segmentation
of acoustic events within the production process.

4. CONCLUSIONS

Based on the conducted research and the obtained results ,
the main findings can be summarized as follows:

1. We successfully classified acoustic signals using the k-
means algorithm, effectively grouping the data into
meaningful clusters based on their features. Initial
classification was performed with k=4 clusters, followed by
a refined analysis with k=6 clusters.

2. The feature extraction process was based on a
methodology where frequency domain characteristics were
derived at a lower time constant =50 ms. These features
were then aggregated using various merging methods to
form a higher time constant n=1 second, thereby capturing
time-domain properties as well.

3. Principal Component Analysis (PCA) was employed. A
dimensionality reduction technique facilitated better
organization of the data in a multidimensional space,
ultimately improving the classification efficiency of the k-
means algorithm.

4. It was found that the k-means algorithm was unable to
capture all anticipated acoustic patterns, which can be
attributed to the algorithm's limited generalization
capabilities. Certain specific acoustic patterns, which are
critical for a comprehensive understanding of machine
operation, remain undetected.

5. The results indicate that the choice of the number of
clusters k plays a crucial role in classification quality, but at
the same time, it is challenging to determine objectively.
The application of PCA to identify the most influential
features revealed that the directionality of the dominant
sound is the most important feature. This finding was
expected since this is the only feature not directly derived
from the sound signal and the only one that does not
describe the sound's properties or quality. Consequently, it
has the lowest correlation with other features and
contributes the most to data variability, which is essential
for successful classification. By implementing the PCA on
the extracted features, we confirmed the hypothesis that the
direction of the sound event is a significant feature that
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should be included in classification algorithms for acoustic
event detection.

The study demonstrated that the k-means algorithm is
suitable for basic classification of acoustic signals in
production environments, but it has limitations that require
further investigation to achieve a more comprehensive
capture of all acoustic patterns. Our study contributes to a
better understanding of the applicability of classification
algorithms in real-world industrial environments.

4.1 Suggestions for Future Work

Based on the findings of this study, it would be beneficial to
explore the use of other unsupervised learning methods that
were not considered in this research. While this study
focused on the classification of specific acoustic patterns,
future research could investigate longer periods of
production operation and place greater emphasis on macro-
level events. Additionally, efforts could be made to
quantitatively assess the relative productivity of the
production process over time. This broader perspective
would provide a more comprehensive understanding of
operational efficiency and help identify potential areas for
optimization.
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