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ABSTRACT* 

This study explores the use of sound directionality (DOA) 

as a key feature for unsupervised classification of acoustic 

events in industrial environments. A novel methodology 

was developed, combining a custom microphone array with 

SubWindowing to extract directional, spectral, and 

statistical features from production noise. Acoustic events 

were clustered using the k-means algorithm, with the 

optimal number of clusters determined via the elbow and 

silhouette methods. Feature importance was evaluated using 

Principal Component Analysis (PCA), which consistently 

identified sound directionality as the most influential 

feature. The results showed that integrating DOA 

significantly improved clustering performance and enabled 

accurate identification of machine states. The detected 

clusters aligned well with manually recorded operational 

states, confirming the method's effectiveness. This approach 

offers a robust and interpretable framework for real-time 

monitoring and fault detection in industrial settings. Future 

work will focus on extending this method to predictive 

maintenance systems and broader manufacturing 

environments. 
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1. INTRODUCTION 

Current machine learning approaches for acoustic event 

classification in industrial environments typically rely on 

spectral, statistical, and temporal features. Traditional 

supervised methods have been widely applied, but 

unsupervised techniques, such as k-means clustering, are 

gaining traction due to their ability to classify unlabeled 

data and reduce dimensionality in high-dimensional 

datasets [4]. For instance, Ding and Li [4] proposed a 

feature selection framework for k-means, while Sun and 

Wang [5] introduced improvements via an ADMM 

algorithm to enhance clustering performance. Coates and 

Ng [6] also emphasized the role of k-means in feature 

learning, particularly due to its simplicity and effectiveness. 

In audio classification specifically, deep learning methods 

have been reviewed by Mesaros et al. [7], highlighting the 

importance of robust feature representation. However, these 

methods largely overlook spatial acoustic features, such as 

sound directionality, also known as Direction of Arrival 

(DOA). Despite its well-known role in human perception, 

evident in the "cocktail party effect", DOA remains 

underexplored in unsupervised learning pipelines for 

acoustic event classification [2]. Base on literature review 

and our expertise we identified a research gap, placed a 

hypothesis, detect challenges and placed objectives of this 

study. 

Research Gap: Current machine learning approaches for 

acoustic event classification typically rely on spectral, 

statistical, and temporal features. However, the role of 

sound directionality has been underexplored as a key 

feature for classification. Despite the relevance of 

directionality in distinguishing sound sources, it remains 

inadequately studied within unsupervised learning models, 

such as k-means clustering, for acoustic event classification 

[2]. 
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Hypothesis: Incorporating DOA as a core feature can 

significantly improve clustering performance and enable 

more accurate detection of machine states and process 

deviations in industrial environments. 

Challenges: Accurate measurement of DOA requires 

precise sensor arrays and fast-response algorithms (<50 

ms). Another challenge lies in combining DOA with time–

frequency features into a unified feature set and validating 

its impact using robust dimensionality reduction methods 

such as Principal Component Analysis (PCA). 

Objective: 

This study aims to investigate the role of DOA in the 

classification of acoustic events using unsupervised 

learning, specifically focusing on k-means clustering. 

2. METHODOLOGICAL OVERVIEW 

The classification system developed in this study consists of 

three main stages: (1) data acquisition using a custom-

designed differential microphone array, (2) feature 

extraction incorporating both time–frequency and 

directionaly DOA, and (3) unsupervised classification using 

the k-means algorithm. To enhance temporal resolution, a 

SubWindowing technique was used to segment the acoustic 

data. Features were extracted from both time and frequency 

domains, including Direction of Arrival (DOA) information 

computed via beamforming algorithms. Dimensionality 

reduction techniques such as Principal Component Analysis 

(PCA) was employed to assess feature importance and 

ensure model interpretability. The proposed system enables 

precise spatial classification of acoustic events and supports 

real-time monitoring in industrial environments. 

2.1 Feature Extraction 

The feature extraction process is a critical step in the overall 

methodology, converting raw sound signals into meaningful 

descriptors that can be used for clustering and classification. 

Key features are extracted from both the time and frequency 

domains. Spectral features such as spectral centroid, 

spectral bandwidth, spectral flatness, and spectral roll-off 

are calculated for each SubWindow segment. Temporal 

features, including Zero-Crossing Rate (ZCR), Root Mean 

Square (RMS) energy, and Sound Pressure Level (SPL), are 

also extracted. Additionally, statistical features like 

skewness, kurtosis, and entropy are computed to capture 

distributional properties of the signal. A unique contribution 

of this study is the inclusion of sound directionality as a 

feature, which is derived from the microphone array's 

spatial configuration. This information is combined into a 

feature vector representing each time segment, enabling a 

comprehensive representation of the acoustic event. 

The feature set is subsequently refined using dimensionality 

reduction techniques, including Principal Component 

Analysis (PCA), to identify and retain only the most 

influential features for clustering 

2.2 Time Intervals of feature extraction and their 

integration 

In industrial acoustic environments, sound signals are 

inherently complex. They are composed of a combination 

of impulsive, transient events, such as impacts, cutter 

engagements, or part drops, and longer lasting background 

or cyclical machine operations. Capturing this full acoustic 

landscape using a single fixed time resolution would either 

miss rapid changes or smooth over important long-term 

patterns. To address this, we implemented a dual-time-

constant segmentation strategy, which enables the 

extraction of both fast-evolving and slowly varying features 

from the signal. 

2.2.1  Motivation for the Approach 

The main rationale behind this two-level segmentation was 

to construct a feature representation that simultaneously 

captures the detail of transient events and the consistency of 

long-term operational patterns. Many machine learning 

models fail to distinguish between these layers of acoustic 

behavior when using a single time scale, which leads to 

suboptimal clustering or misclassification of machine states. 

By layering feature extraction over both short and long 

intervals, we aimed to provide the unsupervised algorithm 

with richer and more distinguishable patterns for clustering. 

This approach mirrors human auditory perception, where 

the brain reacts to sudden sounds immediately while also 

tracking longer sequences and rhythms over time. The short 

segments allow us to detect quick, local fluctuations in 

sound energy or frequency, while the longer segments offer 

context highlighting how those fluctuations develop over 

time. 

2.2.2 Short-Term Segmentation (τz) 

The sound signal was initially divided into short 

overlapping windows of duration τz. These segments were 

small enough to preserve detail on the time scale of tens of 

milliseconds, suitable for detecting tool strikes or abrupt 

machine transitions. For each τz segment, we applied a 

Short-Time Fourier Transform (STFT) to compute sound 

pressure level (SPL) values across multiple frequency 

bands. This frequency-domain representation was essential 

for identifying spectral structures linked to different 
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machine behaviors. The use of overlapping windows 

ensured smoother transitions between adjacent segments, 

preventing the loss of critical information at boundary 

points and improving temporal continuity in the feature 

space. 

2.2.3 2.2.3 Long-Term Aggregation (τk) 

To build a higher-level representation, we grouped i 

consecutive τz segments into a longer interval τk = i·τz. 

Within each τk block, a set of statistical metrics was 

computed for every frequency band and acoustic feature: 

• Mean: representing the average energy or behavior in the 

interval, 

• Range: capturing variation or dynamics, 

• Standard deviation and variance: indicating spread or 

instability, 

• First-order temporal derivatives: highlighting changes and 

slopes. 

This allowed us to extract a macro level picture of the 

evolving sound environment, revealing whether the 

machine operation was stable, variable, cyclic, or 

anomalous. 

2.2.4 2.2.4 Temporal Derivatives and Spectral Dynamics 

To further enrich the feature set, we computed temporal 

derivatives (differences between adjacent τz segments) for 

each SPL value, capturing short-term dynamics like rising 

or falling spectral power. These were aggregated in the 

same way as raw SPL values, maintaining the temporal 

structure of the sound while enabling detection of 

directional changes in signal characteristics. 

We also calculated the spectral length for each frequency 

band, defined as the cumulative distance (or variation) 

between successive SPL values. This served as a descriptor 

of spectral "activity" or instability, providing a useful 

contrast between steady and fluctuating sounds. 

2.2.5 2.2.5 Feature Matrix Construction 

The final step involved concatenating all extracted 

descriptors—spectral, temporal, statistical, and derivative-

based—within each τk interval into a composite feature 

vector. These vectors formed the rows of the feature matrix 

used for unsupervised clustering with the k-means 

algorithm. Importantly, we later appended the direction of 

arrival (DOA) features (see Section 2.3) to this same 

matrix, enabling the clustering to incorporate both spectral 

content and spatial origin. 

This dual-time approach, illustrated in Figures 1 and 2, 

ensured that the model could effectively group acoustic 

events that were similar not only in sound quality, but also 

in time structure and directional behavior—essential for 

robust classification in complex industrial soundscapes. 

 (1) 

By using this methodology for the analysis of acoustic data, 

numerous features of the sound can be extracted from the 

frequency domain. Furthermore, by transforming the data 

into a new time constant, it is possible to derive features that 

also describe changes in the time domain. This dual-domain 

approach ensures that both rapid and gradual changes in 

sound are effectively captured, thereby improving the 

clustering and classification of acoustic events. 
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Figure 1: Grouping ith time steps into a time constant 

τk for each frequency band. 
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Figure 2: Grouping (i-1)th derivatives into a time 

constant τk for each frequency band. 

2.3 Directionality (DOA) Estimation with SubWindow 

Beamforming 

The process of measuring immission directivity necessitates 

the use of a microphone array and a beamforming 

algorithm, tools that aid in localizing sound sources or 

determining the Direction Of Arrival (DOA) of sound. 

Differential Microphone Arrays (DMAs), a distinct subset 

in sound localization, have emerged as the most appropriate 

beamforming method for a variety of applications that 

require speech recognition over the past decade. These 

applications include hands-free systems, mobile phones, 

and hearing aids. Circular DMAs have undergone extensive 
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examination for speech and audio applications, primarily 

due to their adaptability in control, the capacity to establish 

frequency-invariant directivity patterns, and superior 

directivity factor [8] Their inherent benefits include 

significant beam alignment, frequency independence, and a 

compact geometrical configuration Several models have 

been constructed where all the first-order DMA 

computations are conducted in the time domain. This 

approach offers a crucial advantage - the computations 

exhibit minimal latency. This feature is particularly vital 

and advantageous in real-time applications [9, 10, 11]. The 

principle of merging microphone signals from a circular 

array [12] sparked the development of our unique algorithm 

[13, 14, 15, 16, 17]. This algorithm, designed to compute 

the DOA, utilizes a simplified method based on timed delay 

cascading pairs, as depicted in figure 3 and given by Eq. 

(2). to form a DMA. 

 

 

(2) 

 

The differential beamforming algorithm based on sub-

windowing (SubW-DBA), is developed for this application 

and is described in our previous work [13] SubW-DBA has 

an advantage in that it is not limited to the low-frequency 

range, at least theoretically. In practice, the low-frequency 

limit is defined by the phase matching of the microphone 

pairs. The high-frequency limit depends on the nature of the 

sound. If the sound is random, there is no frequency limit. If 

the sound is harmonic, the boundary is at the distance 

between the microphone pairs, like the usage of sound 

intensity probes. 

The algorithm defined in Eq. (2) was used to compute the 

instantaneous DOA to experimentally verify the hypothesis 

that the 2D immission directivity pattern can be obtained by 

associating the instantaneous total sound level (SPL) with 

the instantaneous dominant direction (DOA) during sub-

windowing. The objective is to compile a collection of 

immission vectors from which an immission directivity 

pattern can be derived through consistent 

integration/averaging of the immission vectors. xmic,1(n) and 

xmic,2(n) in Eq. (2) represents the signals from microphone 1 

and microphone 2 respectively. N denotes the number of 

directions. D is the number of samples in the observed 

window. The minimum value of D is defined by the speed 

of sound c, the sampling frequency fs and the distance 

between two microphones, which determine the time 

resolution of direction detection. Index i represents the 

steering value, i.e., Δn, which is proportional to the time 

delay Δτ. 

 
(3) 

For the fastest possible response of detecting the direction 

of arrival M = N. 

 
(4) 

Using a differential array with four microphones and a 

diameter/side length of 0.04 m, it is possible to shorten the 

length of the direction detection subwindow to   0.232 ms. 

Shortening the subwindow to 0.232 ms provides 44 signal 

values for calculating the DOA of the dominant sound 

source. If the signals from two microphones placed 40 mm 

apart are recorded at a sampling rate of 192 kHz, then 22 

samples are needed to arrange the signals for the maximum 

delay for each direction, and thus the time resolution of 

detecting the dominant direction is 0.232 ms. 

 

Figure 3: Differential microphone array of the first 

order, used during the experiment. Two pairs were 

used for the calculation of DOA on the immission 

plane. 

2.4 Experimental setup 

To optimize the quality of the acoustic data, a specific part 

of the production facility was selected, focusing primarily 

on the area where aluminum profiles are cut and processed 

using CNC (Computer Numerical Control) machinery. This 

decision assumed that these processes would produce 

distinguishable and characteristic sound signatures suitable 

for efficient clustering using the k-means algorithm. 

The recording site was strategically positioned among seven 

cutting machines where incoming aluminum profiles are cut 

and mechanically processed before being automatically 

stacked into metal containers by handling robots. This 

location was chosen because it provided a rich source of 

distinctive mechanical sounds while being sufficiently 
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distant from the cluster of CNC machines, thereby reducing 

potential background noise interference. 

To further minimize sound reflections and possible echo 

effects that could distort the acoustic data, the array of 

microphones was placed in an open area, as far away from 

wall surfaces as possible. The arrangement of microphones 

was carefully planned to avoid obstructing factory 

operations while ensuring the placement did not interfere 

with worker movement or the transit of forklifts. The 

selected recording site is depicted in figure. 5, where the 

observed machines are labeled from 1 to 7. The microphone 

array was oriented according to the layout shown in the 

figure. 

 

Figure 5: Recording site layout 

Based on the microphone configuration, the expected 

orientation of the dominant sound during the operation of 

each machine was calculated. For machine 1, the sound 

direction was expected to be between 110° and 120°, for 

machine 2 it was estimated between 60° and 65°, and for 

machine 3, around 45°. Machine 4 was expected to have a 

dominant sound direction of around 30°, while machines 5, 

6, and 7 had dominant sound directions expected to fall 

between 270° and 290°. 

The machines being observed were expected to produce 

sharp, steady-frequency sounds caused by the milling 

cutter, as well as loud impulsive sounds generated when 

aluminum pieces were dropped into metal containers. To 

capture these sound events effectively, four omnidirectional 

microphones with polarized 6.35 mm condenser capsules 

were utilized. These microphones had a frequency range of 

20 Hz to 20 kHz and a maximum sound pressure level 

(SPL) of 132 dB. The microphones were mechanically 

linked at equal distances to facilitate the calculation of the 

dominant sound direction. 

The system also included a Behringer soundboard for initial 

pre-amplification and signal merging. For data storage, a 

simple signal acquisition program was developed using the 

LabVIEW software environment. This comprehensive 

setup ensured high-quality data acquisition, enabling the 

accurate capture of essential sound properties for 

subsequent feature extraction and clustering analysis. 

3. RESULTS 

Figure 6 presents a typical 30-second sound recording from 

the production environment. The upper panel shows the 

spectrogram, illustrating the spectral energy distribution 

over time. Several high-energy broadband events are 

visible, especially between seconds 4–6, 10–12, 17–18, and 

23–25, which correspond to distinct mechanical actions 

such as cutting or part ejection. 

 

 

Figure 6. Spectrogram of a typical 30-second 

recording segment from the manufacturing process 

(top), with extracted dominant sound directions plotted 

below (bottom). The spectrogram displays energy 

distribution across frequencies, while the blue dots in 

the lower plot represent the instantaneous direction of 

arrival (DOA) of the sound. 

The lower panel of the figure displays the corresponding 

instantaneous direction of arrival (DOA) of the dominant 

sound source, extracted using the SubWindow-DBA 

algorithm. The DOA estimates exhibit clustered patterns in 

both time and angular space, indicating repeated events 
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with consistent spatial origin, likely associated with 

recurring machine actions. Notably, transitions in DOA 

correspond well with changes in spectral content, affirming 

the relevance of including directionality as a classification 

feature. 

This visualization supports the hypothesis that 

directionality provides an orthogonal, highly 

discriminative feature not captured by traditional spectral 

descriptors. The events clustered in the spectrogram are 

reinforced by clear directional patterns in the lower plot, 

validating the importance of sound directionality for 

distinguishing machine states. This correlation is 

consistent with the PCA results (Fig. 7), where DOA 

was identified as the most influential feature. 

3.1 Identification of the Most Influential Features 

Using PCA 

Typica spectrogram, together with extracted direction of 

Arival (DOA) in blue dots is presented in figure 6 above. 

To identify the most influential features in the dataset, a 

PCA analysis was employed. This process provided an 

assessment of the importance of each feature, which were 

then ranked according to their significance and the fifteen 

most important are displayed in Figure 7.  
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Figure 7: Weighted importance of the 15 most influential 

features below. 

The graph reveals a decline in the weighted importance of 

features after the first few. This visualization serves as a 

useful tool for selecting and recognizing features. It helps to 

assess whether certain features contribute meaningfully to 

the quality of the data input or if they represent unnecessary 

noise. Figure 7 further allows for a clear understanding of 

which features contribute most significantly to the diversity 

of the data.  

The analysis shows that the dominant feature is sound 

directionality. It has by far the highest weighted importance. 

This result is expected, as it is the only feature not directly 

derived from the sound signal itself and the only one that 

does not describe the characteristics or quality of the sound. 

Consequently, it has the lowest correlation with the other 

features, thereby contributing the most to the diversity of 

the data - a key aspect for successful classification. 

Following the dominant sound directionality, other key 

features calculated at the time constant τk=1 second, such as 

loudness, tonality, and spectral characteristics, also rank 

highly.    

Next, a set of features derived from the frequency domain at 

a shorter time constant τz=50 milliseconds follow in terms 

of importance. Among these features, those describing 

higher frequency bands have the most significant influence.  

While these individual features do not possess high 

weighted importance on their own, together they still 

contribute significantly to the diversity of the data. This 

contribution underlines the relevance of combining features 

from different time scales and frequency ranges, ensuring 

the model captures both short-term and long-term acoustic 

patterns crucial for effective classification. 

The optimal number of clusters for the k-means method can 

be determined in several ways. One common approach is an 

iterative trial-and-error method, where clustering begins 

with two clusters and gradually increases the number of 

clusters, observing changes in the classification results. The 

process continues until adding more clusters and no longer 

provides new information about the dataset. Another widely 

used approach involves the use of formal methods, such as 

the elbow method and the silhouette coefficient method, to 

identify the optimal number of clusters. 

3.1.1 Elbow Method 

The elbow method is visualized through a graph, as shown 

in Figure 8, which plots the sum of squared distances within 

each cluster as a function of the number of clusters k. The 

“elbow” of the curve is the point where the rate of decrease 

in the sum of squared distances slows down significantly, 

indicating that adding more clusters provides diminishing 

returns in reducing within-cluster variability. For this 
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particular study, the elbow can be observed around k=3 or 

k=4, as the addition of clusters beyond this point results in 

only marginal reductions in the total within-cluster sum of 

squares. This observation suggests that selecting 3 or 4 

clusters would provide an optimal balance between 

simplicity and classification performance. 
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Figure 8. Elbow method graph for finding the optimal 

number of clusters - k. 

3.1.2 Silhouette Coefficient Method 

The silhouette coefficient method offers another perspective 

on selecting the optimal number of clusters. The silhouette 

coefficient measures how similar an object is to its own 

cluster compared to other clusters. A higher silhouette score 

indicates well-defined clusters. The silhouette graph for the 

data used in this study is presented in Figure 9. The peak of 

the graph is observed at k=2, indicating that, at this point, 

the clustering achieves the highest coherence of points 

within clusters. However, dividing the data into only two 

clusters limits the classification utility, as it would only 

distinguish between operational and non-operational states 

of the production process. This segmentation could still be 

useful for monitoring downtime, including pauses, breaks, 

and shift changes. 
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Figure 9. Silhouette coefficient graph for finding the 

optimal number of clusters - k. 

As the number of clusters increases, the silhouette score 

gradually decreases, but it remains above zero, indicating 

that the cluster structure is still meaningful even with a 

larger number of clusters. Notably, local peaks are observed 

at k=4 and k=6, which correspond to improved clustering 

results relative to other values of k. Given that the elbow 

method also indicated a clear break at k=4, it can be inferred 

that selecting k=4 would provide the most interpretable and 

effective clustering solution for this dataset. This selection 

ensures a balance between model simplicity and 

classification accuracy, offering meaningful segmentation 

of acoustic events within the production process. 

4. CONCLUSIONS 

Based on the conducted research and the obtained results , 

the main findings can be summarized as follows: 

1. We successfully classified acoustic signals using the k-

means algorithm, effectively grouping the data into 

meaningful clusters based on their features. Initial 

classification was performed with k=4 clusters, followed by 

a refined analysis with k=6 clusters. 

2. The feature extraction process was based on a 

methodology where frequency domain characteristics were 

derived at a lower time constant τ0=50 ms. These features 

were then aggregated using various merging methods to 

form a higher time constant τk=1 second, thereby capturing 

time-domain properties as well. 

3. Principal Component Analysis (PCA) was employed. A 

dimensionality reduction technique facilitated better 

organization of the data in a multidimensional space, 

ultimately improving the classification efficiency of the k-

means algorithm. 

4. It was found that the k-means algorithm was unable to 

capture all anticipated acoustic patterns, which can be 

attributed to the algorithm's limited generalization 

capabilities. Certain specific acoustic patterns, which are 

critical for a comprehensive understanding of machine 

operation, remain undetected. 

5. The results indicate that the choice of the number of 

clusters k plays a crucial role in classification quality, but at 

the same time, it is challenging to determine objectively. 

The application of PCA to identify the most influential 

features revealed that the directionality of the dominant 

sound is the most important feature. This finding was 

expected since this is the only feature not directly derived 

from the sound signal and the only one that does not 

describe the sound's properties or quality. Consequently, it 

has the lowest correlation with other features and 

contributes the most to data variability, which is essential 

for successful classification. By implementing the PCA on 

the extracted features, we confirmed the hypothesis that the 

direction of the sound event is a significant feature that 
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should be included in classification algorithms for acoustic 

event detection. 

The study demonstrated that the k-means algorithm is 

suitable for basic classification of acoustic signals in 

production environments, but it has limitations that require 

further investigation to achieve a more comprehensive 

capture of all acoustic patterns. Our study contributes to a 

better understanding of the applicability of classification 

algorithms in real-world industrial environments. 

4.1 Suggestions for Future Work 

Based on the findings of this study, it would be beneficial to 

explore the use of other unsupervised learning methods that 

were not considered in this research. While this study 

focused on the classification of specific acoustic patterns, 

future research could investigate longer periods of 

production operation and place greater emphasis on macro-

level events. Additionally, efforts could be made to 

quantitatively assess the relative productivity of the 

production process over time. This broader perspective 

would provide a more comprehensive understanding of 

operational efficiency and help identify potential areas for 

optimization. 
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