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ABSTRACT

Active group music therapy is an effective way to treat pa-
tients with several psychopathologies. However, it can be
challenging to extract quantitative data from music played
by patients which are sensitive to external factors that may
have an impact on the set therapeutic goals. For this rea-
son, the music played by a group of patients and therapists
was recorded using a circular microphone array placed at
the centre of the room. This data will serve for music sig-
nal analysis in order to track various musical features for
individual patients, such as the notes or instruments each
patient was playing. In this paper, we explore methods to
obtain a sufficient separation of the music played by each
patient and extract note onsets. The scope of the analy-
sis is build an algorithm that will eventually be used to
identify patterns and follow the progress of each patient
during the therapy, alongside qualitative data. The pre-
liminary results presented in this paper show that the re-
verberation time has no impact on the onset detection for
the actual room measurements. For a small dataset, the
beamformer should be able to identify a source despite a
low accuracy of the steering towards the source. Finally,
for multiple instruments played at the same time, the algo-
rithm pipeline requires fine-tuning for a better separation
and patient identification.
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1. INTRODUCTION

There are several types of music therapies that were found
very effective in promoting social-emotional interactions
of patients with different psychopathlogies such as depres-
sion, borderline personality disorder, dementia [1], or for
patients who spend extensive time in hospital care. In
this research project, the target patients are adults with
autism spectrum disorder that have developed compen-
sating mechanisms. The therapy is active, meaning that
the patients play musical instruments themselves, and, in
this case, in a group of four or five people, not includ-
ing the therapist(s). During one session, the participants
play music and then discuss, repeatedly. Thus, the ther-
apy creates an environment in which communication is
firstly promoted through music before it is done verbally.
The music played by patients can transmit relevant infor-
mation embedded in these short improvisations, which is
part of the analysis done by a therapist during and after
each session. The focus of this research is to facilitate the
analysis of the music improvisations.

In the past, some tools were developed to aid the ther-
apists in analysing the music created [2–5]. However, for
the target group involved in this project, these tools are
not sufficient for the following reasons. First, the amount
of people playing at the same time was not previously
considered, thus, there is a need for separating what each
patient is playing. Second, often the therapists need to
use MIDI instruments or find a way of separating what
the patient plays (such as selecting some instruments only
or dividing a piano keyboard, for example). This limits
the patients and affects the therapy progress. Third, the
recording methods need to be less intrusive than placing
microphones in front of the patients due to their higher
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sensitivity to external factors so, separation of the music
played by patients has to be adapted. Forth, during a ses-
sion, the patients are free to move around the room and
choose which instruments they want to play and/or place
it in a different location. The combination of all four lim-
itations in this project requires an alternative to perform
the analysis needed by the therapists.

In order to overcome the challenges imposed by the
set therapeutic goals for the target group, the solution was
to use a circular array [6] to record data, placed at the
centre of the room. This alternative, provides a less in-
trusive method of collecting data and, as opposed to the
studies mentioned previously [2–5], allows for the ther-
apy to proceed without limitations and without affecting
the therapeutic process.

However, the alternative used to collect the data, has
certain challenges in terms of audio processing. One of
the main expected issues is that the musical instruments
are played by different patients at the same time, with
overlapping note onsets, which could bring difficulty in
identifying the two notes separately. For this reason, it is
crucial to exploit the spatial location of each sound source.
To this end, beamforming is applied to the multi-channel
recordings. The intention is to achieve sufficient separa-
tion so that the note onsets played by an individual instru-
ment can be detected and assigned to a particular patient.
For this purpose, a complete source signal separation may
not be necessary as long as it is possible to extract onset
information from the sound coming from one pre-selected
direction.

In this paper, only simulated data is presented, aiming
at building a base for future analysis of recorded music
therapy sessions. The simulations consist of three main
parts divided the following way: room modelling and
acoustic parameters, beamforming, and onset detection.

2. METHODOLOGY

The methodology is divided the following way: section
2.1 describes the modelling process of the room and the
chosen acoustic parameters, section 2.2 explains the sig-
nal model and what type of beamforer was used. Section
2.3 is dedicated to onset detection. These three sections
describe a pipeline of algorithms that eventually allow on-
set detection analysis to be performed. The topics inves-
tigated in this paper are the effect of reverberation time,
beamforming implementation and source differentiation
on onset detection.

2.1 Room acoustics parameters for simulations

In order to generate audio data that reflects a realistic
scenario of musical instruments being played in a room,
the environment itself was defined and used to create
room impulse responses (RIRs) paths from sources to
each microphone. The method used for the generation
of RIRs was the randomized image method (RIM) as de-
scribed by [7]. The acoustics of the room were based on
previous work presented in [6]. The room dimensions
are 8x6.6x5.4m giving a total volume of approximately
285m3. The average reverberation time (RT) measured
previously is 0.8s over 125-4000Hz octave bands.

However, the RT of the room simulations was modi-
fied in order to investigate its effect on the signal analysis
done. By recreating the environment, a ground truth could
be set for future analysis of the recorded music, as well as
open the possibilities to create any desired space in which
the music therapy could take place.

The audio data for the simulations was created using
dry audio recordings of singular notes of different musi-
cal instruments from the McGill University Master Sam-
ples [8], together with the MixNotes algorithm presented
in [9] which generates audio files by mixing individual
recordings of notes (either separated or overlapping). At
the same time, the MixNotes algorithm generates a file
containing the timestamps of the note onsets. The method
used bypasses the need for manually labelling the onsets
of audio data, and it was considered the ground truth to
test the onset detection algorithms.

2.1.1 The noise source

In the scenario where additional sources were used, the
signal received by each microphone is a mixture of the de-
sired source and interference, x(n) = s(n)+v(n). In this
case, the other instruments played are considered noise
sources or undesired signals for a particular direction of
the beamformer. As baseline, no noise was added to the
signal received by the microphones. When a noise source
was introduced, a similar type of signal was used. An-
other audio file containing three notes was created with
MixNotes and it was combined with the desired signal.
The choice of noise source was intentionally selected to
be correlated with the signal s(n) because it is considered
closest to the real scenario of having multiple instruments
played at the same time.
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2.2 Signal model and beamforming algorithm

A circular microphone array consisting of 12 omnidirec-
tional sensors was used to record music therapy sessions,
with a radius of 14cm. The design of the array was pre-
viously discussed in [6]. Thus, in the simulations done
using Matlab, an equivalent array was reproduced to test
the beamforming algorithm. The signal received by each
microphone is defined as [10, 11]

xm(n) =

L∑
i=0

hm,i (n)s(n−i)+vm(n) = sm(n)+vm(n),

(1)
where m takes values from 1 to the number of mi-

crophones, M, n is the time index of the signals and L is
the length of the RIRs generated from a source to each
microphone, hm,i. This is equivalent to the two compo-
nents sm(n), the source of interest, and vm(n), the noise
sources as described above.

The short-time Fourier transform (STFT) is applied to
the microphone signal giving the stacked vector y(l) ∈ C

y(l) = (y1(l)...yM (l))T , (2)

where l is the frame number and each signal is com-
posed of

y(l) = x(l) + v(l), (3)

the frequency domain equivalents of the source
sm(n), and noise vm(n) components.

The generated signals, ym(l), were then used as input
to a delay and sum (DAS) beamforming algorithm. For
this type of beamformer, the signals received by each mi-
crophone are delayed in order to compensate for the time
difference of arrival of the sound to the sensor. This is
equivalent to a phase shift, w(ω), with ω the angular fre-
quency, and as a function of the angle of incidence, θ.

w(ω) =
1

M


1

e−j
ωd cos θ0

c

...

e−j
ω(M−1)d cos θ0

c

 (4)

where θ0 is the angle to which the beamformer is
steered, d is the distance between two microphones, and c
is the speed of sound, 340m/s.

The beampattern is then given by

Ψ(ω, θ) =
1

M

M−1∑
m=0

e−jω
md(cosθ−cosθ0)

c . (5)

The DAS beamformer was steered towards the chosen
position of the source (180 degrees), giving the beampat-
tern shown in Fig. 1. The frequency bins are created by
dividing the sampling frequency (fs) equal to 48000Hz by
256. Since this is the beampattern of a circular array, the
angles over which the analysis are done are from 0 to 360
degrees.

Figure 1. Beampattern steered to 180 degrees w.r.t.
the reference microphone

Optionally, the input signals, sm(n) and vm(n),
where m = 1...M , could be modified with a secondary
source interference function that adjusts the levels ratio
between two sources.

2.3 Onset detection algorithm

The onset detection problem is usually divided into three
steps: pre-processing, defining an onset detection function
(ODF) and peak-picking. In general, the pre-processing
step involves noise reduction or beamforming. In the sec-
ond step, a reduction of the signal is obtained by defining
the best ODF for the type of audio processed. For this rea-
son, several ODFs were tested. As shown in [12], some
algorithms perform better when applied to percussive in-
struments, and these were selected and tested on the same
dry recordings and on real data. These analysis were done
without applying the beamforming algorithm beforehand,
in order to assess the level of accuracy in this scenario.
The methods tested were two variations of the spectral
flux [13, 14], two variations of the logarithmic spectral
flux, high frequency content and NINOS2, as described
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in [9, 12]. The results showed that the best method to use
further is the logarithmic spectral flux (LSF) [15]. This
method is based on the spectral flux ODF, which is de-
fined by Eqn. (6), with L2-norm for calculating the differ-
ence between magnitude spectra of adjacent samples:

SF (n) =

N
2 −1∑
−N

2

H(|Xk(n)| − |Xk(n− 1)|)2 (6)

where H(x) = (x+ |x|)/2 is a half-wave rectifier for
the spectral difference, which outputs zero for a negative
argument, and Xk(n) is the N-point short-time Fourier
transform (STFT) of the audio signal at frequency k and
frame index n of the windowed signal in time domain,
x(n),

Xk(n) =

N
2 −1∑

i=−N
2

w(i)x(n+ i)e
−2jπik

N , (7)

and w(i) is a window function of choice of length N
samples and i is the index of the window.

Similar to [15], the ODF was made invariant to scal-
ing by applying a logarithm to the magnitude spectrum,

Yk(n) = log(λ|Xk(n)|+ 1), (8)

where λ is a compression variable [9], here 0.5, and
plus 1 is added to ensure a positive value of the logarith-
mic function. Therefore, the ODF defined by the LSF
method is:

LSF (n) =

N
2 −1∑

k=−N
2

H(|Yk(n)| − |Yk(n− 1)|)2. (9)

In the third step of the onset detection algorithm, the
peaks of the ODF are selected. In order to obtain relevant
results, a few parameters were included to define a thresh-
old of detection. First, the minimum height of a peak was
calculated by taking the median of the ODF function and
multiplying it by a constant [12] of choice. The minimum
height of the peak is generally set above the noise floor,
and can be set to adapt to the local median, rather than the
entirety of the ODF. Here, the value of the constant is 2.

The second parameter adjusted was the minimum
peak prominence which the defined as the height of the
amplitude in its neighbourhood. This value has an impact

on detecting only the first peak of a note and ignore the
decay of it. The value for the minimum peak prominence
was set to 0.2. In this case, the minimum peak height is
superseded by the minimum peak prominence due to the
small variation in the noise floor.

The third parameter defines how close two peaks can
be to each other, called minimum peak distance, and was
set to 0 because the algorithm may be used in identifying
small deviations in time of two separate sources. All three
parameters were adjusted for the specific data set that was
used to test the onset detection algorithm and were kept
the same for all results presented here.

Only after identifying the best ODF to be used fur-
ther, the pre-processing step was included, which was the
beamforming algorithm. Additional pre-processing may
be considered for analysis done on recorded music ther-
apy data to reduce noise, if found necessary.

3. RESULTS

In this section, the results of three case studies are pre-
sented. In 3.1 is shown the effect of RT on onset detec-
tion, in 3.2 a source is placed off-axis w.r.t. the DOA
of a steered beamformer to measure the level of accuracy
needed for the real case scenario, and in 3.3 are investi-
gated multiple secondary source interference ratios (SIR)
and their impact on the accuracy of notes detection.

3.1 Reverberation time effect on onset detection

Firstly, the effect of reverberation time on the accuracy in
detecting onsets was investigated. The RTs generated in
the simulations of RIRs were: 0s (anechoic conditions),
0.3s, 0.5s, 0.8s (closest to actual room acoustic measure-
ments) and an extreme case of 1.7s. The chosen onset de-
tection algorithm was used in the described simulations
after applying beamforming. The source was initially
placed at 180 degrees, 1 meter away from the centre of
the array (see Fig. 2).

In Fig. 3 are shown the results for a direction of ar-
rival (DOA) of 180 degrees for the RTs mentioned above.
From this figure it can be concluded that in the simulated
conditions, the RT does not have an impact on the on-
set detection algorithm until the extreme case of high RT
where one false positive peak was be detected.

Another study was done by moving the source at
1.75m away from the centre of the array. This distance
is beyond the critical distance of all RTs except anechoic
conditions. A similar behaviour to the previous study is
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Figure 2. Study of RT values on onset detection per-
formance for a source 1m away and DOA 180 de-
grees

Figure 3. Study of RT values effect on onset de-
tection performance for a source at 180 degrees, 1m
away

also observed in Fig. 4. Some additional high peaks ap-
pear in this case, however, they are below the detection
threshold, and only one false positive onset appears for
RT=1.7s.

3.2 Off-axis source placement effect on onset
detection

A source was placed at 180 degrees and the beamformer
was steered to different angles to study the effect on the
onset detection output. In Fig. 5 are shown the results for
an RT closest to the actual parameters of the room (0.8s)
and they show consistent results in terms of correct de-
tection. It can be noticed that as the DOA mismatch in-
creases, additional smaller peaks become apparent, how-
ever, they are below the detection threshold.

It should be noted that further analysis will be done
on a more extensive data set containing a wider range of
musical notes in order to examine the behaviour of the
beampattern at different frequencies.

Figure 4. Study of RT values on onset detection per-
formance for a source 1.75m away and DOA 180 de-
grees

Figure 5. Study of DOA mismatch effect on onset
detection

3.3 Signal to noise ratio effect on onset detection

A secondary source was added as described in 2.1.1. The
sources were placed 1m away at 180 degrees and 90 de-
grees. This study was done in order to investigate the SIR
necessary for an acceptable performance of the onset de-
tection. In other words, what is the effect of the difference
in levels between two sources.

Firstly, the general effect of adding beamforming in
the pre-processing step is compared to the signal received
at microphone 7, the closest to the primary source at 180
degrees. The results are shown in Fig. 6 and it can be
concluded that this is a necessary step in improving the
output of the onset detection algorithm.

In Fig. 7 can be observed that an SIR of 20dB would
be necessary in order to have a perfect result in the onset
detection algorithm. All other values of the SIR detect one
onset from the source place at 90 degrees. For an SIR of

4279



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

Figure 6. Comparison of ODF with beamforming
and the signal received at microphone 7

6dB, there is no detection of the third note, but only one
false positive peak is detected. For an SIR of 10dB, all
peaks are detected, but also one false positive as well. This
implies that issues may appear when the desired source
is not loud enough compared to the noise sources. Also,
when two impulses overlap (the first peak in Fig. 7, there
is no distinction between them as they combine into one
higher peak.

Figure 7. Study of SIR values on onset detection
with two sources 1m away at 180 and 90 degrees

4. CONCLUSIONS AND FURTHER RESEARCH

In this paper, preliminary results were shown for a
pipeline of algorithms that were built to solve onset de-
tection in the context of group music therapy. An alter-
native to existing tools for analysis of music improvisa-
tions had to be developed due to the particularity of the
research project. This, however, increases the difficulty of
signal processing required to extract relevant information
for therapists.

From the results presented, it can be concluded that
RT is not a parameter that impacts the final results, even in
the case where the source is placed beyond the critical dis-
tance. From the study on the DOA mismatch with respect
to the beamformer steering angle, no notable changes have
been observed on the small data set used. Thus, further
analysis are crucial.

In the final study, two competing sources were added
to investigate the achievable accuracy when they are
equidistantly placed from the centre of the microphone
array, but at different, well-separated angles. It was con-
cluded that an SIR of 10dB is able to detect all notes, but
also one false positive from the secondary source. For
an SIR below 10dB, the third note is no longer detected.
Thus, this is considered a minimum limit of SIR, unless
other pre-processing steps are added which could improve
the reduction of the secondary source. One option would
be to improve on the current design of the beamformer by
further enhancing the amplitude of the notes.

Based on the conclusions mentioned above, further
research is necessary on several aspects. Firstly, the beam-
pattern should be improved to provide a better separation
of the notes. One option to explore would be to deduce
the direction of a source from differences in the amplitude
levels when steering the beamfomer towards each source.

Secondly, in the case where two notes are very close
to each other, a better resolution should be achieved to
avoid false negative peak identifications. This could be
solved by implementing a pitch identification algorithm
which would be able to differentiate between two different
sources.

Additionally, it is desired to test the algorithm on ex-
tensive data to calculate the F1-score and compare with
other relevant algorithms. Finally, the algorithms pipeline
should be tested on recorded data to assess the real sce-
nario performance.
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