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Vincent Fréour4 Christophe Vergez1

1 Aix Marseille Univ, CNRS, Centrale Med, LMA UMR7031, 4 impasse Nikola Tesla, CS 40006,
13453 Marseille Cedex 13, France

2 Buffet Crampon, 5 rue Maurice Berteaux, 78711 Mantes-La-Ville, France
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ABSTRACT

Self-sustained musical instruments, such as wind or
bowed string instruments, are capable of producing
sustained sounds from a continuous supply of energy.
These instruments exhibit transient regimes when the
sound appears and during note changes. In this study,
we focus on certain transient behaviors of a soprano
trombone around a double Hopf bifurcation, induced by a
slide displacement. To numerically study these transients
on a model, the input impedance of the instrument is
interpolated between different slide positions. Linear
stability analysis and time integration are applied to a
brass model for this situation. These simulations show
that around a double Hopf bifurcation and at constant
blowing pressure, it is possible to select the equilibrium
or two different periodic regimes by only controlling the
slide position.
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1. INTRODUCTION

Brass instrument are self-oscillating systems whose
functioning regimes depend on the resonator parameters
and on the playing parameters, such as the blowing
pressure or the lips resonance frequency. In the scope
of dynamical systems, the oscillations of a self-sustained
musical instrument usually arise from Hopf bifurcations,
where a periodic solution appears and the stability of an
equilibrium solution changes. The study of the Hopf
bifurcations and the dynamics of a brass instrument
around these bifurcations is a common approach [1]. In
most works concerning this subject, the considered sets
of parameters foster one specific periodic regime at a
time [2]. Nevertheless, these instruments exhibit double
Hopf bifurcations where two Hopf bifurcations appear
for the same values of parameters. Around those double
Hopf bifurcations, two different periodic regimes may
appear which results in rich transients and multistability
issues. In this article, we focus on the transient behavior
of a soprano trombone around a double Hopf bifurcation.
The model is presented in Sec. 2 along with the input
impedance interpolation of a slide instrument. Linear
Stability Analysis (LSA) and time integration are then
applied to the model in Sec. 3 to study a moving slide
scenario. Conclusions are drawn in Sec. 4.
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2. BRASS INSTRUMENT MODEL

2.1 Equations of the model

We use the same model as in [3]. The lips are
represented by a one degree-of-freedom linear oscillator
and the resonator by a modal decomposition of its input
impedance. The air flow passing through the lips is
modeled by the Bernoulli equation. Overall, the the model
writes:

ẍ+ ωL

QL
ẋ+ ω2

L(x− x0) =
p0−p
µL

,

ṗn − snpn = ZcCnu ∀n ∈ [1, Nm],

p = 2
∑Nm

n=1 ℜ(pn),
u = W

√
2|p0−p|

ρ · sign(p0 − p) · max(x, 0),

(1)

where x is the lip position, pn are the modal pressures,
u is the air flow and p0 is the blowing pressure. ωL,
QL and µL are the angular frequency, the quality factor
and the surface mass of the lips. Nm is the number of
modes used to describe the input impedance and Cn and
sn are its residues and poles. Zc is the characteristic
impedance at the input of the resonator, W is the width
of the lip channel, x0 is the lip position at rest and ρ is
the air density. In the remainder, we set the following
parameters:

fL = 500 Hz,
µL = 2 kg.m−2,
QL = 4,
x0 = 1 · 10−4 m,
W = 8 · 10−3 m,
Zc = 1.83 · 106 kg.s−1.m−4.

(2)

2.2 Studying slide instruments

To explore the behavior of a brass instrument around
a double Hopf bifurcation, we choose to fix the lip
parameters and to vary continuously the resonator modal
parameters using a slide. Indeed, it is difficult to control
and estimate the lip parameters on an experimental setup
whereas it is much easier to do so with a slide position.
That is why we study a soprano trombone.

In order to simulate its behavior at any slide position
or with a time evolving slide position, we interpolate
the modal coefficients (poles Cn and residues sn) of the
input impedance measured at various slide positions. The
input impedance is measured at each slide centimeter
(the resonator length modification is twice as long as the
slide displacement since the pipe is 180° curved) and its

modal decomposition is computed with the peak-picking
toolbox [4]. As a result, the resonator is entirely described
by only one control parameter dslide, which facilitates
numerical implementation.

Using the peak-picking toolbox [4], the input
impedance can be decomposed with at least Nm =
11 modes at any slide position without having spurious
modes. However, in the following, we will only keep two
of these modes which is sufficient to highlight a double
Hopf bifurcation.

3. NUMERICAL ANALYSIS

3.1 Linear Stability Analysis (LSA)

We consider two control parameters (p0, dslide) since
all other parameters are fixed according to (2). Usually,
Linear Stability Analysis (LSA) is used to find threshold
pressures and fundamental playing frequencies at the
onset of the oscillations. This corresponds to finding Hopf
bifurcations in the plane (p0, fL). Such a representation
is given in Fig. 1 for dslide = 15 cm. The intersection of
two Hopf curves corresponds to a double Hopf bifurcation
(marked with stars on Fig. 1, 2 and 3). In the remainder,
we keep only modes 5 and 6 which are associated with
the two Hopf bifurcations that cross around fL = 500 Hz.
The LSA of the two modes model is plotted in Fig. 2.
Reducing the model to only two modes slightly changes
the location of the Hopf bifurcations, but they still cross
around fL = 500 Hz.

Here, we consider a fixed fL = 500 Hz and a variable
dslide. Consequently, the Hopf curves are rather plotted
with respect to dslide in Fig. 3. We limit the study to
p0 ∈ [0, 5] kPa and dslide ∈ [10, 16] cm. In this region of
interest, only two periodic solutions exist along with the
equilibrium, and they show a double Hopf bifurcation at
p0,DH = 2.8 kPa and dslide,DH = 14.6 cm.

Additionally, we use Manlab and the Hill-Floquet
stability analysis [5] to compute the periodic branches and
their stability. In this configuration, all Hopf bifurcations
are direct. For a given dslide, the first Hopf bifurcation
(i.e. with the lowest p0) leads to a stable regime whereas
the second Hopf bifurcation (i.e. with the highest p0) leads
to an unstable regime. For p0 higher than the second Hopf
bifurcation, this second regime becomes stable through a
torus bifurcation represented by dashed lines in Fig. 3.
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Figure 1: LSA with respect to fL considering
Nm = 11 modes. Pressure thresholds (top pane) and
playing fundamental frequency at the onset of the
oscillations (bottom pane). Double Hopf bifurcations
are represented by stars. The dimensionless input
impedance modulus is superimposed on the top pane
whereas the resonance frequencies are represented as
horizontal gray lines on the bottom pane. Each color
corresponds to a different playing regime. The local
minimum of p0,th are marked with a circle.

The regions where the second periodic regime is unstable
are shaded.

3.2 Time simulation

According to Fig. 3, for p0 slightly below the double
Hopf p0,DH , one can switch from one periodic regime to
another passing through the equilibrium by varying only
the slide position. We study this kind of scenario with
time integration. The considered parameter trajectory
is drawn in black in Fig. 3, with p0 = 2.6 kPa and
dslide ∈ [14, 16] cm. In Fig. 4, the time evolution of the
mouthpiece pressure p computed with time integration is
plotted along with the control parameters p0 and dslide,
as well as its spectrogram.

Firstly, the brass model indeed passes through both

Figure 2: LSA with respect to fL considering only
modes 5 and 6. The double Hopf bifurcation is
indicated by a star.

periodic regimes and the equilibrium. Secondly, the
system transients last few seconds after both parameters
are fixed. This observation is consistent with the
fact that the system is close to its Hopf bifurcations.
Indeed, in this region, leading LSA eigenvalues (i.e.
with the highest real part) are close to zero, which
corresponds to slow exponential growth or decrease and
therefore, long transients. Finally, the amplitude of the
oscillations decreases for both periodic regimes as the
slide position moves toward the double Hopf bifurcation,
until oscillations disappear when the system reaches the
equilibrium. Since dslide varies dynamically, silence
appears with some delay after the slide position crossed
the static Hopf bifurcation predicted by LSA [6].

This type of behavior has been observed on
preliminary experiments using artificial lips and a
controlled air supply which suggests that the real system
also exhibits double Hopf bifurcations for some sets of
parameters.

4. CONCLUSION

In this short paper, we show that brass instruments
may exhibit double Hopf bifurcations for some sets of
parameters. Around such a bifurcation, two periodic
regimes exist and the system has a rich behavior especially
regarding transients. Here, we only focus on one specific
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Figure 3: LSA with respect to dslide considering
only modes 5 and 6. Continuous lines represent
Hopf bifurcations whereas dashed lines represent
torus bifurcations. The double Hopf bifurcation is
indicated with a star. The solution coming from
the second Hopf bifurcation is unstable between its
Hopf and its torus bifurcations. This is represented
by shaded regions of the corresponding color.
The horizontal black line represents the parameter
trajectory considered for time integration in Sec. 3.2.

scenario where the slide position varies continuously.
This scenario highlights the interest of studying the
slide position as a bifurcation parameter since it induces
interesting behaviors while remaining easy to control and
to measure in an experimental context. To compute time
integrations with a varying slide position, we propose to
describe the input impedance with only one parameter
by use of interpolations of the modal parameters. The
multistability intrinsic to double Hopf bifurcations, as
well as the associated transient behaviors, will be further
explored in experimental and numerical studies.
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