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ABSTRACT

Binaural reproduction is essential for immersive spatial
audio in applications such as virtual and augmented re-
ality (VR/AR). Achieving high-quality spatial audio re-
quires accurately modeling perceptual cues, often leading
to non-convex optimization tasks. Recent examples in-
clude magnitude least squares (MagLS) with interaural
level-difference (ILD) denoted as iMagLS optimization
for first-order Ambisonics or binaural signal matching
(BSM). Traditional numerical solvers for these tasks can
be computationally expensive and time-consuming. This
paper introduces a neural network-based optimizer for
signal-independent binaural rendering in non-convex op-
timization tasks. The proposed network is trained with a
perceptually motivated loss function incorporating mean-
squared error (MSE), magnitude error, and ILD match-
ing, providing a faster and potentially more perceptually
accurate alternative. We compare the neural network ap-
proach against conventional gradient-based methods, like
Quasi-Newton methods, in terms of computational effi-
ciency and binaural signal accuracy. Preliminary results
demonstrate competitive performance while significantly
reducing computational overhead, showing promise for
optimizing other perception-based losses without analyti-
cal or efficient iterative solutions.
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1. INTRODUCTION

Binaural reproduction is essential for creating immersive
spatial audio experiences in applications such as virtual
and augmented reality (VR/AR) [1]. High-quality bin-
aural rendering relies on accurately modeling perceptual
cues, which often leads to non-convex optimization prob-
lems. These optimization tasks arise in various binaural
reproduction methods, such as spherical arrays using the
Ambisonics format or arbitrary microphone arrays where
binaural signal matching (BSM) is used to render the bin-
aural signals [2,3].

A widely used approach for perceptual modeling is
magnitude least squares (MagLS) optimization, which im-
proves spectral accuracy by minimizing magnitude er-
rors between the reference and the reproduced binau-
ral signals [3,4]. In the MagLS case, the optimiza-
tion problem can be efficiently solved with a simple
one-shot frequency-recursive approach for the directional
phase [2,5]. However, recent methods have sought to
incorporate additional perceptual cues into the optimiza-
tion process beyond magnitude matching. One such ex-
ample is interaural level difference (ILD) magnitude least
squares (iMagLS), which simultaneously optimizes mag-
nitude and ILD cues [6-8]. While these approaches im-
prove binaural rendering quality, their optimization typi-
cally relies on iterative numerical solvers, such as Quasi-
Newton methods, which can be computationally expen-
sive and time-consuming.

In this paper, we propose a neural network-based op-
timizer for computing signal-independent binaural repro-
duction coefficients. The proposed approach enables the
optimization of complex perceptually inspired loss func-
tions, such as the iMagLS loss, providing a computation-
ally efficient alternative to traditional numerical solvers.
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We evaluate the proposed method performance against
conventional optimization methods across three loss func-
tions: the Least Squares (LS) loss, the MagLS loss,
and the iMagLS loss. Results demonstrate that the pro-
posed method achieves competitive accuracy while signif-
icantly reducing computational overhead in the iMagLS
task, making it a promising solution for other perceptu-
ally based losses.

2. PROBLEM FORMULATION

This section provides the mathematical background for
signal-independent binaural reproduction using a micro-
phone array. Given an array with M microphones measur-
ing the sound pressure, binaural signals—representing the
acoustic pressure at the listener’s left and right ears—can
be estimated using the BSM formulation [3]:

(f) = [ (NFx(f)

where f refer to frequency, x(f) € CM*1 is the array
measurement vector, and cb7(f) € CM*! are the BSM
coefficients encoding both head-related transfer function
(HRTF) and array transfer function (ATF) information.
In signal-independent rendering, these coefficients remain
constant for any input x(f).

Another approach to signal-independent binaural ren-
dering is Ambisonics [2]. If a spherical microphone array
captures the sound pressure, the array measurements x( f)
can be transformed via the spherical harmonics trans-
form (SHT) into an order-N Ambisonics signal, denoted
as a,,(f) € CNFTD*x1 The Ambisonics order de-
pends on the number of microphones in the array [2].
These Ambisonics signals are then rendered into binau-
ral signals using order-N HRTF coefficients, h’;" (f) €
(C(N+l)2 x119];
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where the modified Ambisonics signal is a,,,
(_1)m[an(7m)}*‘

In both approaches, the sound pressure information
is encoded either in the array signal x(f) for the BSM
case or in the SH signal a,,,,,(f) in the Ambisonics case.
In the signal-independent reproduction task, these signals
are treated as the input and are usually not affected by the
reproduction algorithm. The part that depends on the algo-
rithm consists of the coefficients h’” or ¢/ in the Am-
bisonics and BSM case, respectively. These coefficients
can be viewed as a low-order representation of the array

4308

and HRTFs. Calculating the coefficients can be done by
evaluating their HRTF estimation ability. The HRTF can
be estimated from the coefficients as [2, 3]:

Y ()55 (f)
VT, f) [ (1))

, Ambisonics,

*

1, _
h (kaf){ ,BSM
3)
Here, Y () € CK> (N+D)? s the spherical harmonics
transformation matrix [10], and V(Q, f) € CM*K jg
the measured or simulated ATF matrix for a dense set of K
directions {0, = (0%, ¢) }< . Finally, the calculation of
the coefficients can be framed as an optimization problem.

Let z""(f) represent these coefficients, i.e.,
by (f)

zl,r —
) {[cwm

Then, the optimization problem is formulated as:

Lr
(href

, Ambisonics,

, BSM. @
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zV7(f) = argmin £
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where L(-,-) is a loss function measuring the dissimilar-
ity between higf"(Qk, f) € CE*1 the measured or sim-
ulated HRTF from a dense set of K directions {{
(01, ¢x)}E_,, and the estimated HRTF, h*"(Qy, f) €

CE*1 of Eq. (3).

3. CURRENT METHODS

The solution z"(f) of Eq. (5) depends on the choice
of loss function L (-,-), which significantly affects the
spectral and spatial quality of the resulting binaural au-
dio [2,3,6-8]. This section reviews commonly used loss
functions and their corresponding solutions.

3.1 Least Squares
A straightforward choice for £ (-, -) is the LS loss, defined

as
_ Lr
) - ”href
This measures the complex error between the estimated
and reference vectors, ensuring accurate reconstruction in

both magnitude and phase. The LS loss results in a convex
problem with a closed-form solution [2, 3]:

{

Lis (hl,r hir . Bl,r”;

ref

(6)

Y,

ref

[VT]T hl,r

, Ambisonics
,BSM

~l,r
713

(f) ()

ref

11™* Convention of the European Acoustics Association
Milaga, Spain * 23" — 26" June 2025 *

SOCIEDAD ESPAROLA
SEA DE ACUSTICA



FORUM ACUSTICUM
ails EURONOISE

where ()T denotes the pseudo-inverse. However, in prac-
tical applications with a limited number of microphones,
this solution is accurate only at lower frequencies. For ex-
ample, in Ambisonics, frequencies above a cutoff value
given by f. = %, where c is the speed of sound and
R =~ 8.75 cm represents the average head radius, exhibit
phase reconstruction errors that increase with frequency.
This leads to spatial degradation and an audible frequency

roll-off [2, 11].

3.2 Magnitude Least Squares

The spectral degradation of the LS solution can be miti-
gated by modifying L (-,-). The MagLS$ loss prioritizes
magnitude accuracy over phase above a cut-off frequency,

fe [4.5]:

hlﬂ” hl,r

Lyns (Bl B07) = | bl = [RS8 ®)
Unlike the LS loss, MagLS is non-convex and lacks a
closed-form solution. As proposed in [2, 3,5], an itera-
tive approach can be used, where the reconstructed phase
from the previous frequency is combined with the optimal

HRTF magnitude of the current frequency:

o Y[l (f)]ei®” 6], Ambisonics

(fr) =

Zyirs ¥ - il
VT [l ()™ 0] Bsm
&)
where the reconstructed phase is given by:
B () Z[YhhT (fre1)] , Ambisonics
TR =
VI (fra)e (fe1)] ,BSM
(10)

with fj, representing the current frequency bin and fj,_1
the previous one. Below f, the LS solution from Eq. (7)
is used. While MagL.S improves magnitude accuracy and
reduces frequency roll-off [2,3], its spatial quality remains
suboptimal in applications with a limited number of mi-
crophones [6-8].

3.3 ILD Magnitude Least Squares

A recent modification of the MagLS loss is the iMagLS
loss [6,7], which incorporates ILD error for improved per-
ceptual accuracy:

Y

LimLs (hﬁ;, fll’r) = Lwvis + ALwp
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Input: z, ¢ CBxnfftx2

|

Reshape: nfft x 2B

¥
Linear Layer 1
Weight: 2B x 2B
Bias: nfft x 2B
¥

Transpose: 2B x nfft

¥
Linear Layer 2
Weight: nfft x nfft
Bias: 2B X nfft
¥

Reshape: B x nfft x 2

|

Output: z ¢ CBxnfftx2

Figure 1. Neural network architecture with two lin-
ear layers. The input is reshaped, processed through
transformations, and then reshaped back to its origi-
nal dimensions. nfft refer to the number of positive
frequency bins, B is the number of coefficients and
2 refer to the left and right ears. The linear layers are
complex right-hand multiplication with bias, which
are the network parameters.

where A € R is a weighting factor, and the ILD error is
defined as

Lip = |[ILDwet(Qu) — ILD(Q)|2. (12)
The ILD is computed from a frequency-averaged,
Gammatone-filtered version of the HRTF along the hor-
izontal plane, denoted as €, [12]. The iMagLS
loss presents the most challenging optimization problem
among the three, as it jointly minimizes MagLS loss
and ILD error. Reducing ILD error has been shown
to improve localization accuracy along the horizontal
plane [13]. Due to the complexity of the joint opti-
mization, gradient-based numerical solvers are typically
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required. In this study, the Quasi-Newton Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [14] is used
to minimize Eq. (11), with the LS solution from Eq. (7)

serving as the initial estimate. ’

Table 1. Computation Time

Loss \ Benchmark \ DNN solver ‘

LS (Ambisonics) 28.4 (ms) 1.3 (min)

4. PROPOSED METHOD MagLS (Ambisonics) | 80.7 (ms) 0.8 (min)

The proposed method offers alternative network-based iMagl5 (Ambisonics) | 3.1 () 1.4 (min)
iv work- -

solvelr)s fgr the perceptually motivated losses used for bin- LS (BSM) 42.5 (ms) 3.8 (m¥n)

aural rendering. Optimization of Eq. (5) with Eq. (3) re- MagLS (BSM) 1.8 (sec) | 2.1 (min)

quires finding the coefficients h%” or [c"] *, given Y or iMagLS (BSM) 5.4 (h) 4.2 (min)

VT, Let zo(f) denote an initial estimate of these coeffi-
cients. For brevity, we omit the left and right superscripts,
though this notation applies to both the left and right ear
BSM and Ambisonics coefficients.

A deep neural network (DNN) is employed to refine
this initial estimate and produce optimized coefficients,
expressed as:

Table 2. Normalized relative difference between
benchmark solutions and DNN solutions

2 = fo (z0) (13) | Loss | Meanstp)[dB] | (Min,Max)[dB] |
where fg(-) represents the forward pass of the DNN, pa- LS (Ambi) —246.75.2 (~256, —236)
rameterized by 6. An example for fg(-) is presented in MagLS (Ambi) | —60.54.2 (—71.3,-49.7)
Fig. 1. The network parameters are optimized by mini- iMagLS (Ambi) | —20.2; 7 (—22.4,-16.8)
mizing the loss function in Eq. (5), leading to: LS (BSM) —122.57 3 (—133,—-114)
. ) MaglS (BSM) | —57.229 (—65.0,—46.2)
0 = argmin £ (hr, fo (0)) (9| iMagLs (BSM) | —22.8, (—27.4,-18.1)

Once the optimal network parameters 6 are obtained, the
refined coefficients are computed using Eq. (13) with the
initial estimate z.

A key distinction between this approach and tradi-
tional gradient-based optimization methods is that instead
of directly optimizing the coefficients, we optimize the
parameters of the neural network. This enables efficient
differentiation through the DNN, avoiding reliance on nu-
merical differentiation schemes [15, 16]. This is particu-
larly advantageous when the loss function is complex and
does not have an analytical derivative.

5. EXPERIMENTAL EVALUATION

A comparative analysis is conducted between the pro-
posed method and state-of-the-art solvers.

5.1 Setup

The analysis is performed using the measured Cologne
HRTF database for the Neumann KU100 dummy head as
the reference HRTF [17]. First-order (N = 1) Ambison-
ics rendering is used as the estimate, with four coefficients
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per frequency bin. A simulated ATF of a semi-circular
array with six microphones is used for the BSM estima-
tion. The microphones were positioned on a 12 cm radius
rigid sphere, with an elevation of 90° and azimuth angles
of [£64°,£38°,+13°] in the front-facing direction. The
loss terms are evaluated on a high-order Lebedev grid con-
sisting of 2702 directions with a sampling rate of 48kHz
and a 512 bin FFT. All methods were executed on an Ap-
ple M2 MAX laptop, utilizing only its CPU cores. The
DNN solver was implemented in PyTorch, while all other
methods were executed in MATLAB 2023a.

5.2 Methodology

The evaluation considers three loss functions, defined in
Egs. (6), (8), and (11). Each loss function is paired with its
corresponding state-of-the-art solver, while the proposed
method serves as an alternative solver. The HRTF es-
timates are computed using Eq. (3), both the Ambison-
ics and BSM coefficients are obtained based on the loss
functions as described in Secs. 3 and 4. The LS solu-
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Figure 2. Normalized MSE as a function of fre-
quency, averaged across a dense Lebedev grid of
2702 directions. The Benchmark solvers are used in
the LS and MagLS case, where the proposed DNN
solver is used in the iMagL.S task.

tion of Eq. (7) is used as the initial estimate for both the
Quasi-Newton solver and the proposed DNN solver in the
iMagLS task. The performance of the proposed DNN
solver is also evaluated on the MagLS and LS loss task,
and its initial estimates are the LS and a zeros vector,
respectively. Both the Quasi-Newton and DNN solvers
were stopped when their loss value improved by less than
0.001%. The neural network in the proposed method was
optimized using the Adam optimizer with a learning rate
of 0.0005 and a weighting parameter of A = 2.

5.3 Results

The proposed method in Sec. 4 is compared with the
benchmark methods in Sec. 3 across the three loss func-
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Figure 3. Magnitude errors as a function of fre-
quency, averaged across a dense Lebedev grid of
2702 directions. The Benchmark solvers are used in
the LS and MagLS case, where the proposed DNN
solver is used in the iMagLS task.

tions in terms of accuracy and computational efficiency.

5.3.1 Computational Time

The execution times for the evaluated methods are pre-
sented in Table 1. For the LS and MagLS loss tasks, the
benchmark methods execute significantly faster, complet-
ing in tens of milliseconds, whereas the DNN solver re-
quires approximately one minute. However, for the more
complex iMagLS task, the proposed method significantly
outperforms the benchmark, completing in a few minutes
compared to several hours for the Quasi-Newton solver.
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Figure 4. ILD error averaged across 1.5-20 kHz

as a function of incident direction on the horizontal
plane. The Benchmark solvers are used in the LS and
MaglL.S case, where the proposed DNN solver is used
in the iMagLS task.

5.3.2 Accuracy

To evaluate accuracy, the estimates were assessed us-
ing MSE, magnitude error, and ILD error, as defined in
Egs. (6), (8), and (12). The LS and MagLS loss per-
formances were evaluated using the benchmark solutions
from Sec. 3, while the iMagLS loss performance was as-
sessed using the proposed DNN solver from Sec. 4. As
shown in Figs. 2, 3, the optimized LS and MagLS so-
lutions achieve the best performance for their respective
tasks, as expected. However, the DNN solver shows only
a minimal compromise in magnitude and complex error
compared to the benchmark solutions. Figure 4 presents
the ILD errors for the different solutions. The iMagLS ap-
proach outperforms the other methods, reducing ILD error
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across all directions and approaching the Just Noticeable
Difference (JND) threshold of 1 dB [18].

Finally, evaluating the similarity between the pro-
posed DNN-based approach and the benchmark can pro-
vide insight into the overall differences between the two
methods. Table 2 summarizes these results, where the rel-
ative difference is averaged over directions, frequencies,
and ears. The results in the table suggest that, across all
tasks, the differences between the DNN solution and the
benchmark solution are minimal, indicating similar audi-
ble performance.

5.4 Discussion

The experimental evaluation reveals two key findings.
First, conventional solvers deliver fast and accurate solu-
tions for the LS and MagLS tasks, whereas the traditional
gradient-based solver was notably slow for the iMagLS
task, taking approximately several hours to converge, as
seen in Table. 1. In contrast, the DNN solver completed
the same task in just a few minutes, marking a substan-
tial reduction in processing time. This efficiency could
be particularly beneficial for applications, where the pre-
processing of the HRTF must be computed individually
for each user or through a parametric technique that re-
lies on re-evaluating the low-order HRTF representation
based on the measured acoustic scene. Second, as shown
in Table 2, the DNN solver performed very similarly to
the benchmark methods in the LS and MagLS tasks, as
evidenced by the relatively low difference between the so-
lutions. This suggests that it successfully reached the op-
timal local minima in these tasks. For the iMagLS task,
as illustrated in Figs. 2 and 3, the DNN solver performed
comparably to the benchmark LS and MagLS solutions in
terms of magnitude and complex error performance. Fur-
thermore, it achieved a noticeable reduction in ILD error,
approaching the JND threshold of 1 dB. This shows that
DNN provides high computational efficiency while main-
taining high perceptual fidelity in complex loss tasks such
as the iMagLS task.

6. CONCLUSIONS

This study introduced a DNN solver for signal-
independent binaural rendering that leverages perceptu-
ally motivated loss functions. By reframing the coefficient
optimization problem, the proposed method bypasses the
traditional reliance on iterative, gradient-based numerical
solvers. Instead, the DNN directly refines an initial es-
timate of the binaural reproduction optimization param-
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eters, efficiently handling the non-convex nature of the
iMagL.S task.

The proposed DNN-based approach provides a
promising alternative to traditional gradient based op-
timization techniques in spatial audio processing for
challenging perceptual losses. It achieves a substantial
speedup in solving complex loss functions while consis-
tently delivering high accuracy results compared to the
benchmark solvers. Additionally, other perceptual losses
can be considered, as the proposed solution does not rely
on prior knowledge about the loss function itself. Future
research will focus on integrating additional perceptual
metrics, evaluating larger HRTF datasets, and exploring
generalization across multiple HRTFs, given that the cur-
rent formulation is tailored for a single HRTF. This work
could pave the way for efficient, high-quality binaural re-
production systems that meet the demands of emerging
immersive audio applications.
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