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ABSTRACT

The Linearized Euler Equations (LEE) are a system of
partial differential equations that provide a framework for
modeling outdoor acoustic wave propagation, capturing
atmospheric and topographic effects. Solving LEE using
traditional numerical methods demands fine spatial and
temporal resolutions, leading to high computational costs
over large domains. This study uses established neural
network approaches to solve LEE and evaluates their per-
formance and scalability for outdoor acoustic wave prop-
agation. Included approaches are Physics-Informed Neu-
ral Networks (PINNs) and the sampled network-based
Extreme Learning Machine Ordinary Differential Equa-
tions (ELM-ODE). We use a SIREN-based architecture
in our PINNs for wave-like solutions. In the 1D case,
PINNs achieved higher accuracy but required significantly
more training time due to the complexity of training over
a spatiotemporal domain. Meanwhile, ELM-ODE pro-
vided competitive accuracy with much lower computa-
tional cost. In the 2D case, ELM-ODE again showed com-
putational advantages over SIREN-PINNs while deliver-
ing great accuracy. However, its scalability is constrained
by the coupled velocity–pressure matrix, which increases
costs in cases like outdoor noise mapping, where velocity
data eventually are unused. Addressing boundary condi-
tions, such as frequency-dependent impedance, remains a
challenge.
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1. INTRODUCTION

Modeling outdoor acoustic wave propagation is impor-
tant with a lot of applications, including noise mapping
for urban planning [1], environmental monitoring [2],
and aviation acoustics [3]. The propagation of sound in
the atmosphere is affected by atmospheric factors such
as wind, temperature gradients, and topographic features
[2]. These factors introduce complexities into predicting
acoustic wave behavior accurately, especially when con-
sidering high-frequency waves or large spatial domains.

The Linearized Euler Equations (LEE) provide a
mathematical framework for modeling outdoor acoustics
by capturing the interactions among acoustic velocity,
pressure fluctuations, and the background atmospheric
flow [4, 5]. Unlike simpler acoustic models, the LEE take
account for the convective effects and the compressible
nature of sound waves, making them particularly well-
suited for simulating realistic outdoor conditions. How-
ever, traditional numerical methods for solving the LEE,
such as finite-difference time-domain (FDTD) schemes
[6, 7], often require substantial computational resources.
This is especially true for scenarios involving high fre-
quencies or extended spatial domains [8].

Recent advances in machine learning offer a new way
to solve LEE. In particular, physics-informed neural net-
works (PINNs) have been proposed as an effective means
to solve partial differential equations (PDEs) by embed-
ding the governing equations directly into the loss func-
tion during training [9]. This approach ensures that the
neural network follows the underlying physics. How-
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ever, PINNs can be computationally demanding and may
encounter convergence issues when dealing with high-
frequency oscillations and multi-scale features [10], es-
pecially for solving time dependent PDEs like LEE which
need to be trained for the whole time domain.

An alternative strategy, the sampled neural network
method to solve PDE has been introduced to overcome
some of these challenges. In the work of Datar et al.
[11], the authors propose the Extreme Learning Machine
Ordinary Differential Equations (ELM-ODE) framework,
which applies a shallow neural network with fixed, ran-
domly sampled weights to represent spatial basis func-
tions. The time evolution of the solution is then captured
by solving a system of ordinary differential equations for
the time-dependent coefficients. This decoupling of the
spatial and temporal components leads to a dramatic re-
duction in training time while still achieving high accu-
racy in modeling the wave dynamics inherent in the LEE.

In this paper, we present a comparative study of the
PINNs and ELM-ODE approaches for solving the Lin-
earized Euler Equations in the context of outdoor acoustic
propagation. We present how to implement each frame-
work to solve LEE and assess the methods’ performance
in terms of accuracy and computational efficiency. Our
goal is to explore the strengths and limitations of these
techniques for simulation of outdoor acoustics.

2. METHODS

2.1 Linearized Euler Equations

The linearized Euler equations have become a widely ac-
cepted model for simulating outdoor sound propagation.
Their time-domain formulation offers several key advan-
tages. First, a single simulation can generate compre-
hensive frequency responses. Second, they accommodate
nonlinear effects while accounting for moving, realistic
sources. When dealing with a moving medium, it is essen-
tial to use numerical methods that accurately capture both
the medium’s velocity and the acoustic pressure [12]. For
instance, models described in [7] employ finite-difference
time-domain (FDTD) methods to simulate sound wave
motion in a moving medium. Atmospheric conditions
significantly influence outdoor sound propagation, further
highlighting the need to consider the medium’s dynamics.
The LEE consists of coupled equations for the velocity
and pressure components, defined as follows:

The velocity component of LEE is given by:

∂vacc

∂t
+ (vmet · ∇)vacc + (vacc · ∇)vmet

= −αmet∇pacc − αacc∇pmet + ν∇2vacc.
(1)

Similarly, the pressure component is given by:

∂pacc

∂t
+ vmet · ∇pacc + vacc · ∇pmet

= −κpmet∇ · vacc − κpacc∇ · vmet.
(2)

The coefficients are defined as:

αmet =
1

ρmet
, αacc = − 1

κ

pacc

pmet

1

ρmet
, κ =

cp
cv

.

The numerical solver will then solve for vacc (the ve-
locity of the particle) and pacc (the pressure of the acoustic
wave), with other variables such as pmet (the pressure of
the flow field), vmet (the velocity of the flow field), ρmet
(the air density), and κ (the ratio of specific heats at con-
stant pressure (cp) and constant volume (cv)) given. Note
that κ can also be obtained from the speed of sound (c),
pmet, and ρmet.

2.2 Physics-Informed Neural Networks (PINNs)

Physics-Informed Neural Networks (PINNs) are neural
networks trained to satisfy partial differential equations
(PDEs), initial conditions (IC), and boundary conditions
(BC) simultaneously [13]. The network receives spa-
tiotemporal coordinates as input and outputs the physical
fields to be learned. These outputs are differentiated with
respect to the inputs using automatic differentiation [14],
and then substituted into the PDE to obtain the residual.
The residual quantifies how much the predicted fields vi-
olate the governing equations and is evaluated at a set of
collocation points in the domain. The total loss is defined
as:

L = Lphys + LIC + LBC, (3)

where each term is a mean-squared error loss for the
PDE residual Lphys, the initial condition loss LIC, and the
boundary condition loss LBC. Note that it can also include
additional loss term if data are available such as from old
simulation or measurements.

When applied to the Linearized Euler Equations
(LEE), the neural network takes spatial-temporal input co-
ordinates (x, t) or (x, y, t) and outputs pressure and veloc-
ity components as continuous functions. The network uti-
lizes sinusoidal activation functions based on the SIREN
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architecture [15], where each layer applies

σ(z) = sin(ω0z)

with a fixed frequency scaling constant ω0 in order to ap-
proximate the wavy behaviour better.

2.3 Sampled Neural Network Approach

The Sampled Neural Network approach used in this
study follows the Extreme Learning Machine-based ODE
(ELM-ODE) method introduced in [11]. This method
approximates the solution of a time-dependent PDE by
separating spatial and temporal components. The spatial
part is represented using a shallow neural network with
fixed, randomly sampled weights, while the temporal part
is evolved by solving an ordinary differential equation
(ODE) system.

Let ϕk(x) = σ(w⊤
k x + bk) denote the k-th basis

function, where σ is a nonlinear activation function also
wk and bk are weights and biases sampled from pre-
scribed distributions (e.g., wk ∼ N (η1, η2) and bk ∼
U [−η3, η3]), as originally proposed in the Extreme Learn-
ing Machine framework [16]. The solution is expressed
as:

û(x, t) =

K∑
k=1

ck(t) · ϕk(x), (4)

where ck(t) are time-dependent coefficients.
This ansatz is substituted into the governing PDE, and

the residual is evaluated at a set of collocation points. The
resulting system is projected onto the fixed spatial ba-
sis, resulting an ODE system for the temporal coefficients
c(t) = [c1(t), . . . , cK(t)]⊤, which is then integrated for-
ward in time using standard solvers. For linear PDEs such
as the simplified Linearized Euler Equations (LEE), the
resulting ODE system remains linear.

Boundary conditions can be incorporated in two main
ways, either by constructing basis functions that satisfy
the boundary constraints, or by introducing additional
terms to the ODE system that enforce the conditions
weakly.

3. FORMULATING SOLUTIONS TO LEE WITH
NEURAL NETWORKS

We started from the full Linearized Euler Equations given
in Equations (1) and (2), however, in order to focus on
the dominant convective and acoustic effects, we neglect
the nonlinear advection due to acoustic perturbations, the

weak coupling with background pressure gradients, vis-
cous dissipation, and the divergence of the background
flow.

Therefore, omitting these effects, the governing sys-
tem simplifies to:

∂vacc

∂t
= − (vmet · ∇)vacc −

1

ρmet
∇pacc, (5)

∂pacc

∂t
= − (vmet · ∇) pacc − κPmet ∇ · vacc. (6)

3.1 Formulation of LEE in the PINNs Framework

We first nondimensionalize the governing equations. Let
Lref denote a characteristic length scale, and define the
reference time scale as Tref = Lref/c, where c is the
speed of sound. Pressure is scaled by a reference value
pc, and velocity by vc = pc/(ρrefc), where ρref is the
reference density. This yields a nondimensional domain
(x, y, t) ∈ [−1, 1]2 × [0, 1], with all physical constants
absorbed into the transformed variables. The nondimen-
sional background wind velocities are defined as Mx =
vmet,x/c and My = vmet,y/c. Note that this can vary along
the spaces or be constant values.

We apply this nondimensionalizing to Equations (5)
and (6), resulting in the following system:

∂vacc,x
∂t

= −Mx
∂vacc,x
∂x

−My
∂vacc,x
∂y

− ∂p

∂x
, (7)

∂vacc,y
∂t

= −Mx
∂vacc,y
∂x

−My
∂vacc,y
∂y

− ∂p

∂y
, (8)

∂p

∂t
= −Mx

∂p

∂x
−My

∂p

∂y
− ∂vacc,x

∂x
− ∂vacc,y

∂y
.

(9)

Then, we define a neural network that takes spa-
tiotemporal coordinates (x, y, t) as input and outputs the
predicted fields ṽacc,x, ṽacc,y , and p̃. The residuals are
defined as:

Rvacc,x =
∂ṽacc,x

∂t
+Mx

∂ṽacc,x

∂x
+My

∂ṽacc,x

∂y
+

∂p̃

∂x
,

(10)

Rvacc,y =
∂ṽacc,y

∂t
+Mx

∂ṽacc,y

∂x
+My

∂ṽacc,y

∂y
+

∂p̃

∂y
,

(11)

Rp =
∂p̃

∂t
+Mx

∂p̃

∂x
+My

∂p̃

∂y
+

∂ṽacc,x

∂x
+

∂ṽacc,y

∂y
.

(12)
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These residuals are evaluated at collocation points and
minimized during training. In the one-dimensional vari-
ant, all y-dependent terms are removed.

The neural network takes as input the spatiotemporal
coordinates (x, y, t) and outputs the nondimensional fields
p, vx, and vy . We employ a fully connected deep neu-
ral network using sinusoidal activation functions (SIREN)
[15]. Derivatives of the output fields with respect to the
inputs are computed via automatic differentiation [14].

The total loss minimized during training is composed
of three terms such as in Equations (3), where the physics-
based residual loss is defined as

LPDE = MSE(Rvx) + MSE(Rvy ) + MSE(Rp). (13)

The initial condition loss LIC is computed from a Gaus-
sian pressure pulse centered in the domain with zero initial
velocity. Boundary conditions are incorporated through
LBC, enforced by included as supervised data points.

Training points are sampled uniformly across the
nondimensional domain. The network is optimized using
the AdamW optimizer, combined with a cosine anneal-
ing learning rate schedule [17]. Optionally, dynamic loss
weighting based on Neural Tangent Kernel (NTK) sensi-
tivity are applied in 2D case to balance contributions from
different residuals during training [18, 19].

3.2 LEE Solution via ELM-ODE

Following the sampled neural network approach described
above, we approximate the acoustic fields using a shal-
low NN with fixed, randomly sampled weights and bi-
ases. In this formulation, the only unknowns are the
time-dependent coefficients. In particular, we write the
Galerkin ansatz for the fields as

vacc,x(t, x, y) = c0(t)+

K∑
k=1

ck(t)ϕ(w
1
k x+ w2

k y + bk), (14)

vacc,y(t, x, y) = d0(t)+

K∑
k=1

dk(t)ϕ(w
1
k x+ w2

k y + bk), (15)

pacc(t, x, y) = e0(t)+

K∑
k=1

ek(t)ϕ(w
1
k x+ w2

k y + bk), (16)

where ϕ is the chosen activation function, and
{w1

k, w
2
k, bk} are fixed through random sampling. In this

way, we seek only the time-dependent coefficients c(t),
d(t), and e(t) rather than training the full set of network
parameters.

3.2.1 Galerkin Projection of the Derivatives

The time derivatives of the fields are obtained by differen-
tiating the coefficients:

∂vacc,x
∂t

= c0,t(t)+

K∑
k=1

ck,t(t)ϕ(w
1
k x+ w2

k y + bk), (17)

∂vacc,y
∂t

= d0,t(t)+

K∑
k=1

dk,t(t)ϕ(w
1
k x+ w2

k y + bk), (18)

∂pacc
∂t

= e0,t(t)+

K∑
k=1

ek,t(t)ϕ(w
1
k x+ w2

k y + bk). (19)

Spatial derivatives are computed by differentiating the NN
ansatz. For instance, the x-derivative of pacc is given by

∂pacc
∂x

= e0(t)+

K∑
k=1

ek(t)ϕ
′(w1

k x+ w2
k y + bk) |w1

k|, (20)

with analogous expressions for the spatial derivatives of
vacc,x and vacc,y .

These evaluations at the collocation points are col-
lected into matrices: let A(i) denote the matrix of basis
function evaluations for the i-th field and B

(i)
x and B

(i)
y

denote the corresponding spatial derivative matrices (with
i = 1 for vacc,x, i = 2 for vacc,y , and i = 3 for pacc). We
then form the block matrices

A =

A(1) 0 0
0 A(2) 0
0 0 A(3)

 , (21)

B(x) =

B
(1)
x 0 0

0 B
(2)
x 0

0 0 B
(3)
x

 , (22)

B(y) =

B
(1)
y 0 0

0 B
(2)
y 0

0 0 B
(3)
y

 . (23)
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3.2.2 Assembly of the ODE System

The coupling terms from the Linearized Euler Equations,
such as the pressure gradient and the divergence of veloc-
ity, are incorporated into the coupling matrix

K =

 0 0 αmet B
(3)
x

0 0 αmet B
(3)
y

κpmet B
(1)
x κpmet B

(2)
y 0

 . (24)

Defining the combined coefficient vector

Y(t) =

c(t)d(t)
e(t)

 , (25)

the Galerkin projection leads to:

A
∂Y

∂t
= −

[
Vmet,x B

(x) + Vmet,y B
(y) +K

]
Y.

Because the NN weights and biases are already obtained
by sampling, we solve only for the coefficients. Inverting
A (or solving the associated least-squares problem) yields

∂Y

∂t
= −A−1

[
Vmet,x B

(x) + Vmet,y B
(y) +K

]
Y

≡ Bcombined Y. (26)

This linear ODE system for Y(t) is then integrated in
time using standard solvers, after which the full solu-
tion is reconstructed by evaluating the NN basis functions
weighted by the computed coefficients.

4. PARAMETER DETAILS

4.1 One Dimensional Case

The one-dimensional case serves as a preliminary test to
compare the accuracy, convergence, and computational
performance of both PINNs and ELM-ODE methods un-
der simplified conditions. The physical parameters used in
this setup are listed in Tab. 1, while the configuration de-
tails for the PINNs and ELM-ODE implementations are
given in Tab. 2 and 3, respectively. Both methods are
tested on the same domain and initial conditions, allow-
ing for a fair comparison. This setup provides insights
into the strengths and limitations of each approach before
scaling up to higher-dimensional problems.

Table 1. Physical parameters for 1D simulation
Parameter Value
Space Domain x ∈ [−100, 100] m
Time Domain t ∈ [0, 1] s
Medium flow velocity 5 m/s
Speed of sound 340 m/s
Initial pressure Gaussian at x = 0, σ = 5 m
Boundary condition Total reflection

Table 2. PINNs configuration for 1D simulation
Component Value
Architecture 3 hidden layers, 30 neu-

rons each (SIREN)
Activation Sinusoidal, ω0 = 3.0
Input/Output (x, t) input; (vacc, pacc)

output
Collocation points 8,000 (PDE), 200 (BC),

full grid (IC)
Optimizer Adam (lr=10−3, exponen-

tial decay)
Epochs 500,000
Computing Device Nvidia P100

Table 3. ELM-ODE configuration for 1D simulation
Component Value
Neuron Basis 600 per field (velocity and

pressure)
Activation tanh
Sampling Randomized with scaling
Boundary Total Reflection
Basis Fitting Least-squares projection

with regularization (10−6)
Spatial
Resolution

400 points over the domain

Time Integration RK45
Computing
Device

Intel Xeon Gold 5218R (1
core)

4.2 Two Dimensional Case

The two-dimensional case extends the previous 1D setup
to a more realistic scenario of outdoor sound propagation
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with a horizontal background wind. It evaluates the meth-
ods’ performance in capturing wavefront changes, direc-
tional propagation, and boundary interactions.

Table 4. Physical parameters for 2D simulation
Parameter Value
Space Domain x, y ∈ [−100, 100] m
Time Domain t ∈ [0, 1] s
Medium Flow velocity Vx = 40 m/s, Vy = 0 m/s
Initial pressure Gaussian, σ = 20 m
Boundary condition Total reflection

Table 5. PINNs configuration for 2D simulation
Component Value
Architecture 6 hidden layers, 80 neurons each

with SIREN activation (ω0 = 1)
Input/Output (x, y, t) input; (p, vx, vy) output
Collocation
points

50,000 (PDE), 3,000 (BC),
5,000 (IC)

Optimizer AdamW (lr=10−3, cosine an-
nealing)

Epochs 400,000
NTK EMA with β = 0.99
Computing
Device

Nvidia A100

Table 6. ELM-ODE configuration for 2D simulation
Component Value
Neuron Basis 1500 per field (velocity vx,

velocity vy, pressure)
Activation tanh
Sampling Randomized with scaling
Boundary Total Reflection
Basis Fitting Least-squares projection

with regularization (10−8)
Spatial
Resolution

500 points per dimension

Time Integration RK45
Computing
Device

Intel Xeon Gold 5218R (1
core)

5. RESULTS AND DISCUSSION

5.1 1D Cases

Fig. 1 compares the solutions of the 1D Linearized Eu-
ler Equation obtained using finite-difference (FD), ELM-
ODE, and PINNs approaches. The FD solution acts as
the ground truth for evaluating the performance of neural
network-based methods.

Both ELM-ODE and PINNs solutions accurately re-
produce the overall wave dynamics, including reflections
at domain boundaries and the propagation of the pres-
sure pulse across the simulation domain. However, no-
ticeable differences exist in their error distributions. The
absolute error for the ELM-ODE solution (bottom-left
panel of Fig. 1) primarily concentrates along the primary
wavefront paths, indicating that ELM-ODE slightly un-
derpredicts rapid changes. In contrast, the error distribu-
tion for the PINNs solution (bottom-right panel) shows
more evenly dispersed, finer-scale errors across the do-
main. This behavior suggests that while PINNs captures
the overall wave patterns very well, it exhibits smaller-
scale oscillations or numerical artifacts.

Quantitatively, as shown in Tab. 7, PINNs achieve a
lower mean absolute error (0.001851 Pa) than the ELM-
ODE method (0.007404 Pa), confirming that PINNs offer
better accuracy overall in the tested scenario. However,
this comes at the cost of significantly higher computa-
tional demands, PINNs require approximately one hour
of training, while ELM-ODE produces results within sec-
onds.

Table 7. Accuracy and cost for 1D simulation
Metric PINNs ELM-ODE
MAE 1.851× 10−3 7.404× 10−3

Training Time 1 h 2 min 2.98 s

5.2 2D Cases

Extending the methods from Section 5.1 to two dimen-
sions allows for more realistic outdoor acoustic propaga-
tion scenarios, such as a planar Gaussian pressure pulse
advected by a horizontal background wind. Fig. 2 com-
pares the solutions at two different time instants, t = 0.2 s
and t = 0.6 s. Both PINNs and ELM-ODE solutions
closely match the finite-difference (FD) reference, captur-
ing wavefront propagation and boundary reflections effec-
tively. At early times (t = 0.2 s) (as it is written in Tab. 8),
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Figure 1. Comparison of pressure fields (top row)
and absolute error (bottom row) for the 1D Lin-
earized Euler Equation simulation. The FD solution
serves as ground truth.

both methods yield mean absolute errors (MAE) in the or-
der of 10−3. At later times (t = 0.6 s), the error increases
to the order of 10−2, consistent with expected dispersion
and diffusion. Spatially, PINNs errors are more uniformly
distributed across the domain, while ELM-ODE shows er-
rors along high-gradient regions.

Despite these similar accuracies, the two methods dif-
fer significantly in runtime. The PINNs approach required
roughly 7.6 hours of training, whereas ELM-ODE fin-
ished in about 23 minutes. Important is, most of the
ELM-ODE cost does not come from integrating the or-
dinary differential equation system, rather, it is spent as-
sembling and factorizing the large block matrices (as dis-
cussed around Equations (21), (22), (23), (24), and (26)).
Once those matrices are formed and factorized, the sub-
sequent time-integration step involves repeated matrix-
vector multiplications, which are relatively cheap.

An additional observation is that both methods must
solve for all three fields (vx, vy, p). Even if we are mainly
interested in the acoustic pressure p, the Linearized Euler
Equations intrinsically couple pressure and velocity via
gradients and divergences, making it physically incorrect
to omit the velocity unknowns. Consequently, the coeffi-
cient vector in ELM-ODE must span three fields, substan-
tially inflating the block matrices and their factorization
cost. In three dimensions, the velocity field gains a third
component, further increasing memory usage and compu-

tational effort. Nevertheless, for moderate 2D problems at
practical accuracy, ELM-ODE can be significantly faster
than a PINN-based solution while maintaining physically
consistent results.

Figure 2. Comparison of FD, PINNs, and ELM-
ODE solutions at t = 0.2 s and t = 0.6 s for the
2D domain. The bottom row shows the absolute er-
rors for PINNs and ELM-ODE compared to the FD
reference.

Table 8. Accuracy and cost for 2D simulation
Metric PINNs ELM-ODE
MAE (t = 0.2) s 6.2221× 10−3 2.8990× 10−3

MAE (t = 0.6) s 1.6631× 10−2 2.5553× 10−2

Training Time 7h 36m 52s 1362.424 s

6. CONCLUSION AND FUTURE WORK

We applied PINNs and ELM-ODE to solve the Linearized
Euler Equations for outdoor acoustics in both 1D and
2D. ELM-ODE decoupled the spatial approximation from
time integration and delivered faster solutions, despite
with slightly larger errors in the same order. By contrast,
PINNs attained slightly higher accuracy but demanded ex-
tensive training due to the full spatiotemporal residual.
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Future work requires applying complex boundary
conditions with frequency-dependent impedance and real-
istic ground surfaces to better match real-world acoustics.
Scaling these methods to 3D remains challenging due to
increased computational costs from the additional velocity
component. Moreover, exploring alternative PDEs such
as the convective Helmholtz equation or combining neu-
ral PDE solvers with measurement data or precomputed
simulations appears promising.
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