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ABSTRACT

Photoacoustic Imaging (PAI) combines optical excitation
with ultrasound detection to produce high-quality molec-
ular images of intact biological tissues. Conventional sys-
tems rely on Class IV [1] pulsed lasers, which limits clin-
ical translation. This work explores the use of pulsed
semiconductor diodes for their portability, versatility, and
low-cost. However, their lower peak power decreases PAI
signal amplitude. Implementing deep learning techniques
trained with realistic synthetic data is a promising tech-
nique to increase PAI image quality [2]. Here we create
a framework which simulates real scenarios taking into
account acoustics and optical properties, ultrasound trans-
ducer characteristics and fiber bundles features, crucial to
optimize reconstruction performance with a Neural Net-
work. The simulated experimental setup included an ar-
ray of optical fibers connected to semiconductor diodes
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parallel to a 128-element transducer array which registers
the signal generated by the absorbed light. Optical proper-
ties were simulated in MCX Monte Carlo software using
GPU parallelization. k-Wave software was used for acous-
tic simulations and Time-Reversal (TR) image reconstruc-
tion. Finally, a Neural Network model implemented using
Tensorflow enhanced the reconstruction, recovering up to
3 cm depth and 200 pm of resolution, delivering excep-
tional vascular imaging quality.

Keywords: Photoacoustic Imaging, Ultrasound, Medical
Physics

1. INTRODUCTION

Photoacoustic imaging (PAI) is an emerging biomedical
imaging modality that combines optical excitation and ul-
trasound detection to generate high-contrast structural and
molecular images of biological tissues. Its underlying
mechanism relies on the thermo-acoustic effect, mathe-
matically represented by:

po = Cpad, )]

Where pg is the initial pressure rise, I' is the
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Griineisen parameter, j,, is the tissue absorption coeffi-
cient, and ¢ is the local optical fluence.

State-of-the-art PAI systems typically utilize Class IV
pulsed lasers, which, despite providing sufficient optical
power, present substantial drawbacks such as high costs,
large size, and significant regulatory restrictions, limiting
clinical translation. To overcome these challenges, semi-
conductor diode lasers have emerged as a compact and
cost-effective alternative. However, their lower optical
output power substantially reduces fluence, negatively im-
pacting image quality and clinical applicability.

Recent advances in computational imaging, specif-
ically deep learning techniques integrated with conven-
tional reconstruction algorithms, offer promising path-
ways to compensate for reduced fluence and improve re-
construction accuracy. In this study, we develop and eval-
uate a neural network model trained using realistic numer-
ical simulations of our experimental setup, meticulously
accounting for relevant acoustic and optical properties of
biological tissues. By improving image reconstruction
quality, this approach aims to mitigate the intrinsic lim-
itations associated with diode-based illumination, thereby
enabling the development of clinically viable, handheld
PAI systems.

2. METHODOLOGY

Training neural networks effectively requires extensive
datasets. To meet this requirement, we developed a com-
putational framework to generate realistic synthetic data
closely replicating our experimental setup. This frame-
work integrates acoustic and optical simulations using ac-
curate physical parameters, thereby producing synthetic
pressure distributions that closely mimic real-world sce-
narios. The resulting data is subsequently used to enhance
the quality and effectiveness of signal post-processing and
reconstruction.

2.1 Optical simulations

An array comprising five semiconductor diodes is ar-
ranged to uniformly illuminate the acoustic transducer ac-
quisition plane, as illustrated in Fig. 1A. Optical sim-
ulations were conducted using MCX Monte Carlo soft-
ware [3] to calculate the two-dimensional fluence distri-
bution at the transducer acquisition plane. The simulated
medium was water, selected due to its low scattering and
absorption coefficients [4], facilitating clear evaluation of
the optical fluence pattern.
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Figure 1. a) Experimental setup simulated. b) Flu-
ence map in the transducer plane corresponding to
the acquisition area.

2.2 Phantom generation

Phantoms with realistic vessel structures were generated
using a 3D stochastic algorithm informed by real ves-
sel data from coronary arteries [5]. Three distinct pro-
jections were created for each generated phantom, pro-
ducing a comprehensive set of 2D images. By applying
various geometric transformations and deformations, a di-
verse dataset comprising 2000 phantom images was com-
piled. Each phantom image was subsequently combined
with the simulated fluence map to yield the correspond-
ing initial pressure distribution. The ground truth used for
neural network training was defined by an ideal, uniform
fluence map, representing optimal illumination conditions
with a perfectly homogeneous light source.

2.3 Acoustic simulations

Acoustic simulations were conducted using the k-Wave
software [6], which addresses both the forward and in-
verse acoustic propagation problems. The forward sim-
ulation involved propagating the initial pressure distribu-
tion through water by solving the acoustic wave propaga-
tion equation. Signals were captured using a simulated
128-element ultrasound transducer array with a central
frequency of 7.5 MHz, considering the acoustic proper-
ties of the medium and the geometric arrangement of the
transducer elements [7].

Subsequently, the inverse acoustic problem was
solved using the classical Time-Reversal (TR) reconstruc-
tion algorithm. This method reconstructs the initial pres-
sure distribution by temporally reversing and re-emitting
the recorded signals from each transducer element, effec-
tively back-propagating the acoustic waves to their origi-
nal spatial locations.
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2.4 Neural network

The neural network framework developed for this study
employs two distinct architectures, as depicted in Fig. 2.
The first network is a U-Net designed to process the raw
signals simulated with k-Wave under realistic fluence con-
ditions and output signals corresponding to an ideal uni-
form fluence scenario. This step effectively corrects for
fluence heterogeneities inherent in diode illumination.

Subsequently, a Y-Net architecture is utilized, re-
ceiving as inputs both the fluence-corrected signals from
the U-Net and the initial reconstruction produced by the
TR algorithm. The Y-Net generates an enhanced recon-
structed image by combining the preliminary reconstruc-
tion information (TR) with additional data contained in
the fluence-corrected signals, capturing potentially lost
details during the initial reconstruction phase. All pres-
sure maps and signals were normalized to their respective
maximum values before neural network processing to en-
sure consistent training conditions and optimize network
performance.
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Figure 2. Neural Network workflow scheme.

3. RESULTS
3.1 Image reconstruction

The semiconductor diode illumination setup generates a
non-uniform fluence distribution, as depicted in Fig.1,
achieving a maximum imaging depth of approximately
30 mm. This depth represents the practical imaging limit
for the current photoacoustic configuration, beyond which
the fluence intensity decreases by 20% compared to the
maximum. When comparing reconstruction techniques,
the TR algorithm achieves effective reconstruction only
up to approximately 20 mm, beyond which the image
quality significantly deteriorates due to insufficient flu-
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Figure 3. Enhanced image analysis. a) Ground truth.
b) TR reconstruction. ¢) Neural Network reconstruc-
tion. d,e) Axial profiles. f,g) Lateral profiles.

ence and limitations in the algorithm, with the recon-
struction pressure dropping to less than 20% of the max-
imum peak. In contrast, the combined approach utilizing
the TR algorithm followed by the neural network (TR +
Neural Network) successfully reconstructs images across
the entire depth range enabled by the fluence distribution,
demonstrating superior capability in compensating for the
non-uniform illumination inherent in diode-based setups.

3.2 Image enhancement and artifact reduction

Further evaluation of axial and lateral profiles in the recon-
structed images provides insights into the effectiveness of
signal recovery and artifact mitigation, as illustrated in
Fig. 3. Axial profiles demonstrate the neural network’s ca-
pability to compensate for fluence-induced signal loss at
increased depths, effectively maintaining higher contrast
compared to the TR reconstruction (Figs. 3d and 3e). Lat-
eral profiles highlight the neural network’s proficiency in
reducing limited-view artifacts present in the TR method,
which typically manifest as data loss along axial vessel
structures. The neural network enhances the contrast and
clarity of these structures, significantly improving overall
image quality (Figs. 3f and 3g).

However, despite notable improvements, the neural
network occasionally reconstructs vessel-like structures
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absent from the ground truth, introducing artifacts. This
phenomenon likely arises from model overfitting due to
limited variability in the training dataset. Expanding the
training set size and diversifying case scenarios could mit-
igate such artifacts and further enhance reconstruction ac-
curacy.

4. CONCLUSIONS

The integration of classical reconstruction algorithms with
neural network-based approaches demonstrates signifi-
cant potential for improving the image quality of low-
cost, handheld photoacoustic imaging systems. This com-
bined methodology effectively compensates for the in-
herent limitations of semiconductor diode-based illumina-
tion, such as reduced and non-uniform fluence, by enhanc-
ing both image depth and contrast. Crucially, accurate and
realistic simulation environments are essential for the suc-
cessful training and performance optimization of neural
networks. By employing meticulously characterized syn-
thetic datasets that closely replicate experimental condi-
tions, neural networks can achieve reliable reconstruction
capabilities, leading to improved clinical viability and di-
agnostic utility of compact photoacoustic devices. Future
efforts should focus on expanding the variability and size
of training datasets, addressing artifacts introduced during
reconstruction, and validating performance against exper-
imental data to ensure robust clinical translation.
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