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ABSTRACT

A numerical approach of multiple scattering based on
the resolution of multiple scattering equations for elastic
waves inside solid heteregenous media is presented. It is
validated by extracting the effective velocity and attenua-
tion of longitudinal and transverse coherent inside a dis-
persion of spherical scatterers embedded in a duralumin
matrix.
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1. INTRODUCTION

The propagation of elastic waves in multiply scattering
solid media is an old problem that has been less studied
than the case of acoustic waves (in fluids) or electromag-
netic waves. One of the reasons lies in the existence of
conversions between longitudinal and transverse waves at
the surface of each scatterer. This work presents a new
method for simulating elastic wave propagation in hetero-
geneous media composed of spherical inclusions embed-
ded in a solid matrix. The MuScat code, initially devel-
oped to simulate acoustic wave propagation in heteroge-
neous fluids [1], is adapted to take into account the vector
nature of elastic waves in three dimensions. It is based
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on the analytical solution of the multiple scattering equa-
tions using the spherical harmonic expansion of the inci-
dent and scattered fields, which allows to consider very
large dispersions of particles. In a first section, we de-
scribe this general principle behind the code. In a second
section, we show the validation of the numerical approach
on dispersions of spherical cavities filled with water em-
bedded in a duralumin solid matrix. Note that a similar
study has been performed in two dimensions (cylindrical
cavities filled with water) in ref. [2].

2. GENERAL PRINCIPLE OF THE MODELING

The modeling behind the MuScat code for elastic waves
will be presented in details in a future work. In the fol-
lowing, we indicate the main principles behind it.

We consider an isotropic and homogeneous visco-
elastic medium of Lamé parameters (\, ) and density p
(we denote ky, the longitudinal wavenumber and kr the
transverse one) inside which are embedded N,, spheres of
respective radii a,, Lamé parameters (A, 11,,) and densi-
ties p,, (fig. 2). There is no limitation on the polydisperisty
either in size or elasticity.

We follow the T-matrix approach already used in
electromagnetism [3, 4], adding the mode conversations
between longitudinal and transverse waves that exist in
the elastic case (details about this can be found in ref.
[5]). Within this framework, the incident displacement
field upon the distribution of scatterers is expanded upon
the usual Vector Spherical Wavefunctions (VSWF) L,,,,,,
M,,,,, and N,,,,, that are solutions of the elastic wave
equations in an homogeneous medium (see ref. [6] for
their definition and properties), as
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Figure 1. An incident displacement field (plane
wave) is sent on a distribution of spherical scatterers
placed in a cylindrical slab inside the solid matrix.

ue(rg) = Y (ak, LY, (ro) + L, N (ro)
- ey
+ g, M, (o).

This field is expressed in an arbitrary coordinates sys-
tem Ry (rg denotes the position in this system), generally

placed at the center of the distribution of scatterers. For
+oo  +n

convenience we have used the notation Z = Z Z .
The superscript (1) denotes the use of the spherical Bessel
function of the first kind j,, in the definition of the VSWF.
The coefficients a  are the amplitudes of the incident
field and are known. The L part refers to longitudinal con-
tributions to the displacement field wheareas the 7' and
S parts represent the transverse ones. The total field u,
which we seek to express, is

n=0m=—n

N,

= (o) + 30 )

p=1

(©))

where u;¢(r;) is the scattered field of the p-th particule
expressed in its local coordinates system R,,. Those fields
are also expanded on the VSWF and are thus written

welr,) = 3

n,m

+ bﬁﬁM% (rp))-

L1, B3)

nm-—mnm

(rp) + bﬁﬁNﬂ(fp)
(3)
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The superscript (3) indicates here the use of the spheri-
cal Hankel function of the first kind hs) in the definition
of the VSWF. The coefficients b2, are the amplitudes of
the mode M = L, T, S of the scattered field of the p-th
particle and are thus the unknowns of the problem. Using
the addition theorems for VSWF [4,7] we can express the
excited field on the p-th particle u," = u'"e 4 Z u,“ in
its local coordinates system R,,. Knowing the T(—Irflzz)nltrix of
the particle, we can eventually write a linear system that
allows to find the coefficients b2;2/ and then determine the
total field. This system is solved numerically by introduc-
ing a modal truncature and using iterative methods.

3. EXTRACTION OF EFFECTIVE PARAMETERS
OF A MULTIPLE SCATTERING MEDIUM

3.1 The coherent field

The validation of the numerical approach is here realized
by comparison with a vector multiple scattering model
(denoted as the LCVB model) giving the effective parame-
ters of the coherent longitudinal and transverse waves [5].
Indeed, the displacement field for a realization of the dis-
order can be written u = (u) + Ju, where (-) denotes the
configurational average. (u) is thus the coherent field. It
can be written

(u) = uge™//*p, )
where P is the polarization of the incident wave and kféf

is the so-called effective wave number (M = L for a lon-
gitudinal wave, M = T for a transverse one). We have
kIF = w/est T 1i a8t where ¢517 is the effective veloc-
ity of the coherent wave and ai‘\}[cf its effective attenuation.
The propagation of the coherent wave is thus modeled as
the propagation of an elastic wave of polarization p in-
side an effective homogeneous medium. The two param-
eters ce]\/f[f and aj}}f characterize the multiple scattering
medium.

3.2 Results and discussion

We consider the propagation of an elastic wave inside a
dispersion of spherical cavities (all with the same radius
a = 250 pm) filled with water embedded inside a dura-
lumin matrix (p = 2800 kg/m3,\ = 57.8 GPa, u = 28
GPa). The spheres are put in a virtual volume of trans-
verse diameter D and thickness hy ¢ (see fig. 2) and illu-
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minated by a plane wave ' . We measure the transmissions
coefficients for N, dispersions of spheres. We denote 7~
the configurationally averaged transmission coefficient? .
The effective parameters are then extracted from the fol-

lowing expression

eikesrherys

(&)

= oikhers

with k = kp, (resp. k = kr) if the incident wave is longi-
tudinal (resp. transverse).
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Figure 2. Frequency dependant effective velocity
(top) and attenuation (bottom) of coherent longitudi-
nal waves in a dispersion of cavities (filled with wa-
ter) embedded inside a duralumin matrix (¢, = 2%)
around several resonances. Comparison between the
LCVB model and numerical results obtained with

MuScat.

' The number of modes to take into account for the truncature
is determined from the scattering cross section of the scatterers.
For an incident longitudinal (resp. transverse) wave, a maximum
of 5 (resp. 6) modes has been taken.

2 For each configuration of the disorder, we also perform spa-
tial average (over a surface S as seen on fig. 2), as it is often do
practically in experiments, to achieve a better averaging process.

Fig. 2 shows the effective velocity and attenuation of

the coherent longitudinal wave in the dispersion of spher-
ical cavities for a volume fraction ¢, = 2%. The spheres
are placed inside the heteregenous medium with just a
condition of non-overlaping, i.e. the distance between the

centers of two scatterers shall be superior to 2a. The fig-
ure shows a good agreement between the LCVB model
and the numerical results obtained with MuScat. Several
resonances can be observed, they are characterized by a
strong dispersion on the effective velocity of the coherent
wave and thus also by an effective attenuation peak.
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Figure 3. Frequency dependant effective veloc-
ity (top) and attenuation (bottom) of coherent shear
waves in a dispersion of cavities (filled with water)
embedded inside a duralumin matrix (¢, = 2%)
around several resonances. Comparison between the
LCVB model and numerical results obtained with

MuScat.

Fig. 3 shows the effective velocity and attenuation
for the coherent shear waves in those dispersions. A good
agreement can be seen between analytical and numerical
results. Several resonances are also observed over the fre-
quency band. In this kind of system, for both longitudi-
nal and transverse waves, those resonances are linked to
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the existence of whispering gallery waves and Rayleigh
waves modes at the interface of the cavities [2].

4. CONCLUSION

We have presented a numerical approach, MuScat, aiming
to study the propagation of elastic waves inside heteroge-
neous media. It has been validated here by comparison
with a vectorial model of elastic wave multiple scattering.
This numerical approach opens new perspectives for the
study of elastic waves propagation inside dispersions of
scatterers both on the coherent part of the field and on its
fluctuations. Several types of incident waves can be used
(point source, plane wave, Gaussian beam) and the distri-
bution of scatterers can be polydisperse both in size and
elasticity.
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