

FORUM ACUSTICUM EURONOISE 2025

NUMERICAL SIMULATIONS OF ELASTIC WAVE PROPAGATION IN SOLID MATERIALS CONTAINING A RANDOM DISTRIBUTION OF SPHERICAL SCATTERERS

Tanguy Bertels¹

Tony Valier-Brasier^{1*}

Jean-Marc Conoir¹

¹ Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, UMR 719,
4 Place Jussieu, Paris, F-75005, France

ABSTRACT

A numerical approach of multiple scattering based on the resolution of multiple scattering equations for elastic waves inside solid heterogeneous media is presented. It is validated by extracting the effective velocity and attenuation of longitudinal and transverse coherent inside a dispersion of spherical scatterers embedded in a duralumin matrix.

Keywords: *multiple scattering, elastic waves, coherent wave, effective parameters, numerical approach.*

1. INTRODUCTION

The propagation of elastic waves in multiply scattering solid media is an old problem that has been less studied than the case of acoustic waves (in fluids) or electromagnetic waves. One of the reasons lies in the existence of conversions between longitudinal and transverse waves at the surface of each scatterer. This work presents a new method for simulating elastic wave propagation in heterogeneous media composed of spherical inclusions embedded in a solid matrix. The MuScat code, initially developed to simulate acoustic wave propagation in heterogeneous fluids [1], is adapted to take into account the vector nature of elastic waves in three dimensions. It is based

on the analytical solution of the multiple scattering equations using the spherical harmonic expansion of the incident and scattered fields, which allows to consider very large dispersions of particles. In a first section, we describe this general principle behind the code. In a second section, we show the validation of the numerical approach on dispersions of spherical cavities filled with water embedded in a duralumin solid matrix. Note that a similar study has been performed in two dimensions (cylindrical cavities filled with water) in ref. [2].

2. GENERAL PRINCIPLE OF THE MODELING

The modeling behind the MuScat code for elastic waves will be presented in details in a future work. In the following, we indicate the main principles behind it.

We consider an isotropic and homogeneous viscoelastic medium of Lamé parameters (λ, μ) and density ρ (we denote k_L the longitudinal wavenumber and k_T the transverse one) inside which are embedded N_p spheres of respective radii a_p , Lamé parameters (λ_p, μ_p) and densities ρ_p (fig. 2). There is no limitation on the polydispersity either in size or elasticity.

We follow the T-matrix approach already used in electromagnetism [3, 4], adding the mode conversations between longitudinal and transverse waves that exist in the elastic case (details about this can be found in ref. [5]). Within this framework, the incident displacement field upon the distribution of scatterers is expanded upon the usual Vector Spherical Wavefunctions (VSWF) \mathbf{L}_{nm} , \mathbf{M}_{nm} and \mathbf{N}_{nm} , that are solutions of the elastic wave equations in an homogeneous medium (see ref. [6] for their definition and properties), as

**Corresponding author:* tony.valier-brasier@sorbonne-universite.fr

Copyright: ©2025 Tanguy Bertels et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

FORUM ACUSTICUM EURONOISE 2025

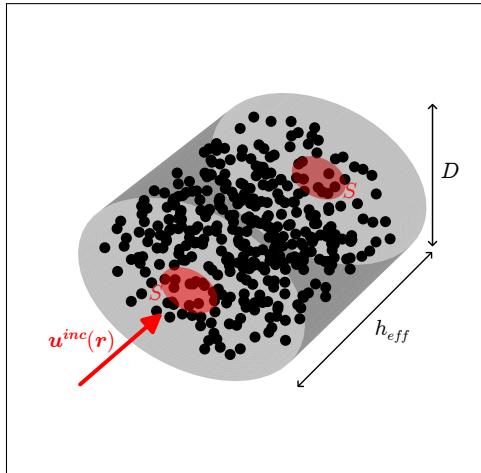


Figure 1. An incident displacement field (plane wave) is sent on a distribution of spherical scatterers placed in a cylindrical slab inside the solid matrix.

$$\mathbf{u}^{inc}(\mathbf{r}_0) = \sum_{n,m} (a_{nm}^L \mathbf{L}_{nm}^{(1)}(\mathbf{r}_0) + a_{nm}^T \mathbf{N}_{nm}^{(1)}(\mathbf{r}_0) + a_{nm}^S \mathbf{M}_{nm}^{(1)}(\mathbf{r}_0)). \quad (1)$$

This field is expressed in an arbitrary coordinates system R_0 (\mathbf{r}_0 denotes the position in this system), generally placed at the center of the distribution of scatterers. For

convenience we have used the notation $\sum_{n,m} \equiv \sum_{n=0}^{+\infty} \sum_{m=-n}^{+n}$.

The superscript (1) denotes the use of the spherical Bessel function of the first kind j_n in the definition of the VSWF. The coefficients a_{nm}^M are the amplitudes of the incident field and are known. The L part refers to longitudinal contributions to the displacement field whereas the T and S parts represent the transverse ones. The total field \mathbf{u} , which we seek to express, is

$$\mathbf{u} = \mathbf{u}^{inc}(\mathbf{r}_0) + \sum_{p=1}^{N_p} \mathbf{u}_p^{sc}(\mathbf{r}_p), \quad (2)$$

where $\mathbf{u}_p^{sc}(\mathbf{r}_p)$ is the scattered field of the p -th particule expressed in its local coordinates system R_p . Those fields are also expanded on the VSWF and are thus written

$$\mathbf{u}^{sc}(\mathbf{r}_p) = \sum_{n,m} (b_{nm}^{p,L} \mathbf{L}_{nm}^{(3)}(\mathbf{r}_p) + b_{nm}^{p,T} \mathbf{N}_{nm}^{(3)}(\mathbf{r}_p) + b_{nm}^{p,S} \mathbf{M}_{nm}^{(3)}(\mathbf{r}_p)). \quad (3)$$

The superscript (3) indicates here the use of the spherical Hankel function of the first kind $h_n^{(1)}$ in the definition of the VSWF. The coefficients $b_{nm}^{p,M}$ are the amplitudes of the mode $M = L, T, S$ of the scattered field of the p -th particule and are thus the unknowns of the problem. Using the addition theorems for VSWF [4, 7] we can express the excited field on the p -th particule $\mathbf{u}_p^{ex} = \mathbf{u}^{inc} + \sum_{q \neq p} \mathbf{u}_q^{sc}$ in

its local coordinates system R_p . Knowing the T-matrix of the particule, we can eventually write a linear system that allows to find the coefficients $b_{nm}^{p,M}$ and then determine the total field. This system is solved numerically by introducing a modal truncature and using iterative methods.

3. EXTRACTION OF EFFECTIVE PARAMETERS OF A MULTIPLE SCATTERING MEDIUM

3.1 The coherent field

The validation of the numerical approach is here realized by comparison with a vector multiple scattering model (denoted as the LCVB model) giving the effective parameters of the coherent longitudinal and transverse waves [5]. Indeed, the displacement field for a realization of the disorder can be written $\mathbf{u} = \langle \mathbf{u} \rangle + \delta \mathbf{u}$, where $\langle \cdot \rangle$ denotes the configurational average. $\langle \mathbf{u} \rangle$ is thus the coherent field. It can be written

$$\langle \mathbf{u} \rangle = u_0 e^{ik_{eff} z} \hat{\mathbf{p}}, \quad (4)$$

where $\hat{\mathbf{p}}$ is the polarization of the incident wave and k_M^{eff} is the so-called effective wave number ($M = L$ for a longitudinal wave, $M = T$ for a transverse one). We have $k_M^{eff} = \omega/c_M^{eff} + i\alpha_M^{eff}$, where c_M^{eff} is the effective velocity of the coherent wave and α_M^{eff} its effective attenuation. The propagation of the coherent wave is thus modeled as the propagation of an elastic wave of polarization $\hat{\mathbf{p}}$ inside an effective homogeneous medium. The two parameters c_M^{eff} and α_M^{eff} characterize the multiple scattering medium.

3.2 Results and discussion

We consider the propagation of an elastic wave inside a dispersion of spherical cavities (all with the same radius $a = 250 \mu\text{m}$) filled with water embedded inside a duralumin matrix ($\rho = 2800 \text{ kg/m}^3, \lambda = 57.8 \text{ GPa}, \mu = 28 \text{ GPa}$). The spheres are put in a virtual volume of transverse diameter D and thickness h_{eff} (see fig. 2) and illu-

FORUM ACUSTICUM EURONOISE 2025

minated by a plane wave¹. We measure the transmissions coefficients for N_{avg} dispersions of spheres. We denote \mathcal{T} the configurationally averaged transmission coefficient². The effective parameters are then extracted from the following expression

$$\mathcal{T} = \frac{e^{ik_{eff}h_{eff}}}{e^{ikh_{eff}}}, \quad (5)$$

with $k = k_L$ (resp. $k = k_T$) if the incident wave is longitudinal (resp. transverse).

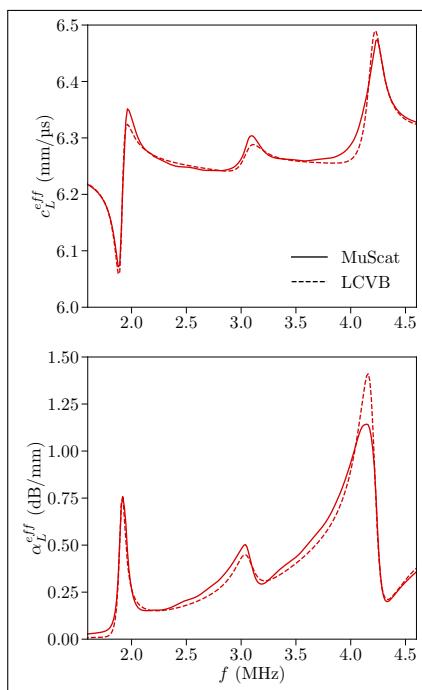


Figure 2. Frequency dependant effective velocity (top) and attenuation (bottom) of coherent longitudinal waves in a dispersion of cavities (filled with water) embedded inside a duralumin matrix ($\phi_v = 2\%$) around several resonances. Comparison between the LCVB model and numerical results obtained with MuScat.

¹ The number of modes to take into account for the truncature is determined from the scattering cross section of the scatterers. For an incident longitudinal (resp. transverse) wave, a maximum of 5 (resp. 6) modes has been taken.

² For each configuration of the disorder, we also perform spatial average (over a surface S as seen on fig. 2), as it is often do practically in experiments, to achieve a better averaging process.

Fig. 2 shows the effective velocity and attenuation of the coherent longitudinal wave in the dispersion of spherical cavities for a volume fraction $\phi_v = 2\%$. The spheres are placed inside the heterogeneous medium with just a condition of non-overlapping, i.e. the distance between the centers of two scatterers shall be superior to $2a$. The figure shows a good agreement between the LCVB model and the numerical results obtained with MuScat. Several resonances can be observed, they are characterized by a strong dispersion on the effective velocity of the coherent wave and thus also by an effective attenuation peak.

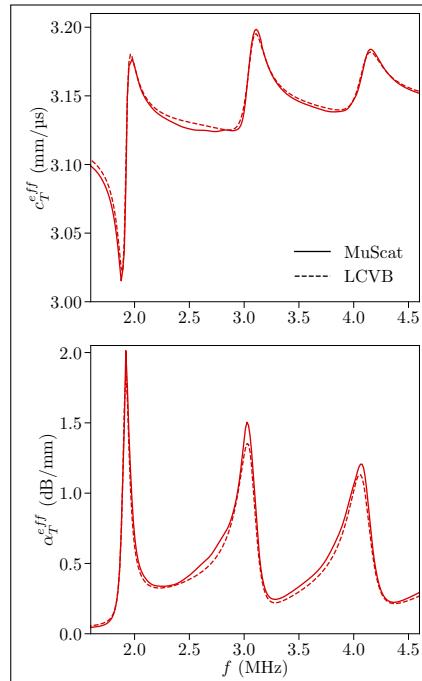


Figure 3. Frequency dependant effective velocity (top) and attenuation (bottom) of coherent shear waves in a dispersion of cavities (filled with water) embedded inside a duralumin matrix ($\phi_v = 2\%$) around several resonances. Comparison between the LCVB model and numerical results obtained with MuScat.

Fig. 3 shows the effective velocity and attenuation for the coherent shear waves in those dispersions. A good agreement can be seen between analytical and numerical results. Several resonances are also observed over the frequency band. In this kind of system, for both longitudinal and transverse waves, those resonances are linked to

FORUM ACUSTICUM EURONOISE 2025

the existence of whispering gallery waves and Rayleigh waves modes at the interface of the cavities [2].

[7] O. R. Cruzan, “Translational addition theorems for spherical vector wave functions,” *Quarterly of Applied Mathematics*, vol. 20, pp. 33–40, 1962.

4. CONCLUSION

We have presented a numerical approach, MuScat, aiming to study the propagation of elastic waves inside heterogeneous media. It has been validated here by comparison with a vectorial model of elastic wave multiple scattering. This numerical approach opens new perspectives for the study of elastic waves propagation inside dispersions of scatterers both on the coherent part of the field and on its fluctuations. Several types of incident waves can be used (point source, plane wave, Gaussian beam) and the distribution of scatterers can be polydisperse both in size and elasticity.

5. REFERENCES

[1] A. Rohfritsch, J.-M. Conoir, R. Marchiano, and T. Valier-Brasier, “Numerical simulation of two-dimensional multiple scattering of sound by a large number of circular cylinders,” *The Journal of the Acoustical Society of America*, vol. 145, pp. 3320–3329, 06 2019.

[2] T. Valier-Brasier, A. Rohfritsch, J.-M. Conoir, and R. Marchiano, “Propagation of coherent longitudinal and shear waves in two-dimensional elastic media with randomly distributed resonant cavities,” *Phys. Rev. B*, vol. 105, p. 054310, Feb 2022.

[3] L. Tsang, J. Kong, K. Ding, and O. Chi, *Scattering of Electromagnetic Waves, Numerical Simulations*. John Wiley & Sons, 2001.

[4] J. Fikioris and P. Waterman, “Multiple scattering of waves. iii. the electromagnetic case,” *Journal of Quantitative Spectroscopy and Radiative Transfer*, vol. 123, pp. 8–16, 2013. Peter C. Waterman and his scientific legacy.

[5] F. Luppé, J.-M. Conoir, and T. Valier-Brasier, “Longitudinal and transverse coherent waves in media containing randomly distributed spheres,” *Wave Motion*, vol. 115, p. 103082, 2022.

[6] P. Morse and H. Feshbach, *Methods of Theoretical Physics*. International series in pure and applied physics, McGraw-Hill, 1953.

