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ABSTRACT

Architects always use a range of aesthetic elements,
including fractionally graded materials (FGMs), at a high
acoustic and thermal demand level. Numerous partial
differential equations, especially wave equations, have
previously been the focus of extensive analytical or
numerical approaches. However, the application of Neural
Networks guided by physics raises the standard for acoustic
results. Using the novel paradigm outlined in that paper,
metal-ceramic  composites, for instance, demonstrate
extremely effective wave behavior to demonstrate changes
in stiffness and density, including radiation, scattering, and
noise transmission. Several kinds of PINN can help
precisely define the error when comparing square error,
absolute error, and mean square error compared to finite
element simulations. The MATLAB NEURAL simulation
for neural network toolboxes were used to view the
simulation in this research. The research revealed that the
results were extremely accurate, with a maximum
inaccuracy of 2.6%. Intending to improve the acoustic
management of homogenous materials, this study
correspondingly examines the impact of material gradient
on reflection and sound insulation properties. This
suggested strategy offers a highly motivated basis for
resolving wave propagation, opening the door to far better
soundproofing outcomes, noise management, and more
effective building material design.
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1. INTRODUCTION

The development of new materials is greatly aided by
recent developments in the field of materials science and
engineering, which have made it possible for researchers to
make judgments more quickly and accurately. Designing
innovative materials requires the use of sophisticated
mathematical models and appropriate neural network
implementation. Artificial intelligence (Al) has become a
necessity in many sectors, such as medicine [1],
mechatronics [2], and aerodynamics [3], in the modern
world. One of the famous Neural Network model - Physics-
Informed Neural Networks (PINNs), which are successful
in resolving challenging scientific and technical issues, is
especially significant in this study. It is currently effectively
used in a number of fields, including semiconductor
technology [4], robotics [5], nuclear reactors [6], fatigue
fracture analysis [7], blood flow monitoring [8], and
lithium-ion batteries [9]. Its application is also noteworthy
in domains including fluid dynamics modeling [10], safety
control [11], and signal processing [12]. However, choosing
the right material for a given application is one of the
biggest hurdles in research. This study examines how well
fractional gradient-descent-based composite materials work
to address the issues of building thermal control and
acoustic noise reduction. Zinc or aluminium oxide [13],
Inconel-stainless steel [14], zirconium-aluminum [15], and
natural materials like bamboo [16] can all be used to create
these composite materials. The Navier-Stokes Equation, a
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renowned partial differential equation (PDE), is employed
in this work to calculate the stress and elasticity of various
materials, thereby assessing their suitability in building
construction. Currently, the Finite Element Method (FEM)
is used to get numerical solutions [17]; however, neural
network-based solutions have received very little attention.
Structure-Based PINNs [18], Variable Scaling PINNSs [19],
Fee PINNs [20], Runge-Kutta PINNs [21], and Flow
Neural Networks [22] are among the prominent techniques
for applying Physics-Informed Neural Networks (PINNSs) to
various structures. With these techniques, several modeling
approaches can be enhanced through the use of the Loss-
Weighted Algorithm or Loss Function Optimization [23],
which can be applied to thermal modeling [24], hydrogen
energy systems [25], and water hammer modeling [26]. The
Helmholtz Equation [27], Fokker-Planck Equation [28],
Time-Fractional Telegraph Equation [29], and Stochastic
Differential Equation [30] are a few prominent examples of
mathematical problems that can be directly solved using
PINNS.

PINN's approach finds answers to the wave equation, which
is comparable to actual waves, using epoxy-based training.
This solution can be used to determine the frequency,
refraction, reflection, wave speed, and ability to pass
through the noise material. Even though the approach is still
in the experimental stage and not as reliable as other
numerical methods, it is continually being refined.
Consequently, error analysis has been carried out in this
study.

The equation that served as the foundation for the answer
was identified in the first stage. The properties of the
fractional gradient material were examined in the second
step. The impact of multidimensional values was assessed
in the third step, which involved a critical discussion of the
wave function and its structure. Finally, by analyzing the
findings and measuring the inaccuracies, potential avenues
for further research have been suggested.

2. EQUATION MATHEMATICAL ANALYSIS

To investigate energy and other important properties for
acoustic study of a material, one of the key aspects to
consider is wave behavior. However, studying the wave
function of a material often involves solving multiple partial
differential equations. This study's analysis of the governing
equation of the Navier-Stokes Elastic Motion Equation can
provide new insights into the topic for an FGM material, if
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the displacement is U, the stress is & and density is p then
the elastic motion will be,

M)
@

5xxx + 5yxy + P;c = pUxtr
Byyy tO0uyx T E, = pUype
Where, 6, = ;j%f.
Another way if we consider strain £, we can get the

comparison with wave function that,

Eyy = [l.;’y}:l)' Q)
£y = L2 ©)

By using Hookes law, we may get the following
relations if we consider Young’s Modulus as = and
Poisson’s Ratio aso,

—

= (1+QJ(1 20) Toa |18+ st] (6)
Oyy = (1+0)(1-2¢) [( - Q)gw + stx] (7)
Placing the values of &,,, &, and &,,, in equations 1 and
2, we will get,
E(1-@)
Wﬁzm e T Ee = Ut (9)
2(1H+Q) Uy + By = pUyee (10)

These two equations are the Navier-Stokes Elastic
Motion Equations for the x and y axes, respectively.

Figure 1. Cross section of FGM material, Bamboo as
an example [31].

2.1. COORDINATES AND LOSS ANALYSIS
For wave function analysis, a layer-based (sliced)
approach has been used in this study. Serial numbers
i=1,2,3,...,n etc.,, have been assigned to each layer
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employed in the investigation, with L (m) representing
each layer's thickness. For this stacking in the global
coordinate system XOY, the necessary mathematical
equations have been formulated. The fact that every
layer is composed of the same kind of material and has
been deemed to be flawless is notable. This approach has
made it feasible to examine the waves' characteristics
and motion in more depth. Then equation (9) would be,

Si(1-ed) .
(1+£1’E)(1€29E) tF=pl,, 1=123..,n (11)

":xx
For this we will get the loss function of the governing
equation would be,

n R

Loelut) = SRZZZ |(1

Along the x-axis, the initial properties of the structure
(displacement and particle velocity) determine the initial
state, which is used as the starting conditions of the

2

Zi(1-0p)
. - +F —pUs,

+0,)(1—20) Ut (12)

system.
Ui(xi,t) = Ui(xi,O) = G!(x) y i= 1,2,3,...,71 (13)
Uit(xilt) = Ui(xilo) = Ft(x)ll = 112131 R (14)

Then the loss function using initial condition will be
concerned as,

n s
L0 =50 2 10,2 0) = Gl + Ui 0) = Fu( )P as)

This is the analogous boundary condition if the
displacement stress is applied to the first layer surface

for x: = 0. We will get,

Uy (xq,t) = U (0,8) = Q(&) (16)
U’!l(x?ll t) = Uﬂ,(H’!lJ t) = O (17)
Up (2, t) = U, (0,8) = 0 (18)

In this case, according to the hybrid-handed coordination
method, the boundary conditions must be described
separately for layers with odd and even serial numbers
(n). According to the characteristics of n, the loss
function and the form of the boundary condition will be
different for even and odd numbers of boundaries

if n =2k,

K
1
L4666 = 2 ) U, (0,6) = QI + U,y 6
T (19)
ifn=2x+1,
K

L0006 = 5 D 100,60 ~ QI + 10,0, )1
R& (20)
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When the structure consists of a single layer, the
requirements above are sufficient to solve Navier's
equations. If the layered structure has more than one
layer, more consistency requirements are needed. The
"consistency condition” refers to the requirement that the
displacement and stress stay constant at every interface
of the layered structure. The following is one way to
express these conditions:

Uzq(Haoyt) = =Uzq_1(Hyq4,1t) (21)
024 (Hy t) = 831 (Hzq1,t) (22)
UZa (On t) = _U2a+1(01 t) (23)
52a(OJ t) = 52a+1(OJ t) (24)

This also requires a loss function of compatibility, which
will vary over even and odd.
ifn=2xk

n/z g

D D MUz () + U (H 1,8 + Uz, (oo ) = Uz (o,

Lxnt)=""" ,.n,

#0020, + Uzp0,60)] "+ Uz, (0,6 = Ung 0,1,
B T

(25)
ifn=2x+t1
n-1/2 g )
D D Wbl ) 4 Uy (e, 61+ (U (a6 = Uy (Bt
Leat)= " " in .
+ Z Zl”zﬁn(ﬂn )+ Uw(ﬂ-fk}r + | Uap41, (0,8) = Uz,ﬂ'(o-[k)lz
B r
(26)

The overall loss function of a system of multiple PINNs
(Physics-Informed Neural Networks) is the sum of the
loss functions of all sub-PINNs, which is composed of
four main components:

Lrotal(xl t) = L_r;e + Lo+ Ly + Lo (27)
P =

”® |% |
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Figure 2. Diagrammatic illustration of the physics-
informed neural network framework of the governing
equations.
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3. SOLUTION ANALYSIS

In physics, analytical methods for solving partial
differential equations (PDEs) are often theoretically
correct, but they have some limitations in practical
applications. But in that research, to the extent possible,
the result can overcome these limitations; we have
considered two different boundary conditions in our
study:

Table 1. Types according to their boundary
condition

Table 2. Materials Property

Properties Values
Density 751 Kg/m?®
Poisson’s ratio 0.27
Young’s Modulus 20Gpa

Fixed-Fixed

Initial U@,t)=0
Boundary UH,t)=0
Displacement  U(x,0) = G(x) =0
Velocity U,(x,0) = F(x) = 100000 x msin (3mx/H)
Solutions Ux,t) = Kyt + E;zgl{f cos (%T) sin (% t)

Where,

-2 " in(f™*
K = fmfo G(x)sm( - )dx
And
1 rH

K, = Efo G(x)dx
Bulk  wave _ E(1-0)
velocity T\ +@-29)p

Free-Free

Initial U.(0,t)=0
Boundary U.(H,t)=0
Displacement U(x,0) =G(x) =0
\elocity U,.(x,0) = F(x) = 100000 X msin (3mx/H)
Solutions — v/ (FTY o (e

Ux,t) = Zf:{) Ky sin (?) sin (? t)

Where,

-2 H in (L7

K = fmfo G(x) sm( m )dx
Bulk  wave _ E(1-0)
velocity T\ +-20)p

In this article, "Gigantochla Scortechini (a species of
bamboo found in Indonessia)" is used as an example of
the Gradiant Descent metarials for the entire test [31]
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4. RESULTS ANALYSIS:

The study's material has a density of 751 kg/ms3, a
Poisson's ratio of 0.27, a Young's modulus of 20x10° Pa,
and a thickness of 10 cm. These parameters indicate that
the material displays the wave behavior depicted in
Figure 3. As for the fixed-fixed situations, the time is
stable, where the velocity function used in the analysis is
F(x) and the global variable is one second. On the
contrary, in free-free boundary conditions, the boundary
changes over time, and the other space dimension
coordinates, where X is divided into 100 equal parts.
Here, a coefficient known as k, is introduced, which,

after ten iterative calculations, yields the optimal
solution.
R ,,a AR I
! . \‘ 3 .
Aqth %%e

Figure 3. Analytical Wave Propagation Solution
for Specified Material Parameters [32].

Finite element method (FEM) has been used in an
advanced way to find the wave propagation analysis. In
this method, it has been possible to examine the
propagation of waves in both the x and y directions using
a single finite element. In the case of Finite Element
Analysis, we have applied a very fine-scale mesh
system, where the size of each element has been set to
only 0.0001 m.
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Figure 4. Numerical Wave Propagation Solution for
both direction of x and y [32].

In this study, a deep neural network architecture to solve
the wave equation. This network model, implemented on
the matlab platform, consists of 4 fully connected hidden
layers, each with 64 neurons, and includes a tanh
function layer. We used 1,000 epochs in the training
process of the model, which was sufficient to adequately
train the network. Through this long-term training
process, it will take almost 15 minutes, as shown in
figure 6.

y/
o

Figure 5. Wave Solution using physics-informed
neural network [32].

5. PINN ERROR AND PERFORMANCE
ANALYSIS

A clear relationship has been observed between the number
of Epochs and the configuration of the hidden layer in the
training process of the neural network model implemented
in the study. The study has analysed 62000 iterations to
optimize the training parameters, which used the MATLAB
built-in function” trainingOptions™, which progress visible
on the training progress report.
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Taning Progress (96-Ape-2926 19:2408)

-

Figure 6. Training progress over time PINN [32].

Using Root mean square error (RMSE) figure 6 analyzed
using the formula provided that,

iU — U))?
i (U))?

RMSE =
(28)

Over a large number of iterations, it should approach nearly
zero. Using equation (28), the error value is almost 2.6%,
which is an excellent result. If this research were analyzed
with more neurons and hidden layers, the result would be
more accurate.

From the training progress, it's clearly visible that L_total
(x,t), as given by equation (27), decreases over time.
Furthermore, on maximum iteration, it's nearly zero. This
means there is almost no loss in our wave result due to that
training.

6. CONCLUSION

PINN (Physics-Informed Neural Network) has emerged as
a breakthrough technology in acoustic technology research,
which has revealed the experimental and numerical
methods. The unique ability of this technology can
occupied test using built-in parameters such as material
thickness, density, Young's modulus etc., but can also
accurately determine: Energy transfer rate through the
material, Reflection and refraction coefficients, Theoretical
properties of mechanical and physical properties

The study showed that the PINN method is able to provide
results with an error of only 2.6% and loss nearly 0%,
which has brought unprecedented accuracy to the material
selection process. Features of this technology can be
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improved by: Three-dimensional testing capability,
Complex geometry easily analyse, because machine can
breakthrough than FEM or analytical. This can provide
effective ideal for multilayer materials like (functional
gradient materials), can save convenient amount of time
roughly 70% less computational time than conventional
methods, High-dimensional problem-solving skills or
Predictive power: Enables prediction of equipment
performance, Provides guidelines for new material design,
Nano-structured materials  testing, Computer-assisted
construction material development, Design optimization of
sound-absorbing materials.

This has opened a new horizon in the construction industry,
where the material selection process is now able to achieve
unprecedented levels of knowledge technology precision
and computational time. PINN-normal This method will
play a significant role in the design and development of
sustainable infrastructure to meet the goals of the
coordination of principles.
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