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ABSTRACT* 

Architects always use a range of aesthetic elements, 

including fractionally graded materials (FGMs), at a high 

acoustic and thermal demand level. Numerous partial 

differential equations, especially wave equations, have 

previously been the focus of extensive analytical or 

numerical approaches. However, the application of Neural 
Networks guided by physics raises the standard for acoustic 

results. Using the novel paradigm outlined in that paper, 

metal-ceramic composites, for instance, demonstrate 

extremely effective wave behavior to demonstrate changes 

in stiffness and density, including radiation, scattering, and 

noise transmission. Several kinds of PINN can help 

precisely define the error when comparing square error, 

absolute error, and mean square error compared to finite 

element simulations. The MATLAB NEURAL simulation 

for neural network toolboxes were used to view the 

simulation in this research. The research revealed that the 
results were extremely accurate, with a maximum 

inaccuracy of 2.6%. Intending to improve the acoustic 

management of homogenous materials, this study 

correspondingly examines the impact of material gradient 

on reflection and sound insulation properties. This 

suggested strategy offers a highly motivated basis for 

resolving wave propagation, opening the door to far better 

soundproofing outcomes, noise management, and more 

effective building material design. 
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1. INTRODUCTION 

The development of new materials is greatly aided by 

recent developments in the field of materials science and 

engineering, which have made it possible for researchers to 

make judgments more quickly and accurately. Designing 

innovative materials requires the use of sophisticated 

mathematical models and appropriate neural network 
implementation. Artificial intelligence (AI) has become a 

necessity in many sectors, such as medicine [1], 

mechatronics [2], and aerodynamics [3], in the modern 

world. One of the famous Neural Network model - Physics-

Informed Neural Networks (PINNs), which are successful 

in resolving challenging scientific and technical issues, is 

especially significant in this study. It is currently effectively 

used in a number of fields, including semiconductor 

technology [4], robotics [5], nuclear reactors [6], fatigue 

fracture analysis [7], blood flow monitoring [8], and 

lithium-ion batteries [9]. Its application is also noteworthy 

in domains including fluid dynamics modeling [10], safety 
control [11], and signal processing [12]. However, choosing 

the right material for a given application is one of the 

biggest hurdles in research. This study examines how well 

fractional gradient-descent-based composite materials work 

to address the issues of building thermal control and 

acoustic noise reduction. Zinc or aluminium oxide [13], 

Inconel-stainless steel [14], zirconium-aluminum [15], and 

natural materials like bamboo [16] can all be used to create 

these composite materials. The Navier-Stokes Equation, a 
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renowned partial differential equation (PDE), is employed 
in this work to calculate the stress and elasticity of various 

materials, thereby assessing their suitability in building 

construction. Currently, the Finite Element Method (FEM) 

is used to get numerical solutions [17]; however, neural 

network-based solutions have received very little attention. 

Structure-Based PINNs [18], Variable Scaling PINNs [19], 

Fee PINNs [20], Runge-Kutta PINNs [21], and Flow 

Neural Networks [22] are among the prominent techniques 

for applying Physics-Informed Neural Networks (PINNs) to 

various structures. With these techniques, several modeling 

approaches can be enhanced through the use of the Loss-
Weighted Algorithm or Loss Function Optimization [23], 

which can be applied to thermal modeling [24], hydrogen 

energy systems [25], and water hammer modeling [26]. The 

Helmholtz Equation [27], Fokker-Planck Equation [28], 

Time-Fractional Telegraph Equation [29], and Stochastic 

Differential Equation [30] are a few prominent examples of 

mathematical problems that can be directly solved using 

PINNs.  

PINN's approach finds answers to the wave equation, which 

is comparable to actual waves, using epoxy-based training. 

This solution can be used to determine the frequency, 

refraction, reflection, wave speed, and ability to pass 

through the noise material. Even though the approach is still 

in the experimental stage and not as reliable as other 

numerical methods, it is continually being refined. 

Consequently, error analysis has been carried out in this 

study.  

The equation that served as the foundation for the answer 

was identified in the first stage.  The properties of the 

fractional gradient material were examined in the second 

step.  The impact of multidimensional values was assessed 

in the third step, which involved a critical discussion of the 

wave function and its structure.  Finally, by analyzing the 

findings and measuring the inaccuracies, potential avenues 

for further research have been suggested. 

2. EQUATION MATHEMATICAL ANALYSIS 

To investigate energy and other important properties for 

acoustic study of a material, one of the key aspects to 

consider is wave behavior. However, studying the wave 

function of a material often involves solving multiple partial 

differential equations. This study's analysis of the governing 
equation of the Navier-Stokes Elastic Motion Equation can 

provide new insights into the topic for an FGM material, if 

the displacement is U, the stress is δ and density is ρ then 

the elastic motion will be, 

    (1) 

    (2) 

Where,  .  

Another way if we consider strain , we can get the 

comparison with wave function that, 

 ,     (3) 

 ,     (4) 

       (5) 

By using Hooke’s law, we may get the following 

relations if we consider Young’s Modulus as  and 

Poisson’s Ratio as , 

   (6) 

   (7) 

      (8) 

Placing the values of ,  and  in equations 1 and 

2, we will  get, 

   (9) 

    (10) 

 
These two equations are the Navier-Stokes Elastic 

Motion Equations for the x and y axes, respectively. 

 

 

Figure 1. Cross section of FGM material, Bamboo as 

an example [31]. 

 

2.1. COORDINATES AND LOSS ANALYSIS 

For wave function analysis, a layer-based (sliced) 

approach has been used in this study. Serial numbers 

i=1,2,3,...,n etc., have been assigned to each layer 
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employed in the investigation, with L (m) representing 
each layer's thickness. For this stacking in the global 

coordinate system XOY, the necessary mathematical 

equations have been formulated. The fact that every 

layer is composed of the same kind of material and has 

been deemed to be flawless is notable. This approach has 

made it feasible to examine the waves' characteristics 

and motion in more depth. Then equation (9) would be, 

,  (11) 

 

For this we will get the loss function of the governing 
equation would be,  

 (12) 

 

Along the x-axis, the initial properties of the structure 

(displacement and particle velocity) determine the initial 

state, which is used as the starting conditions of the 

system. 

 ,   (13) 

  (14) 

 

Then the loss function using initial condition will be 

concerned as, 

 (15) 

 

This is the analogous boundary condition if the 

displacement stress is applied to the first layer surface 

for x₁ = 0. We will get, 

    (16) 

   (17) 

    (18) 

 

In this case, according to the hybrid-handed coordination 

method, the boundary conditions must be described 

separately for layers with odd and even serial numbers 

(n). According to the characteristics of n, the loss 

function and the form of the boundary condition will be 
different for even and odd numbers of boundaries  

 

 (19) 

 

 (20) 

 

When the structure consists of a single layer, the 
requirements above are sufficient to solve Navier's 

equations.  If the layered structure has more than one 

layer, more consistency requirements are needed.  The 

"consistency condition" refers to the requirement that the 

displacement and stress stay constant at every interface 

of the layered structure.  The following is one way to 

express these conditions: 

 

    (21) 

    (22) 

    (23) 

     (24) 

 

This also requires a loss function of compatibility, which 

will vary over even and odd. 

 

 
      (25) 

 

 
 

 
      (26) 

 

The overall loss function of a system of multiple PINNs 

(Physics-Informed Neural Networks) is the sum of the 

loss functions of all sub-PINNs, which is composed of 
four main components: 

 

  (27) 

 
Figure 2. Diagrammatic illustration of the physics-

informed neural network framework of the governing 

equations. 
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3.  SOLUTION ANALYSIS 

In physics, analytical methods for solving partial 
differential equations (PDEs) are often theoretically 

correct, but they have some limitations in practical 

applications. But in that research, to the extent possible, 

the result can overcome these limitations; we have 

considered two different boundary conditions in our 

study: 

Table 1. Types according to their boundary 

condition 

Fixed-Fixed 

Initial 

Boundary 
  

  

Displacement    

Velocity   

Solutions   

 

Where, 

  

And  

  

Bulk wave 

velocity   

Free-Free 

Initial 

Boundary 
  

  
Displacement    

Velocity   

Solutions   

 

Where,  

  

Bulk wave 

velocity   

 

In this article, "Gigantochla Scortechini (a species of 

bamboo found in Indonessia)" is used as an example of 

the Gradiant Descent metarials for the entire test [31] 

 

 
 

Table 2. Materials Property 

Properties Values 

Density 751  

Poisson’s ratio 0.27 

Young’s Modulus 20Gpa 

  

4. RESULTS ANALYSIS: 

The study's material has a density of 751 kg/m³, a 

Poisson's ratio of 0.27, a Young's modulus of 20×10⁹ Pa, 

and a thickness of 10 cm.  These parameters indicate that 

the material displays the wave behavior depicted in 

Figure 3.  As for the fixed-fixed situations, the time is 

stable, where the velocity function used in the analysis is 
F(x) and the global variable is one second. On the 

contrary, in free-free boundary conditions, the boundary 

changes over time, and the other space dimension 

coordinates, where x is divided into 100 equal parts.  

Here, a coefficient known as kₐ is introduced, which, 

after ten iterative calculations, yields the optimal 

solution. 

 

Figure 3. Analytical Wave Propagation Solution 
for Specified Material Parameters [32]. 
 

Finite element method (FEM)  has been used in an 

advanced way to find the wave propagation analysis. In 

this method, it has been possible to examine the 
propagation of waves in both the x and y directions using 

a single finite element. In the case of Finite Element 

Analysis, we have applied a very fine-scale mesh 

system, where the size of each element has been set to 

only 0.0001 m. 
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Figure 4. Numerical Wave Propagation Solution for 

both direction of x and y [32]. 
 
In this study, a deep neural network architecture to solve 

the wave equation. This network model, implemented on 

the matlab platform, consists of 4 fully connected hidden 

layers, each with 64 neurons, and includes a tanh 

function layer. We used 1,000 epochs in the training 

process of the model, which was sufficient to adequately 

train the network. Through this long-term training 

process, it will take almost 15 minutes, as shown in 

figure 6. 

Figure 5. Wave Solution using physics-informed 

neural network [32]. 

5. PINN ERROR AND PERFORMANCE 

ANALYSIS 

A clear relationship has been observed between the number 

of Epochs and the configuration of the hidden layer in the 

training process of the neural network model implemented 
in the study. The study has analysed 62000 iterations to 

optimize the training parameters, which used the MATLAB 

built-in function” trainingOptions”, which progress visible 

on the training progress report. 

 

 

Figure 6. Training progress over time PINN [32]. 

Using Root mean square error (RMSE) figure 6 analyzed 

using the formula provided that, 

    (28) 

Over a large number of iterations, it should approach nearly 

zero. Using equation (28), the error value is almost 2.6%, 

which is an excellent result.  If this research were analyzed 

with more neurons and hidden layers, the result would be 

more accurate. 

From the training progress, it's clearly visible that L_total 

(x,t), as given by equation (27), decreases over time. 

Furthermore, on maximum iteration, it's nearly zero. This 
means there is almost no loss in our wave result due to that 

training. 

6. CONCLUSION 

PINN (Physics-Informed Neural Network) has emerged as 

a breakthrough technology in acoustic technology research, 

which has revealed the experimental and numerical 

methods. The unique ability of this technology can 

occupied test using built-in parameters such as material 

thickness, density, Young's modulus etc., but can also 
accurately determine: Energy transfer rate through the 

material, Reflection and refraction coefficients, Theoretical 

properties of mechanical and physical properties 

The study showed that the PINN method is able to provide 

results with an error of only 2.6% and loss nearly 0%, 

which has brought unprecedented accuracy to the material 

selection process. Features of this technology can be 
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improved by: Three-dimensional testing capability, 
Complex geometry easily analyse, because machine can 

breakthrough than FEM or analytical. This can provide 

effective ideal for multilayer materials like (functional 

gradient materials), can save convenient amount of time 

roughly 70% less computational time than conventional 

methods, High-dimensional problem-solving skills or 

Predictive power: Enables prediction of equipment 

performance, Provides guidelines for new material design, 

Nano-structured materials testing, Computer-assisted 

construction material development, Design optimization of 

sound-absorbing materials. 
 

This has opened a new horizon in the construction industry, 

where the material selection process is now able to achieve 

unprecedented levels of knowledge technology precision 

and computational time. PINN-normal This method will 

play a significant role in the design and development of 

sustainable infrastructure to meet the goals of the 

coordination of principles. 
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