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Mateo Cámara1,2∗ Juan Gutiérrez1 Marı́a Pilar Daza1 José Luis Blanco1,2
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ABSTRACT

We present an open-source system designed for multilin-
gual translation and speech regeneration, addressing chal-
lenges in communication and accessibility across diverse
linguistic contexts. The system integrates Whisper for
speech recognition with Voice Activity Detection (VAD)
to identify speaking intervals, followed by a pipeline of
Large Language Models (LLMs). For multilingual ap-
plications, the first LLM segments speech into coherent,
complete sentences, which a second LLM then translates.
For speech regeneration, the system uses a text-to-speech
(TTS) module with voice cloning capabilities to replicate
the original speaker’s voice, maintaining naturalness and
speaker identity.
The system’s open-source components can operate locally
or via APIs, offering cost-effective deployment across var-
ious use cases. These include real-time multilingual trans-
lation in Zoom sessions, speech regeneration for public
broadcasts, and Bluetooth-enabled multilingual playback
through personal devices. By preserving the speaker’s
voice, the system ensures a seamless and immersive ex-
perience, whether translating or regenerating speech.
This open-source project is shared with the community
to foster innovation and accessibility. We provide a de-
tailed system performance analysis, including latency and
word accuracy, demonstrating its potential to enable in-
clusive, adaptable communication solutions in real-world
multilingual scenarios.

*Corresponding author: mateo.camara@upm.es.
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1. INTRODUCTION

In an era where global collaboration and mobility are re-
defining human interaction, the ability to communicate
across languages in real time has transitioned from a fu-
turistic vision to a technological imperative. Traditional
translation pipelines, reliant on sequential human inter-
vention or disjointed automated tools, are ill-suited for
dynamic environments—from international conferences
to emergency response scenarios—where managing la-
tency and coping with naturalness is critical [26]. Ar-
tificial intelligence (AI)-powered speech translation sys-
tems promise to address this gap. Yet, their prac-
tical use remains constrained by competing priorities:
the need for accuracy, computational efficiency, and the
preservation of speaker identity [12, 5]. While recent
breakthroughs in neural architectures have accelerated
progress, the field remains divided between two compet-
ing paradigms—end-to-end and cascade systems—each
with distinct trade-offs in performance, adaptability, and
scalability [1].

End-to-end speech translation systems, which directly
map source-language speech to target-language text or au-
dio, have gained prominence for their potential to mini-
mize error propagation through joint optimization of tran-
scription and translation tasks. Pioneering works [7, 13,
15, 16] demonstrated the feasibility of unified frameworks
implemented on neural networks, while recent break-
throughs like Meta’s SeamlessM4T [5] have elevated the
paradigm by supporting multilingual translation across
100+ languages. SeamlessM4T exemplifies the allure
of end-to-end architectures: it eliminates modular bottle-
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necks by training on massive multimodal corpora, achiev-
ing state-of-the-art BLEU scores [19] while preserving
prosody. However, as Bahar et al. [3] note, such sys-
tems remain constrained in streaming applications due to
their reliance on full input sequences. The same abil-
ity to cope with extended semantic contexts, from which
they excel in performance, makes them prone to latency
spikes in real-time scenarios. Moreover, end-to-end mod-
els struggle with interpretability and robustness, mainly
when dealing with noisy input or domain shifts. Anyhow,
SeamlessM4T is not yet publicly available, and its real-
world applicability beyond controlled demonstrations re-
mains to be thoroughly evaluated.

By contrast, cascade systems modularize transla-
tion into discrete stages—ASR, text refinement, Machine
Translation (MT), and TTS—leveraging specialized mod-
els optimized for each subtask. This decoupled archi-
tecture, as explored by Iranzo-Sánchez et al. [12] and
Arivazhagan et al. [2], benefits from abundant monolin-
gual ASR and MT datasets, enabling robust performance
in high-resource settings. However, cascade pipelines in-
herit vulnerabilities from the accumulation of errors be-
tween stages and segmentation challenges in continuous
speech streams [9, 17]. Despite these challenges, recent
evaluations confirm that cascade systems retain a per-
formance edge over end-to-end models in standardized
benchmarks, particularly for high-resource language pairs
[1]. Like those by Bahar et al. [4], hybrid solutions in-
tegrate streaming ASR with simultaneous MT models to
mitigate latency. Their reliance on proprietary compo-
nents limits reproducibility, a critical barrier for academic
and low-budget implementations.

This work presents a fully open-source, modular cas-
cade system designed for conferences to harmonize the
strengths of pre-trained models while mitigating their
weaknesses and delivering a complete end-to-end expe-
rience. Figure 1 shows the schematic of our solution. Im-
plements a four-stage pipeline. Unlike end-to-end frame-
works, our system emphasizes transparency and adapt-
ability by integrating best-performant, independently val-
idated, state-of-the-art open-source modules. We selected
the following for our implementation: 1) Whisper [20]
for low-latency ASR; 2) a Llama 3 model [10] serves
as a contextual buffer, correcting or substituting misrec-
ognized phonemes and deciding whether the sentence is
ready for translation, by leveraging contextual and syn-
tactic cues; 3) a second Llama 3 LLM conditioned to per-
form translation; and 4) MeloTTS [27], offline fine-tuned
for voice cloning to mimic the speaker.

We have developed and publicly released this solu-
tion for general use, 1 including detailed descriptions of
the system and demo’s software and hardware implemen-
tations. Specifically, we created a low-power analog radio
transmitter setup to take advantage of the limits of com-
mercial FM band frequencies, allowing easy reception
through standard consumer radio devices. The design sim-
plifies accessibility, accommodating users less comfort-
able with advanced technology. Additionally, we provide
clear instructions for integrating the system with video
conferencing sessions and Bluetooth-enabled devices, en-
hancing its versatility and user-friendliness.

We have validated this solution objectively by mea-
suring latency (between both ends), Word Error Rate
(WER) for ASR, and BLEU [19] and COMET [21] scores
for translation quality. Regarding the speech synthesis
module, we conducted a subjective evaluation of the voice
cloning component using a speaker and a small group of
evaluators. While this subjective evaluation is informal
and not exhaustive in terms of languages or vocabulary,
we deem it sufficient for our demonstration.

The remainder of this document is as follows. Section
2 describes the software development aspects, including
system architecture and implementation details. Section 3
covers the hardware development, particularly the analog
radio setup designed for ease of use. Section 4 discusses
the tests conducted and the validation metrics obtained to
ensure the system’s reliability and effectiveness. Finally,
Section 5 concludes the document.

2. SOFTWARE IMPLEMENTATION

2.1 Automatic Speech Recognition (ASR)

The ASR module forms the foundational layer of our cas-
cade system, delivering timely transcriptions from the in-
put speech. For this module, we use Whisper [20], an
open-source, multilingual model pre-trained on five mil-
lion hours of diverse labeled audio data. We selected it for
its proven robustness to accents, background noise, and
streaming compatibility. Unlike proprietary alternatives
(e.g., Google Speech-to-Text, Amazon Transcribe), Whis-
per’s architecture and weights are publicly accessible.
Specifically, we utilize whisper.large-v3.turbo 2 (1,550M
parameters), which achieves a WER of 9.5% on average
for the 15 most common languages, just 1% higher than

1 https://github.com/MateoCamara/
speech-translator-with-voice-cloning

2 openai/whisper-large-v3-turbo
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Figure 1: Schema of the solution for multilingual speech recognition (left), translation, and synthesis (right).

the non-distilled version of the model, being 5.4 faster on
inference.

A critical limitation of conventional ASR systems in
real-time applications is in managing non-speech inter-
vals (e.g., silence, background noise), wasting computa-
tional resources, and introducing additional latency with
spurious outputs. To minimize computational overhead
and false activations, we integrated Silero VAD [24], a
lightweight, open-source voice activity detector optimized
for real-time applications. Silero VAD processes audio 30
times faster than real-time on CPU, achieving an accu-
racy score of 91% on their validation dataset. We use it to
activate Whisper only when speech probability exceeds a
threshold of 0.5, reducing idle inference cycles.

2.2 LLMs for Context Refinement and Translation

To address the inherent challenges of real-time speech
processing—such as disfluencies, fragmented phrases,
and contextual ambiguity—we deploy two specialized
LLMs in cascade. This modular design ensures robust-
ness while balancing latency and semantic coherence.

2.2.1 Context-Aware Phrase Refinement

The first LLM acts as a linguistic validator tasked with re-
solving ambiguities, correcting ASR errors, and determin-
ing phrase completeness. Built on LLama-3 architecture
[25], the module leverages a five-sentence context stored
in a buffer for semantic continuity. We found this ef-
fectively complements Whisper’s 30-second speech con-
text. Specifically, we use the LLaMA 3.3-70B-Instruct 3

model, which offers an optimal balance between quality
and inference speed, achieving 51.14 tokens per second.

3 meta-llama/Llama-3.3-70B-Instruct

As a new chunk of transcription arrives from Whisper, this
LLM is prepared to account for:

• Completeness: Whether the chunk forms a gram-
matically and semantically self-contained unit
(e.g., ending with punctuation or a natural pause).

• Anomaly Detection: Identifies and removes extra-
neous elements (e.g., filler words, misrecognized
phonemes) using syntactic and contextual cues.

The module retains incomplete phrases in a rolling
buffer with a capacity of five chunks. If the buffer reaches
its maximum capacity, the chunks are forcibly flushed
to the translation module, prioritizing low latency over
prosodic perfection.

2.2.2 Translation

The second LLM handles translation, converting vali-
dated phrases into the target language. Built on LLaMA
3.3-70B, it offers native high multilingual performance,
supporting eight languages, including English, Spanish,
French, and German. Each complete phrase from the pre-
vious LLM is translated, preserving semantic integrity.

Alternative implementations may merge these two
LLM instances. For the sake of simplicity and at the cost
of increased latency, we did not address such considera-
tions, leaving them for future work.

2.3 Text-to-Speech with voice cloning

To bridge the gap between translated text and natural-
sounding speech, our system integrates a hybrid TTS
pipeline that combines high-quality synthesis and voice
cloning for a specific speaker. This dual-stage ap-
proach ensures linguistic clarity and preserves the original
speaker’s vocal identity.
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2.3.1 MeloTTS for Speech Synthesis

For the text-to-speech process, we employ MeloTTS
[27], an open-source, non-autoregressive TTS framework
optimized for low-latency streaming. It supports real-
time inference (i.e., speech synthesis) on both CPU and
GPU, delivering 44.1 kHz audio with high fidelity. De-
spite its quality, the model remains efficient, operating
smoothly even on mid-range hardware. MeloTTS lever-
ages non-autoregressive architectures, allowing for single-
step audio generation. It supports multiple languages
and accents, including English, Spanish, French, Chinese,
Japanese, and Korean. Additionally, it enables speech rate
adjustment, offering flexibility for various applications.

2.3.2 Voice Cloning Via Full Retraining

Unlike methods that adapt pre-trained models through
style transfer (e.g., “voice color” tuning with 30 sec-
onds of audio), we adopt a full retraining strategy to
clone speaker identities with high fidelity. This approach
addresses the limitations of zero-shot cloning systems,
which often struggle to preserve personal vocal traits (e.g.,
breathiness, pitch contours) in low-resource scenarios.
The implementation workflow is as follows:

• Base Model Selection: We initialize MeloTTS with
weights pre-trained on a target-language corpus (in
the case of Spanish, 25 hours of clean and consis-
tent audio), prioritizing phonetic coverage of the
target deployment language.

• Speaker-Specific Retraining: We used 30 minutes
of clean audio from the target speaker (industry-
standard duration) to fine-tune the model parame-
ters. For the MeloTTS, these included the audio
generator, the duration predictor, and the audio dis-
criminator models. Based on our tests, the latter
could be frozen, accelerating the process.

We trained our base model for a male Spanish
speaker on the LibriVox datasets [14]. The retraining
of the speaker-specific model was covered on a NVIDIA
A100@40GB GPU for 56 hours. The process stopped af-
ter 235k epochs as the losses stabilized.

3. HARDWARE IMPLEMENTATION

To ensure inclusivity across diverse user demograph-
ics—particularly those with limited technological liter-
acy, such as elderly populations—our system prioritizes

Figure 2: Radio Transmitter and laptop.

analog FM radio transmission while retaining compati-
bility with modern digital interfaces. The FM-based de-
sign guarantees universal accessibility through low-cost,
widely available receivers (e.g., portable transistor ra-
dios). Bluetooth multicast and virtual audio routing re-
main as supplementary options for tech-literate users.

3.1 Analog FM Radio for Universal Deployment

The core hardware deployment lies in a compact, low-
power FM transmitter designed to operate at the edges of
commercial frequency bands (87.5-108 MHz). It allows
reception on conventional devices while avoiding inter-
ference with licensed broadcasts. The system comprises
three key components:

• Transmitter Module: We included a DSP PLL FM
transmitter module operating at carrier frequency
105.1 MHz with a default output power of 0.5 W.

• Amplification Stage: A Class-A amplifier (gain
×100, 12 V input) boosts the signal to 2.0 W, en-
abling coverage of large indoor spaces (e.g., audi-
toriums).

• Antenna System: A vertically polarized mini patch
panel antenna with +3 dB gain, 50 Ω impedance
ensures robust coverage while minimizing signal
leakage beyond 100 m.

It supports 12 V DC input from batteries or wall
adapters. Thermal fuses and current limiters prevent over-
heating. Figure 2 shows a picture of the hardware display
used in our tests, housed in a PBS enclosure. The system
offers versatile audio input via a 3.5 mm jack, micro-USB,
or built-in microphone. It features an LCD screen that dis-
plays transmission information with volume, play/pause,
and frequency selector buttons.
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3.2 Complementary Digital Interfaces

For users with smartphones or computers, the system op-
tionally routes translated audio to Bluetooth headphones
(via multicast pairing) or virtual microphone outputs for
video conferencing tools. However, these interfaces are
secondary to the FM radio, which remains the primary
channel for its simplicity, cost-effectiveness, and compat-
ibility with legacy devices. The associated GitHub page
provides an explanation of how to set these up.

4. EXPERIMENTS AND EVALUATION

We evaluated our solution using the Europarl dataset [11],
which contains recordings from the European Parliament.
Speeches are delivered and translated into multiple lan-
guages. We selected the test subset for validation and as-
sessed the system’s performance in translating from En-
glish to Spanish on up to three hours of speech and the
corresponding transcripted sentences.

The analysis included hereafter covers several key as-
pects: system latency, errors in speech recognition and
translation, voice cloning quality (for a single user), and
the performance of the hardware radio setup.

4.1 Latency Tests

This experiment quantifies the latency from the moment a
speaker begins a sentence until playback starts. Figure 3
presents an example of a 10-minute speech, illustrating la-
tency variations over time. This fragment is the first eight
audio files of the Europarl test set, consisting of political
speeches delivered by different speakers. These speeches
offer a variety of vocal characteristics, accents, and speak-
ing styles. The total latency averages around 2.5 seconds,
with peaks reaching 5 seconds, highlighting the system’s
behavior with diverse input signals. Most components re-
main within a stable range. The literature considers 2.5
seconds a valid threshold for real-time translation [1].

Whisper and MeloTTS ran in parallel on an RTX
5090 GPU, while LLM tasks relied on cloud-hosted A100
units accessed via API. The primary latency contributors
are the LLM-related tasks, which are challenging to con-
trol due to shared cloud resources. Dedicated inference
services could help reduce variability. The peak laten-
cies are infrequent and not representative of typical system
performance. Latency would likely increase significantly
on less powerful hardware. Therefore, deploying cloud-
based resources similar to those used in our experiments
is recommended.

Figure 3: Results on the latency test with 10 minutes
speech including all pipeline modules.

Figure 4: WER for Whisper evaluation and BLEU
and COMET for LLM-translation evaluation.

4.2 Intelligibility tests

Figure 4 presents the intelligibility results, with WER
evaluated for Whisper, and BLEU and COMET scores for
the translation LLM. The reported WER agrees with the
values found in the literature. The reference WER for this
Whisper model is approximately 9.5%, while our dataset
evaluation yielded a median value of 4.5%. This slightly
improved performance may be attributed to the dataset-
specific characteristics, as no modifications were made to
the model.

Regarding translation quality, the BLEU score shows
a median of around 0.5, indicating that the translations are
not highly reliable and contain significant errors. Mean-
while, the higher COMET score suggests that translations
are generally acceptable despite existing errors, with some
sentences being mistranslated. The translation direction is
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from English to Spanish. While Llama 3.3 does not ex-
plicitly report BLEU or COMET scores for Spanish-to-
English, it scored 91.1 in the Multilingual MGSM (zero-
shot) test [23], demonstrating strong overall performance.

The discrepancy between our results and those re-
ported in the literature may be primarily due to how our
pipeline processes the data. Our evaluation does not
merely compare two languages but assesses real-world
speech records. To minimize latency, some segments may
be truncated, and pauses made by the speaker may be
misinterpreted as sentence boundaries. Although an ad-
ditional validation LLM is used to mitigate these issues,
the results remain below the state of the art. This bottle-
neck in translation quality has been identified as a critical
area for improvement, and future iterations of the system
should focus on enhancing this aspect.

However, research has indicated that automatic trans-
lation metrics may be unreliable for evaluating translation
quality [28], as human evaluation remains a superior ap-
proach. Our observations confirm this: in many cases,
translations are perfectly understandable, yet the metrics
assign poor scores due to word order changes or structural
variations introduced by the LLM. We report the standard
metrics used in the recent literature without highlighting
their absolute values, as we concur that their relevance is
limited.

4.3 Voice cloning subjective evaluation

We conducted subjective evaluations to assess the quality
of the generated speech based on user perception, follow-
ing [22]. Participants were required to use wired head-
phones, have no hearing impairment, and complete the
test in a quiet environment. We also collected informa-
tion about their native language and proficiency in Span-
ish: speaking, writing, and listening.

The evaluation followed a standardized MOS rating
system implemented using the GoListen platform [6]. The
online test consisted of 28 questions across two parts: (1)
synthesized audio without reference to the original human
recordings, [8], and (2) comparisons between synthesized
and original recordings, [18]. Each question was rated on
a scale of 1 (poor) to 5 (excellent). The audio samples
included phonetically balanced sentences.

The analysis was structured into two parts. First, we
evaluated items across all subjects per sentence. Sec-
ond, we analyzed the dispersion for each sentence on all
evaluated items. Thirty evaluators completed the test.
Sentences 1 and 3 received the highest ratings overall,

as shown in Fig.5a. Sentence 3 particularly excelled in
listening effort, comprehension, and speaking rate, with
most ratings at 5 (Fig.5b). However, pleasantness scored
slightly lower. Sentence 4 showed good overall quality
but required more listening effort and had articulation is-
sues. Sentence 2 performed well in comprehension but
struggled with pronunciation and speaking rate.

In summary, evaluators rated the synthetic audio
highly, especially compared to original human recordings.
These promising results highlight the potential of our so-
lution while identifying areas for improvement, such as
voice pleasantness and articulation. For further details,
refer to the test 4 and to the published repository. 5

4.4 Hardware Tests

To validate the performance of our FM transmitter, we
assessed operational reliability and signal confinement
within the designated area. We collected our measure-
ments in the ETSIT-UPM auditorium, where irregular
wall absorption, physical obstructions, and ambient noise
affected propagation. The room can accommodate up to

4 https://golisten.ucd.ie/task/
mushra-test/67d296bf75e8b306f88e3908

5 https://mateocamara.github.io/s2s

Figure 5: Results of the subjective tests: (a) chart on
all sentences, (b) stacked ratings on Sentence 3.
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Table 1: Measured performance parameters of the FM transmitter at various auditory locations

Location Peak Power (dBm) Signal Power (dBm) SNR (dB)
Antenna -53.8 -56.0 59.1
First Row Middle (Best Case) -75.4 -77.6 47.3
Interior (Avg ± S.D.)∗ -82.0±7.3 -83.1±7.0 38.2±5.7
Far Corner (Worst Case) -93.2 -95.1 33.7
Adjacent Room -106.0 -108.3 20.5
∗ Average room values were computed by excluding the antenna and adjacent room locations.

195 people. The floor plan is 12.50 m × 14.60 m. The
transmitter antenna was centered in the stage 2 m high,
oriented toward the audience to optimize coverage.

In this controlled environment, we used a calibrated
handheld spectrum analyzer N9342C with a test antenna
from the ETS Lindgren Model 7405 kit. We used a set of
reference signals, a constant 440Hz (A note), white noise,
and a 20-second-long speech record. Measurements were
collected in strategic locations within the auditorium to
capture spatial variations in signal performance and assess
leakage in adjacent rooms.

Average measures on signal-to-noise ratio (SNR), fre-
quency band leakage, and signal strength are listed in Ta-
ble 1. In the auditory area, the SNR was consistently
above 30 dB, which indicates good reception quality. In
contrast, measurements outside the auditorium produced
SNR values around 20 dB, suggesting minimal signal
quality; however, the observed leakage remains below ac-
ceptable interference thresholds. We also observed fre-
quency shifts of 33.31 ± 10.2 kHz, which falls within
reasonable limits. A subjective test with three volunteers
provided uniformly positive feedback on audio clarity.

5. CONCLUSION

We successfully designed, implemented, and tested a sys-
tem for multilingual translation and cloned speech syn-
thesis, adapting state-of-the-art open-source components.
Users can listen to our broadcast using standard radio or
Bluetooth devices.

In our tests on English-to-Spanish translation, the sys-
tem introduced a 5-second delay in the communication,
with an average of 4.5% WER in the transcription, 0.5
BLEU, and 0.75 COMET scores, respectively.

From our subjective tests, we conclude that the results
achieved an average rating of 4.20 on the MOS scale. In
addition, our hardware tests verified reliable signal con-

finement and robust performance in the real environment
under varying conditions, with an average SNR of 38.2 dB
inside the auditorium.

The proposed system is subject to several improve-
ments. The MeloTTS essentially conditions the latency.
Optimizations to the model, particularly in how the mod-
els are handled internally, could reduce this number. The
two LLM models, used for sentence completion and trans-
lation, may be integrated to accelerate execution without
compromising performance.
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