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ABSTRACT1* 

In the present work, we have designed a perceptual 
experiment comprising 80 stimuli: 40 samples of natural 
voices and 40 samples of their corresponding deepfakes. 
As for natural samples: 20 are from dysphonic patients 
and 20 are from a control group (half English and half 
Spanish for both groups). In the former group, we have 5 
patients classified as mild-moderate and 5 as severe 
according to the CAPE-V scale for each language.  The 
experiment involves listeners indicating, for each 
recording, whether it is a synthetic or human voice. 
Although some perceptual experiments have tested 
human performance in detecting synthetic voices, studies 
involving dysphonic voices are far less common. Our 
hypothesis is that dysphonic voices are more likely to be 
perceived as human voices than as deepfakes. In the 
same way that human faces are characterized by 
imperfections (e.g. wrinkles) and this allows 
distinguishing real images from visual deepfakes, human 
voices are often characterized by dysprosodic and 
dysphonic phenomena. The aim of this paper is therefore 
to shed light on new possible predictors of listener 
performance in perceptual experiments involving audio 
deepfake detection.  
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1.​ INTRODUCTION 

In recent years, advances in voice synthesis technologies 
have enabled the creation of artificial voices that are 
practically indistinguishable from human voices. 
Examples of progress in this field can be seen in the 
works [1-2] related to Text-To-Speech (TTS) models. We 
define deepfake voices as those generated by deep neural 
networks models. This technological development has 
opened new possibilities in various applications but has 
also raised concerns regarding their malicious use [3-4]. 
Several studies have been conducted on human detection 
of deepfake voices. Several studies concluded that 
human ability to detect deepfakes is unreliable [5-8]. In 
[6] they used English stimuli, in [5] they conducted 
experiments in both English and Mandarin, and the work 
in [7] was focused on Spanish.  
In addition, machine learning and artificial neural 
networks-based methods have been developed for 
deepfake detection. Several reviews of these methods 
can be found in the works in [9-11]. 
None of the aforementioned studies have examined the 
perception of deepfake voices with pathological speech, 
specifically dysphonic voices. Dysphonia is defined by 
the presence of perceptual and acoustic features related 
to unstable or asymmetric phonation, such as roughness, 
breathiness, weak voice or instability in fundamental 
frequency and intensity [12]. The level of dysphonia 
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severity for the speakers used in this study had been 
previously graded according to the Consensus 
Auditory-Perceptual Evaluation of Voice (CAPE-V) 
scale (See Methodology), which is the method proposed 
by the American Speech-Language-Hearing Association 
to establish a standardized clinical protocol for 
auditory-perceptual judgments of vocal quality [13]. 
This scale has also been adapted into Spanish [14].  
To the best of our knowledge, this preliminary study is 
the first perceptual deepfakes experiment to include 
dysphonic voices in the sample and to explore the level 
of dysphonia as a potential biometric marker for 
distinguishing a natural (bona fide) voice from a 
deepfake voice. The interest in studying deepfake 
detection in pathological voices lies in the possibility 
that voices with “wrinkles” (i.e. imperfections) may be 
perceived as more natural. Studies such as [12] suggest 
that phonation-related parameters could help in speech 
recognition tasks (considering intra-speaker variability), 
as normophonia is not necessarily the general norm in 
the population. A stable fundamental frequency in 
sustained vowels, an absence of breathiness, stable 
intensity, or absence of roughness in voice cannot always 
be ensured, even in individuals without organic issues.   
This study is also inspired by the results in [15] on 
deepfake face perception. They assume that the model 
StyleGAN2 (for generating faces) tends to create white 
faces close to normality in the “face-space”, making 
them appear familiar, attractive and within the average 
range, but less memorable than some real human faces.  
We hypothesize that mild-moderate dysphonic voices 
will tend to be judged as natural because they are 
perceived as more familiar compared to severe 
dysphonic voices, regardless of whether they are actually 
deepfake or bona fide voices.  
Furthermore, since this study includes both English and 
Spanish stimuli, we expected to replicate the findings of 
[6] regarding the advantage of native speakers in 
detecting deepfakes in their own language compared to 
non-native speakers. However, while Müller focused 
exclusively on native and non-native  English speakers, 
our study has compared native Spanish speakers’ 
performance when detecting audios in both Spanish and 
English stimuli.  

2.​ METHODOLOGY 

2.1​ Source and processing of the voices 
 
2.1.1​ Source of the voices​  

 
The voices used in this study were sourced from two 
distinct corpora. The English voices were obtained from 
the Voice Foundation database [16]. All utterances were 
recorded in a controlled, quiet environment using a 
condenser microphone placed 6 cm away from the 
speaker's mouth, with a sampling rate of 48 kHz [16]. 
The Spanish voices were sourced from [17]. 

2.1.2​ Voice selection and segmentation 

For both languages, the voices were categorized into 
three groups according to the CAPE-V (Consensus 
Auditory-Perceptual Evaluation of Voice) severity scale: 
Non-pathological, Mild-Moderate, and Severe. The 
classification was based on the severity scale and the 
criteria summarized in Table 1: 

Table 1. Summary about the sample of the speakers 

Group Severity 
(CAPE-
V Scale) 

Criteria N. Speakers 
(women/me

n) 
Non 
pathological 

0-50 Not 
diagnosed 

10 (5/5) 

Moderate 50-77 Diagnosed 5 (3/2) 
Severe 77-100 Diagnosed 5 (2/3) 

The severity ratings were performed by three speech 
professionals, and voices were selected based on an 
inter-rater standard deviation lower than 15 in the 
CAPE-V scale. 

The audio files that would constitute the stimuli of the 
perceptual experiment were cut using  Praat [18]."We 
were away a year ago" was the CAPE-V English 
sentence selected and "Teresa hace siete regalos 
pequeños" the CAPE-V Spanish sentence chosen. In 
total, 20 natural voices were selected for each language 
(Spanish and English), totaling 40 natural voice 
recordings. 

2.1.3​ Voice cloning 
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To create artificial versions of the natural voices, we 
used the TTS (Text-to-Speech) software from 
ElevenLabs [19]. We applied the "Eleven Multilingual 
v2" model with default settings for Stability, Similarity, 
Style Exaggeration, and Speaker Boost, following the 
"Best Practices" recommendations from ElevenLabs and 
the ElevenLabs Prompt Guide [20] for inputting both the 
audio and text. ​ This process resulted in 40 cloned 
voices, with an artificial counterpart for each natural 
voice. In total, this gave us 80 voices (40 natural and 40 
artificial) for use in the experiment. 

2.2 ​ Experimental design and procedure 
 
The experiment was designed using PsychoPy [21] and 
hosted on Pavlovia. Participants were required to 
complete a demographic questionnaire, listen to the 
audio files, and classify each audio as either a natural 
voice or a deepfake (artificial voice). Additionally, 
participants were asked to rate their confidence in their 
classification and provide a justification for their 
response. The experiment followed a unary design, in 
which the task was repeated for all audio files. ​
The presentation order of the voices was randomized 
with a listening break after 40 stimuli. So participants 
first listened to the Spanish voices, followed by the 
English voices. ​ ​ ​ ​    
A total of 29 participants were recruited for the 
experiment, although three were excluded because they 
reported hearing problems or because they were not 
native Spanish speakers. The final sample consisted of 
17 male and 9 female participants, with an average age 
of 32.58 years (SD = 12.63 years). Each one of them 
gave a response to 80 stimuli (half natural, half 
artificial), so in total there are 2080 responses. For each 
language, we have 520 responses to non pathological 
voices and 280 responses to both mild-moderate and 
severe voices.  

2.3​ Data analysis 

We analyzed the data with the Python data analysis 
library Pandas [22], the calculus and algebra library 
Numpy [23] and the data visualization libraries 
Matplotlib [24] and Seaborn [25]. We decided to 
attribute the positive value to responding as “artificial” 
(deepfake) and the negative value to responding as 

“natural” (bona fide).   ​   ​ ​ ​   
To analyze the data, we constructed the normalized 
confusion matrices based on the classification responses, 
distinguishing between language (Spanish and English) 
and severity (Non pathological, Mild-Moderate, Severe). 
These confusion matrices have in their elements the True 
Positive Rate (TPR), also called “Sensibility”; the False 
Negative Rate (FNR), also called “Specificity”; the False 
Positive Rate (FPR) and the True Negative Rate (TNR) 
and have the following form in Eqn. (1). 

                           
(1) 

Given the binary nature of the classification (Natural vs. 
Artificial), we first computed the proportion of natural 
and deepfake responses for each group. Instead of using 
absolute values, we used proportions since the number of 
non-pathological voices differs from that of 
mild-moderate and severe voices. Proportions provide 
more information about both errors and correct 
responses. ​ ​ ​ ​ ​
The main hypothesis of the study was that voices with 
higher degrees of dysphonia would be more likely to be 
classified as natural compared to those without any 
pathology. To test this hypothesis, we plotted stacked bar 
charts to show the proportion of voices classified as 
natural across the severity groups. Proportions were 
compared using a Z-test [26] to assess significant 
differences between the groups. ​ ​ ​
The last plot we computed was the Receiver Operating 
Characteristic (ROC) [27] curves across the severity 
groups and languages, which helped us to have an 
overall measure of the performance classifying the 
voices with some degree of severity. These curves 
require the responses of the participants in form of 
probability of being a deepfake using the transformation 
in Eqn (2): 
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                            (2) 
 
This is the same approach as used in [5]. The confidence 
is divided by 5 as the confidence was rated in a 5-points 
Likert scale. Where “a” value corresponds to “artificial” 
and “n” to natural. We also computed the Area Under the 
Curve (AUC) and the Equal Error Rate (EER) [28].  

3.​ RESULTS AND DISCUSSION 

The first step in our analysis involved computing the 
normalized confusion matrices for the stimuli, grouped 
by both speaker language and severity level. In these 
matrices, the columns represent the participants' 
responses, while the rows correspond to the ground truth. 
See Fig 1. 

 

Figure 1. Confusion matrices grouped in 
languages (English up; Spanish down) and severity 
(Non pathological, Mild-Moderate and Severe, 
from left to right) Where labels “A”, “N” 
correspond to “Artificial”, “Natural” respectively. 

Several remarkable observations can be drawn from 
these matrices: ​ ​ ​ ​ ​
First, there is a clear distinction between the Spanish and 
English stimuli. For the English stimuli, the matrix 
values range between 0.43 and 0.57, suggesting no 
strong tendency for participants to correctly identify 
natural or artificial voices. Moreover, the confusion 
matrices across the different severity groups show 

minimal variation. ​ ​ ​ ​    
In contrast, the Spanish stimuli reveal more pronounced 
differences between severity groups, indicating potential 
trends in participants' performance based on voice 
imperfections. In particular, when the voice has a mid 
grade of severity, the natural voices are easier to 
distinguish, as we can see in the TNR (or specificity) = 
0.75 in mild-moderate voices against the TNR (or 
specificity) = 0.62 in non pathological voices. On the 
other hand, the TPR (or sensibility) for the 
mild-moderate group is lower than the TPR (or 
sensibility) in the non-pathological group, showing the 
increase in the number of type I as II errors (there are 
more false negatives). Although we cannot say the 
performance distinguishing mild-moderate voices is 
greater than distinguishing non pathological voices, we 
suspect that there is a tendency to judge the voices as 
natural when these have a moderate grade of severity. 
This is because, as listeners, we are used to hearing 
voices of this sort.. For instance, in our English corpus, 
moderate dysphonic speakers are people with benign 
vocal cord lesions, such as nodules and polyps, which 
are noncancerous growths that may form on one or both 
vocal cords. Most of these lesions are due to vocal abuse 
or misuse that many of us can have at some point in life. 
In contrast, severe dysphonia is found in patients with 
Reinke’s Edema, ulcerative laryngitis or cordectomy, to 
name a few. The prevalence of such conditions is lower 
in the population [29]. Listeners are less used to hearing 
this type of voices, so they might have classified them as 
artificial, simply because they cannot map them to their 
typical patterns of what a “normal human voice” sounds 
like.​ ​ ​ ​ ​ ​
Secondly, there are more differences between languages 
for the same severity group. For the non pathological 
voices, the Spanish ones present a lower proportion of 
type I and II errors. This is explained by the fact that all 
the participants are Spanish native speakers, so it is 
easier to discriminate between bona fide and deepfakes 
in their mother tongue than those in English [6, 8].​
Lastly, we can say that the severe Spanish voices are just 
as difficult to distinguish as the English ones. This fact 
points to the lack of familiarity of the participants to 
voices with a high grade of dysphonia regardless of the 
language spoken. This phenomenon is observed in Fig 3 
again.​ ​ ​ ​ ​ ​    
In order to study in more detail how severity influences 
this classification task, we plotted in a stacked bar chart 
the proportion of audios judged as natural in relation to 
the total number of audios in each severity group in both 
languages. The result is in Fig 2. 

 

5156



 

 

Figure 2. Proportion of stimuli judged as natural 
grouped by severity (Spanish voices at the top, 
English voices at the bottom). Orange: true natural 
voices; green: artificial voices.  

Notably, the Spanish stimuli exhibit a clear trend, with a 
higher percentage of voices judged as natural in the 
mild-moderate group compared to the non-pathological 
group. This pattern was further supported by a Z-test for 
proportion comparison, which revealed statistically 
significant differences between the severity groups (see 
Table 2). This is not as clear for the proportion in severe 
vs non pathological voices, so we applied this Z-test to 
compare these two groups too. See Table 2.  

Table 2. Proportions of voices judged as natural 
compared with the Z-test across different severity 
groups in both languages. (***) → p-value < 0.000 

 Proportions in Spanish 
voices 

Proportions in 
English voices 

Mild > 
Non-P. (***) 

Sev. > 
Non-P. 

Mild > 
Non-P. 

Sev. < 
Non-

P. 
z 5.04 0.34 0.98 -0.98 

p 2.29*10-7 0.37 0.16 0.16 

In the English stimuli we cannot see a significant 
difference between severity groups, so this result 
supports what we have been pointing out about the 
voices in this language. ​ ​ ​ ​
For the English stimuli, the distribution of natural voice 
classifications appears more uniform across severity 
groups. The Z-test results confirmed the absence of 
significant differences between these groups, suggesting 
that participants' ability to distinguish between natural 
and artificial voices was less influenced by severity in 
the English stimuli compared to the Spanish ones. ​
Last but not least, we computed the ROC curves and 
their corresponding AUC and EER across the severity 
groups in the way described in Eqn (2).  

 

Figure 3. ROC curves of the participants divided 
by severity groups (Spanish voices at the top, 
English voices at the bottom). 

The presented ROC curves, along with the 
corresponding AUC and EER values, reveal notable 
differences in participants' performance across languages 
and severity groups. For the English stimuli, the 
performance closely aligns with a random guess, as 
indicated by AUC values near 0.5 and EER values 
approaching 0.5 as well. This suggests that participants 
struggled to reliably distinguish between natural and 
artificial voices in this language. ​ ​ ​    
A similar pattern can be observed for the severe Spanish 
voices, where the ROC curve and corresponding metrics 
also approximate random guessing. This indicates that 
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participants faced considerable difficulty in correctly 
identifying the authenticity of severely dysphonic 
Spanish voices.​ ​ ​ ​ ​
The ROC curves indicate that the performance in 
classifying mild-moderate and non-pathological voices 
in Spanish is similar (see the curves in Fig 3 and the 
corresponding AUC and EER results. This suggests that 
although the TNR is higher in the mild-moderate group 
(there are more natural voices judged as natural), this 
advantage is offset by an increase in type II errors (i.e., 
the FNR also increases, there are more natural voices 
judged as artificial too). Consequently, participants do 
not perform better when classifying mild-moderate 
voices, rather they tend to classify these voices more 
frequently as natural ones. ​​ ​ ​
The results show that the imperfections of the voices 
could be an important factor to ensure that a voice 
judged as natural is actually natural. The stimuli 
typically used in perceptual experiments aimed to 
distinguish between natural and artificial voices are 
usually voices without any pathology. The results of this 
preliminary work show the need to include pathological 
voices (in this case dysphonic) in these designs. ​
Overall, these findings suggest that participants’ 
performance is influenced by their familiarity with the 
stimuli. Given that the participants were native Spanish 
speakers with no background in clinical voice 
assessment, they are likely more used to hearing 
non-pathological or mildly dysphonic voices in their 
own language. Consequently, their improved 
performance with mild-moderate Spanish voices 
compared to other conditions may reflect this greater 
exposure and familiarity. ​ ​ ​ ​    
It is also important to list some limitations of our 
research. First, since the experiment was performed 
online, and although participants were said to complete it 
in a quiet environment, using headphones, and paying 
close attention, we cannot be sure of the actual 
conditions in which they participated. Additionally, since 
participants always classified the Spanish voices first, 
the results for the English voices may have been 
influenced by increased fatigue, which could have 
affected their attention. ​ ​ ​ ​
Last but not least, it is worth exploring the ‘other-accent’ 

effect, which has been investigated in  numerous 
perceptual studies on talker recognition [30-32] since all 
the Spanish speakers were from the Canary Islands, 
while the English speakers came from several places in 
the United States such as Baltimore, New York or Los 
Angeles. Although  participants did not know the origin 
of the speakers, the dialectal heterogeneity of the English 
voices could have confused them.  

4.​ CONCLUSIONS AND DIRECTIONS FOR 
FUTURE RESEARCH 

In the presented work we have highlighted key 
differences in participants’ performance classifying 
natural and artificial voices across language and severity 
degrees of dysphonia.  
Firstly, while English stimuli showed a performance 
similar to tossing a coin, Spanish stimuli revealed 
notable tendencies relative to voice severity. Specifically, 
participants showed a tendency to classify 
mild-moderate Spanish voices as natural more frequently 
than non pathological and severe voices. This result 
aligns with the observed increase in the True Negative 
Rate for mild-moderate voices, indicating that 
participants were not necessarily better at identifying 
mild-moderate voices but rather more prone to labeling 
them as natural. 
Secondly, the influence of language familiarity was also 
evident, with Spanish participants demonstrating better 
performance in identifying non pathological Spanish 
voices compared to English voices. This agrees with the 
results in [6] but with native Spanish speakers. This is 
likely due to their greater exposure to their mother 
tongue. Additionally, the difficulty in distinguishing 
severe voices in both languages suggests that 
participants struggled with highly dysphonic voices 
regardless of language.  
These results underline the importance of voice 
imperfections as a factor in the perception of humanity. 
The tendency to classify mildly damaged voices as 
natural may reflect participants’ familiarity with 
common voice “wrinkles”, which TTS models may fail 
to reproduce convincingly.  
Future works could aim to tackle several aspects:  
It may be interesting whether a listener's musical training 
[33] or linguistic background can help distinguish a 
human voice from a deepfake. 
It would also be valuable to examine the in-domain and 
out-domain performance of an algorithm trained with the 
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voices used in this experiment and compare its 
performance with that of the participants, similar to the 
approach described in [5]. 
It is also worth developing a model that allows us to 
assess how much of the choices variability can be 
explained by factors such as severity, language, response 
confidence or sex of the speaker, while also accounting 
for errors associated with random effects like the 
participant, the audio sample, or the device used during 
the experiment. And being aware of the listeners 
variability [34]. 
Additionally, it could be interesting exploring whether 
response confidence is an indicator of response accuracy 
or whether phenomena like the Dunning-Kruger effect 
emerge, as observed in [15]. 
Investigating the influence of reaction time in 
distinguishing between deepfakes and bona fide voices, 
following the approach in [7]. 
Studying the qualitative responses provided by 
participants to determine whether human 
perception-based discriminatory criteria can aid in 
distinguishing between cloned and bona fide voices. This 
would align with the methodology in [5], although their 
study focused on English and Mandarin voices with 
native speakers of these languages. 
In addition to potential perceptual parameters, it is 
important to explore other acoustic parameters of both 
natural and synthetic stimuli that may also contribute to 
this classification task as in [35]. 
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