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ABSTRACT

Whilst Physics Informed Neural Networks (PINNs) solve
certain limitations of traditional networks, they also have
several drawbacks including inability to approximate
PDEs that have sharp gradients, strong non-linearities and
convergence to trivial solutions. Recently, we proposed
the point neuron network by embedding the free space
Green function into the network architecture enabling the
learned model to strictly satisfy the physical law of sound
propagation. The physical meaning of point neurons is
equivalent to point sources or plane wave sources, and
the weight, location (biases) and distribution of equiva-
lent sources can be updated while training. In this paper,
we extend the point neuron learning network for broad-
band signals. The proposed point neuron network can
be implemented efficiently with fewer network parameters
to model and estimate an arbitrary broadband sound field
based on microphone observations without a pre-existing
data set. As an example application, we use the proposed
network to estimate Room Transfer Functions at locations
with no measurements.

Keywords: Physics Informed Neural Networks
(PINN), Point Neuron Learning, Broadband Array Pro-
cessing, Room Impulse Response Reconstruction

1. INTRODUCTION

Advances in Machine Learning have revolutionized some
applications of audio and acoustic signal processing.
However, traditional machine learning (ML) algorithms
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typically require extensive datasets and prolonged training
periods. Sampling sound over space using a large number
of microphones is impractical and hence there is a lack
of spatially rich data compared to temporal sampling of
sound waves. Another drawback is in time-critical appli-
cations where hours of training is not possible. These facts
limit the exploitation of both rich content of spatial sound
as well as the power of learning algorithms. To cater for
these limitations of traditional ML algorithms, Physics In-
formed Machine Learning (PIML) [1, 2] where physical
constraints such as governing partial differential equations
or boundary conditions have been added to the usual data
driven loss function. There are recent PIML based solu-
tions to some acoustic signal processing applications such
as sound field estimation [3, 4] and reconstruction [5],
nearfield acoustics holography [6] and room impulse re-
sponse reconstruction [7, 8]. Nevertheless, PIML based
techniques also have a number of limitations [9] such as
being unable to approximate PDEs that have sharp gradi-
ents or strong non-nonlinearities, not being able to move
away from local optimums, and convergence to trivial so-
lutions.

Recently, we embed the fundamental solution to the
wave equation, free space Green function, into the net-
work architecture [10], enabling the learned model to
strictly satisfy the physical law of sound propagation. In
the proposed network, the basic processing unit is called
a point neuron whose weight and biases can be learned by
back propagation. The physical meaning of point neuron
is equivalent to point sources or plane wave sources, and
the weight, location (biases) and distribution of equiva-
lent sources can be updated while training. The proposed
point neuron network can be implemented to model and
estimate an arbitrary sound field purely based on micro-
phone observations without a preexisting data set. In this
paper, we extend [10] for broadband array processing.
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2. PROBLEM FORMULATION

Consider a source-free region Ω ⊂ R3 surrounded by
sound sources. The resulting sound field is observed at
a finite set of spatial locations {xq = (xq, yq, zq)}Qq=1 ⊂
Ω. The sound pressure at each observation point xq is
denoted by Pm(xq, k) ∈ C in the frequency-domain,
where k ∈ K = {k1, · · · , kK} ⊂ R+ is a discrete
set of wavenumbers defined by ki = 2πfi/c for i =
{1, · · · ,K}, with fi and c representing the ith frequency
and speed of sound, respectively.

We aim to build a neural network model P(x, k;µ),
parameterized by µ ∈ CS , to reconstruct the sound pres-
sure P (x, k) for any x ∈ Ω ∀ k based on Q observation
points, while adhering to the Helmholtz equation which
governs the wave propagation over space. We formulate
P(x, k;µ) by the following optimization problem

arg min
µ∈CS

L = LTRN

(
P̂ ,Pm

)
+ λC(µ) (1a)

s.t. ∆2P(x, k;µ) + k2P(x, k;µ) = 0,

x ∈ Ω,

λ ∈ [0,∞) ,

(1b)

where L is the cost function and LTRN is the training loss
that measures the supervised error between the model out-
put P̂ ∈ CQ×K , given by P(xq, ki;µ) evaluated at the
observation points xq for all ki ∈ K, and the correspond-
ing observed data Pm ∈ CQ×K . The hyperparameter λ
controls the model complexity loss C(µ), and ∆2 is the
Laplacian operator.

Standard physics-based learning approaches address
the optimization problem by incorporating the physical
constraint in Eqn. (1b) into the loss function defined in
Eqn. (1a), thereby encouraging approximate satisfaction
of the Helmholtz equation. However, most existing mod-
els lack the flexibility to enforce this constraint directly
within their architectures. To address this limitation, a
novel architecture called the point neuron network was
proposed in [10], which inherently satisfies the Helmholtz
equation and provides interpretability grounded in phys-
ical principles. In the following section, we extend this
architecture to support broadband sound field modeling.

3. BROADBAND POINT NEURON LEARNING

To explicitly satisfy the Helmholtz wave propagation con-
straint in Eqn. (1b), the point neuron network embeds the
fundamental solution of the wave equation given by the

free-space Green’s function into its architecture. This
function,

G(x, k|y) = eik∥x−y∥2

4π∥x− y∥2
, (2)

represents the sound field at an observation point x due
to a point source of unit strength located at y, where i =√
−1 and ∥ · ∥2 denotes ℓ2-norm.

To ensure unified treatment of both near-field and far-
field sources, Eqn. (2) is normalized and reformulated as
the point neuron unit, which serves as the core building
block of the network. It is defined as

PN(x, k|y) = ∥y∥2 e
−ik∥y∥2

eik∥x−y∥2

4π∥x− y∥2
. (3)

3.1 Network architecture

Figure 1 illustrates the proposed broadband point-neuron
network architecture. The model takes the spatial coordi-
nate of an arbitrary point x = (x, y, z) and the wavenum-
ber k ∈ K = {k1, · · · , kK} as inputs, and outputs the
estimated broadband sound pressure P̂ (x, k) at that coor-
dinate, evaluated over all k ∈ K. The network comprises
V point-neuron units, each functioning as a virtual source
that contributes to the reconstruction of the sound field.

As shown in Fig. 1a, each unit is parameterized by
a spatial bias vector (Bx

v , B
y
v , B

z
v) ∈ R3 and frequency-

dependent weights wv(k) ∈ CK . The signal flow
within each unit implements the point-neuron transfer
function defined in Eqn. (3), weighted by wv(k), using
the 0th order spherical Hankel function of the first kind,
h
(1)
0 (r) = eir/ir.

The spatial bias and weights can be interpreted as
the locations and strengths of virtual sources that can be
optimized during training. By fully connecting and lin-
early combining the outputs of all V units, as depicted
in Fig. 1b, the network reconstructs the sound field via
the superposition of learned virtual sources, maintaining
physical consistency across both space and frequency.

While the architecture is derived from the normal-
ized Green’s function, it remains fully compatible with
standard neural network training procedures. Embedding
the Green’s function into the network grounds the model
in physical principles, reducing reliance on purely data-
driven learning and the need for large datasets.
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(a)

(b)

Figure 1: Network architecture of point neuron learning for broadband array processing. (a) Building block of
vth point neuron. (b) Full model architecture with V number of point neurons.

3.2 Back propagation and training

Based on the network architecture and optimization prob-
lem Eqn. (1), we define the system cost function as

arg min
µ∈CS

L =

kK∑
k=k1

Q∑
q=1

∥P̂ (xq, k)− Pm(xq, k)∥
2

2

+ λ

kK∑
k=k1

∥w(k)∥1 (4)

s.t. Eqn. (1b),

where

P̂ (xq, k) =

V∑
v=1

wv(k)

(
Dv

Dv
q

eik(D
v
q−Dv)

)
, (5)

Dv =

√
(Bx

v )
2
+ (By

v )
2
+ (Bz

v)
2
, (6)

Dv
q =

√
(Bx

v − xq)
2
+ (By

v − yq)
2
+ (Bz

v − zq)
2
, (7)

w(k) = [w1(k), w2(k), · · · , wV (k)]
T ∈ CV×1 and ∥ · ∥1

denotes ℓ1-norm. We apply the ℓ1-norm regularization to
control the model complexity by limiting the number of
active point neurons and to avoid overfitting.

We update the network parameters iteratively through
back propagation. With n indicating the iteration index,
the frequency-dependent weights of the vth point neuron
can be updated as

wv(k;n+ 1) = wv(k;n)− ξw
∂L(n)

∂(wv(k;n))
∗ , (8)

where ξw is the learning rate of the weights and (·)∗ de-
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notes complex conjugation. The gradient term is given by

∂L(n)
∂(wv(k;n))

∗ =

Q∑
q=1

P̄ (n)(xq, k) +
1

2
λeiθv(k;n), (9)

where

P̄ (n)(xq, k) =
(
P̂ (n)(xq, k)− Pm(xq, k)

)
×

Dv(n)

Dv
q (n)

e−ik(Dv
q (n)−Dv(n)), (10)

P̂ (n)(xq, k) and θv(k;n) denote the model output and
phase of the complex weight wv(k;n), respectively, after
the nth iteration.

Similarly, we can update the bias parameters Bα
v ,

where α ∈ {x, y, z}, by

Bα
v (n+ 1) = Bα

v (n)− ξB
∂L(n)
∂Bα

v (n)
, (11)

where ξB is the learning rate of the bias,

∂L(n)
∂Bx

v (n)
=

kK∑
k=k1

Q∑
q=1

2ℜ

{(
P̄ (n)(xq, k)

)∗
wv(k;n)[

(−ikDv(n)− 1)

Dv(n)2
Bx

v (n)

+
(ikDv

q (n)− 1)

Dv
q (n)

2
(Bx

v (n)− xq)

]}
, (12)

∂L(n)
∂By

v (n)
=

kK∑
k=k1

Q∑
q=1

2ℜ

{(
P̄ (n)(xq, k)

)∗
wv(k;n)[

(−ikDv(n)− 1)

Dv(n)2
By

v (n)

+
(ikDv

q (n)− 1)

Dv
q (n)

2
(By

v (n)− yq)

]}
, (13)

∂L(n)
∂Bz

v(n)
=

kK∑
k=k1

Q∑
q=1

2ℜ

{(
P̄ (n)(xq, k)

)∗
wv(k;n)[

(−ikDv(n)− 1)

Dv(n)2
Bz

v(n)

+
(ikDv

q (n)− 1)

Dv
q (n)

2
(Bz

v(n)− zq)

]}
, (14)

and ℜ indicates the real part of the argument.
During training, care must be taken to avoid placing

virtual sources at or too close to observation points, as
the gradients in Eqns. (12)–(14) become unbounded when
Dv

q (n) approaches zero. To mitigate this, the distances
should be continuously monitored to satisfy a minimum
threshold, and the corresponding spatial biases should be
reinitialized to maintain numerical stability.

It is worth noting that the entire training process de-
scribed above relies exclusively on microphone observa-
tions, without the need for additional datasets, making
the proposed method particularly suitable for data-scarce
acoustic environments.

3.3 System Initialization

The point neuron weights wv(k) are typically initialized
with random complex values constrained in magnitude to
[−1, 1]. In room acoustic scenarios, where frequency re-
sponses often exhibit consistent trends across space, nor-
malized microphone observations can be used to guide the
initialization of wv(k). Similarly, spatial biases may be
initialized based on prior knowledge of the acoustic en-
vironment. For example, in height-invariant sound fields,
initial biases may be distributed in the xy-plane, while in
reflective spaces, their placement can be aligned with the
geometry of dominant boundaries. Such informed initial-
ization improves training efficiency and reduces the risk
of convergence to suboptimal local minima.

4. SIMULATION ANALYSIS

This section presents a preliminary evaluation of the pro-
posed broadband point-neuron network for reconstructing
the sound pressure field over a target region using lim-
ited microphone observations. We perform this simulation
study for a rectangular room measuring 5.2×6.4×4.2 m,
with the coordinate origin defined at the bottom-left cor-
ner of the room. A spherical region of 1 m radius, centered
at [2.6, 3.2, 2.1] m, serves as the target region for recon-
struction. A total of 75 microphones are randomly dis-
tributed within the target region, with their z-coordinates
confined to lie within 15 cm of the xy-plane. A single
acoustic source is placed at [4.4, 4.8, 2.1] m. The result-
ing sound pressure at the microphones is simulated using
the image source method [11, 12] for different T60 val-
ues. The sampling rate is 16 kHz. To simulate real-world
conditions, white Gaussian noise is added to the measure-
ments achieving a signal-to-noise ratio of 40 dB.
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The weights of the point neuron network are initial-
ized using the normalized average response of the micro-
phone measurements, with random weighting applied as-
signed across the V units. Spatial biases are initialized
over a 3D mesh-grid spanning 10× 10× 8 m, with a res-
olution of 1.5 m in the xy-plane and 4.2 m along the z-
axis, totaling to 147 units for the whole broadband range.
The regularization parameter is set to λ = 0.01, and the
learning rates for the weights and spatial biases are set to
ξw = 0.001 and ξb = 0.02, respectively.

To evaluate performance, pressure reconstruction is
performed at 1500 locations within the target region, over
a frequency range from 100 to 2000 Hz. We compare
the proposed method with two established techniques: (i)
a least-squares-based plane-wave decomposition (PWD)
method [13], and (ii) a kernel interpolation method [14]
that uses zeroth-order spherical Bessel function kernels
and also constrains the solution to satisfy the Helmholtz
equation. Note that, unlike the PWD and kernel methods,
which are applied independently at each frequency, the
point-neuron network reconstructs P (x, k) jointly across
all k, exploiting shared spatial structure and spectral con-
tinuity inherent in the broadband sound field.

We measure the reconstruction accuracy using the er-
ror metric defined by

E(xt, k) =
|P̂ (xt, k)− P (xt, k)|

2

|P (xt, k)|2
, (15)

where P̂ (xt, k) and P (xt, k) denote the estimated and
true sound pressures, respectively, at the target location
xt. We use the image source method [11, 12] to gener-
ate P (xt, k) for all the target locations. In addition to
E(xt, k), we compute the normalized correlation between
P̂ (xt, k) and P (xt, k) across k to asses spectral consis-
tency.

Figure 2 presents a comparison of the reconstructed
sound pressure magnitudes at a target location for T60 =
0.2 s. The PWD method shows significant deviation from
the ground-truth response, yielding a correlation of 0.39.
The kernel-based method achieves better accuracy, with a
correlation of 0.84. In comparison, the proposed point-
neuron network achieves the highest correlation of 0.90,
closely matching the true response across the entire fre-
quency range and effectively capturing both fine spectral
details and overall magnitude trend.

Figure 3 shows the frequency-dependent reconstruc-
tion error E(xt, k) averaged over 1500 target locations for
T60 = 0.2 s. The PWD method exhibits substantial errors,

Figure 2: Sound pressure magnitude across fre-
quency at the target location [2.58, 2.21, 2.1] m for
a reverberation time of T60 = 0.2 s, reconstructed
using the proposed, kernel-based, and PWD-based
methods against the ground-truth.

Figure 3: Reconstruction error averaged over 1500
target locations for T60 = 0.2 s

.

particularly at lower frequencies, attributed to its sensitiv-
ity to noise and inversion instability. While the kernel-
based method offers improved accuracy over PWD, the
proposed point-neuron network achieves the best recon-
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struction performance, with notably lower error in the
300-1000 Hz range.

Table 1: Correlation between P (xt, k) and P̂ (xt, k)
across k, reconstructed by different methods at xt =
[2.58, 2.21, 2.1] m under different T60s.

T60 (s) PWD Kernel Proposed
0.2 0.39 0.84 0.90
0.4 0.35 0.91 0.92
0.6 0.37 0.93 0.94

We performed the reconstruction under different
reverberant conditions for the target location xt =
[2.58, 2.21, 2.1] m, and the corresponding correlation
values are listed in Table 1. The PWD method consis-
tently yields low correlation values, indicating its limita-
tion in preserving spectral consistency in reverberant envi-
ronments. The kernel method performs significantly bet-
ter, with correlation improving as T60 increases. The pro-
posed method outperforms both PWD and kernel meth-
ods across all T60 values, maintaining the highest corre-
lation scores. Moreover, the correlation remains nearly
consistent with a slight increase with T60, suggesting the
robustness of the proposed method under diverse rever-
berant conditions. It is worth noting that this performance
across different T60s is achieved without re-tuning the ini-
tial biases, learning rates, or regularization parameter of
the network. With appropriate adjustments to these hy-
perparameters, the reconstruction performance can poten-
tially be further improved.

5. CONCLUSION

In this paper, we introduced a physics-informed point neu-
ron learning framework for broadband array signal pro-
cessing, extending our prior narrowband formulation. The
proposed architecture models the broadband sound field
by learning frequency-dependent weights and shared spa-
tial biases of all point neuron units jointly across the entire
frequency range, while strictly adhering to the physical
laws of wave propagation. Simulation results demonstrate
that the proposed method significantly outperforms con-
ventional PWD and kernel-based methods in reconstruct-
ing broadband sound fields, especially under varying re-
verberant conditions. The network achieves high spectral
correlation with a compact architecture and minimal re-
liance on training data. Future work will focus on validat-

ing the approach with real-world measurements, bench-
marking against deep neural network-based models, and
exploring more compact representations of frequency re-
sponses to further improve efficiency.
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