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ABSTRACT
Cross-laminated timber (CLT) has gained popularity as
a lightweight, carbon-neutral material for load-bearing
walls and floors. However, its poor acoustic performance
poses a crucial challenge to its further adoption. A crit-
ical factor is flanking sound, where vibrational energy is
transmitted between two walls across a common junction.
Typically, this transmission is analyzed with models based
on plate or shell theory, but their accuracy at high frequen-
cies is limited the ratio of wavelength to wall thickness is
not large. While full-scale finite element analysis is pos-
sible, its computational cost at high frequencies is pro-
hibitive as very fine element meshes are required. In the
current study, an approach is presented which exploits the
spatial periodicity often exhibited by CLT junctions. This
allows the use of Bloch-Floquet analysis of the junction
itself and the connected walls, leading to diffuse transmis-
sion coefficients between all wave types in the junction.
The junction is treated as an elastic solid as opposed to
the conventional thin shell modelling which results in a
line coupling. Statistical Energy Analysis (SEA) is em-
ployed to compute the vibration reduction indices of the
junction from these coefficients. The prediction model is
applied to rigidly connected CLT junctions.

Keywords: cross-laminated timber, flanking sound trans-
mission, statistical energy analysis, periodic finite element
method.
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1. INTRODUCTION

Cross-laminated timber (CLT) has gained popularity
as an alternative to more carbon-intensive materials
for load-bearing structures such as concrete. However,
its further adoption is hindered by a generally poor
acoustic performance. Especially structure-borne sound
poses a problem due to the low weight and relatively
high stiffness of CLT, with flanking sound transmission
often dominating the overall sound transmission. In this
transmission mechanism, vibration energy is exchanged
between connected walls across their common junction.
As a result, CLT junctions are often designed to mitigate
flanking sound transmission with solutions such as
resilient interlayers or pads between a wall and the floor
beneath it. While these solutions are often effective, a
better, deeper understanding of the vibration transmission
is required to optimize their design. Computationally
efficient prediction models are important tools in the
further development of vibration reducing solutions and
CLT junctions in general, because of the large variation
in transmission paths.

In a recent publication [1], an analytical prediction
model for continuous CLT junctions was presented within
a Statistical Energy Analysis (SEA) framework [2]. The
CLT walls are modelled as directly connected homoge-
neous thin plates [3, 4]. While the broadband predic-
tions are quite accurate, thickness effects are absent in
this model, leading to prediction deviations in the high-
frequency range. Numerical modelling with volumetric
finite elements allows to take high-frequency thickness ef-
fects into account as well as the layered nature of CLT
panels. While full-scale modelling of a building junction
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is possible, the computation time is a limiting factor, es-
pecially at high frequencies where fine element meshes
are required. Exploiting the spatial periodicity of the CLT
junctions, it is possible to model only a repeated unit cell
deterministically with the finite element method and ap-
ply Bloch-Floquet analysis to each connected wall as well
as to the junction itself. The resulting approach is often
termed as the periodic finite element method (pFEM). In
this article, a prediction model for the vibration reduc-
tion index Kij of CLT junctions is presented where the
connected walls and the junction itself are modelled with
a pFEM approach. The vibrational energy transmission
is analysed in a SEA framework. Section 2 describes
the general principles behind the prediction model. The
model is validated with experimental laboratory measure-
ments on a rigid CLT X-junction in Section 3.

2. THEORETICAL FRAMEWORK OF THE
PREDICTION MODEL

Fig. 1 contains a schematic representation of the type
of system that is being considered. The junction is
connected to a total of n walls via area couplings. The
assembly is spatially periodic in the global x-direction
and the corresponding unit cell length is denoted as
lx. Each wall j is also spatially periodic in its local
y-direction, with corresponding unit cell width ly,j . In
what follows, displacements uj are expressed in the local
coordinate system of wall j, unless stated otherwise. The
subscript j is omitted for notational simplicity wherever
possible.

Free plane waves in the periodic structure adhere to
the Bloch-Floquet theorem, such that the displacements
u (x,n), expressed in the local coordinate system of a
wall, in any cell with position n = (nx, ny) relative to
the reference cell of the wall satisfy

u (x,n) = u (x) e−iϵx−iϵy , (1)

for coordinates x = (x, y) within the reference unit
cell. The factors ϵx and ϵy are the phase constants
corresponding to a given wave [5]. Unit cells of the
walls and junction itself are modelled deterministically
with volumetric finite elements, allowing to compute the
unit cell stiffness and mass matrices K and M of each
component.

Figures 2 and 3 illustrate the unit cell for a connected
wall and the junction beam with interfaces between con-
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Figure 1. Exploded view of a T-junction with indica-
tion of the local coordinate systems of each element.

nected elements indicated in grey. The nodes and corre-
sponding degrees of freedom in the finite element model
of each wall can be distributed into separate groups re-
lated to their position within the unit cell: left bottom
(LB), right bottom (RB), bottom (B), left (L), right (R),
left top (LT), right top (RT), top (T) and internal (I). By
imposing Bloch boundary conditions on the unit cell with
phase constants in the local x- and y-direction on the de-
grees of freedom as in equation (1), the system can be
reduced by matrix R with ufull = Rured to a system with
only degrees of freedom LB, B, L and I. For free wave
propagation, the equations of motions of a wall lead to the

I

B RBLB

L R

LT T RT

y

x

zy

x

Figure 2. Unit cell of a wall with separate node la-
bels.
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following eigenvalue problem solved for eigenfrequencies
ω and displacement eigenvectors ϕ, corresponding to the
reduced degrees of freedom for displacements ured:

RH
(
K− ω2 (ϵx, ϵy)M

)
Rϕ (ϵx, ϵy) = 0. (2)

Similarly, the junction beam degrees of freedom are
divided into: left (L), right (R), sleeve (S), left sleeve
(LS), right sleeve (RS) and internal (I), which can be
reduced to LS, L, S and I for an imposed ϵx.
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Figure 3. Unit cell of the junction beam with sepa-
rate node labels.

The vibration transmission of the junction is analysed
in a Statistical Energy Analysis (SEA) framework [2]
with subsystems corresponding to free propagating
wave types in a given connected element. In further
derivations, the subscripts m and n are used to denote
given source and receiver subsystems, respectively, such
that a source subsystem m corresponds to wave type s
in wall i and a receiver subsystem n to wave type t in
wall j. The subsystems in all walls are assumed to be
diffuse. Following a modal approach, this implies that
each mode resonating within a given frequency band
∆ω, corresponding to a wave type with imposed phase
constants ϵx and ϵy, has the same energy density e [6].

In order to study the energy exchange across the junc-
tion, the power balance of the overall SEA system is ex-
pressed in function of the subsystem energies Em, input
powers Wm, total loss factors ηm and coupling loss fac-

tors ηmn between subsystems m and n:
−η1 η21 η31 ...
η12 −η2 η32 ...
η13 η23 −η3 ...
... ... ... ...



E1

E2

E3

...

 =


−W1/ω
−W2/ω
−W3/ω

...

 . (3)

This system is solved for the subsystem energies Em at
each frequency of interest. The total number of subsys-
tems and, therefore, the size of the SEA system may differ
in function of frequency, as higher order wave types can
cut on within the frequency range of interest. The system
requires the computation of ηmn, ηm and Wm in function
of frequency, where

ηm = ηd,m +

M∑
m=1

ηmn, (4)

where ηd,m is the equivalent internal loss factor of the
subsystem. For laminates with layers with identical
damping properties such as CLT, this value is equal to the
material internal loss factor if edge radiation and damping
are negligible.

The input power Wm per source subsystem m is de-
rived in accordance with [7]; in the special case where
the wall is excited on its top surface by a point load F.
This load is exerted in the z-direction at location x0 in a
unit cell with position n0 relative to the reference unit cell.
For a given surface traction t (x,n), the resulting complex
amplitude am (ϵx, ϵy) for a given subsystem is given by

am (ϵx, ϵy) =

∫∫
A
ϕH

m (x,n) t (x,n) dXdY

NxNy ((1 + iηd,m)ω2
m − ω2)

, (5)

where X and Y are the coordinates in the global coordi-
nate system of the wall, which can also be indicated by
(x,n), A is the total surface area of the wall, Nx and
Ny the number of unit cells in their respective dimensions
and ωm the eigenfrequency for subsystem m for an im-
posed phase constant combination. In the special case of
an external point load, the traction corresponds to a spatial
Dirac impulse with t = Fδ (x− x0) for an excitation lo-
cation (x0,n0). As a result, equation (6) can be simplified
to

am (ϵx, ϵy) =
ϕH

m (x0,n0)F (x0,n0)

NxNy ((1 + iηd,m)ω2
m − ω2)

. (6)

This amplitude is always a scalar and is computed for ev-
ery source subsystem for the wave with phase constants
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(ϵx, ϵy). The input power Wm (ϵx, ϵy) for subsystem m
for a point load excitation is given by

Wm (ϵx, ϵy) =
1

2
Re

{
iωFT (x0,n0)u

∗
m (x0,n0)

}
, (7)

where

um (x0,n0) = am (ϵx, ϵy)ϕm (x0,n0) . (8)

The total subsystem input power per frequency band is
obtained by summing the contribution of any (ϵx, ϵy)
combination where its eigenfrequency ωm lies within the
frequency band of interest ∆ω. Born-Von Kárman (also
termed periodic) boundary conditions are applied on the
full wall to take the finite wall size into account, where
the movement at opposite edges is continuous, such that
the wave motion in the wall is spatially periodic. This
enables the resonating modes in the wall to be composed
of purely travelling waves in opposite directions. The
range of imposed phase constants can be limited to the
Brillouin zone of [−π, π] [5]. For orthotropic structures
such as CLT walls, this can be limited to [0, π] due to
symmetry.

The coupling loss factors ηmn between subsystems m
and n are defined as

ηmn =
Wmn

ωEm
, (9)

where Wmn is the power transmitted across the junction
from m to n and Em = eViNm with volume Vi of wall i
and Nm the number of modes resonating in the frequency
band of interest. The intensity in the local y-direction
for a single resonating mode is ecgy,m with cgy,m the y-
component of the group velocity. The transmitted power
Wmn (ϵx, ϵy) for imposed phase constants is given by

Wmn (ϵx, ϵy) = τmn (ϵx, ϵy)Sijemcgy,m (ϵx, ϵy) , (10)

where Sij is the area of the interface between the wall and
the junction, and τmn (ϵx, ϵy) the transmission coefficient
for an incident wave in subsystem m and transmitted
or reflected wave to subsystem n. The total transmitted
power Wmn in a frequency band is obtained by summing
the contributions of each mode with resonance frequency
within this frequency band, analogous to the input power.

The procedure to determine the transmission coeffi-
cients τmn (ϵx, ϵy) is a generalization of the approach of
[3]. An incident wave of wave type s in source plate i with

imposed phase constant ϵx and an arbitrary displacement
amplitude impinges on the junction. Given that all system
components exhibit the same spatial periodicity along the
x-axis, all reflected and transmitted waves have the same
phase constant. Additionally, the analysis is conducted at
a frequency corresponding to the eigenfrequency of the
incident wave. The interface forces of the unit cells of the
different components, indicated in grey in Figures 2 and 3,
should be in equilibrium, such that for the forces in global
coordinates

fjun + finc +

n∑
j=1

fj = 0, (11)

where fjun represents the interface forces of the junction,
finc the interface forces of the incident wave in wall i, and
fj the interface forces of the outgoing waves in wall j. The
forces in the walls for outgoing wave motion can be re-
lated to the interface displacements by exploiting the two-
dimensional spatial periodicity. This leads to the dynamic
stiffness matrix of wall j for outgoing wave motion, de-
noted as Dj(ϵx, ω). Furthermore, in the junction itself, the
forces and displacements at the interface degrees of free-
dom can be coupled via a junction dynamic stiffness ma-
trix Djun(ϵx, ω) by exploiting the one-dimensional spatial
periodicity. As a result, one has that

Djunu+ finc +
∑
j,j ̸=i

Dju+Di(u− uinc) = 0, (12)

where all displacements u are expressed in global
coordinates. Note that uinc represents the displacements
at the interface due to the incident wave motion only,
which can be obtained by only considering one wavetype
propagating in the −y-direction with fixed wave ampli-
tude, so it is uniquely determined.

The procedure to derive the interface dynamic stiff-
ness matrices Dj (ϵx, ω) follows that of [8]. The dynamic
stiffness matrix of the unit cell D = K − ω2M is re-
duced to degrees of freedom LB and B by imposing ϵx, ω
and solving ϵy from equation (2). This leads to an eigen-
value problem with 2N solutions in function of ϵy with
eigenvectors composed of the modal displacements ϕu

and forces ϕf at these degrees of freedom for all poten-
tial outgoing waves. The total interface displacements and
forces uj and fj of wall j are computed from these eigen-
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vectors as

uj =

N∑
n=1

anϕu = Qa, (13)

fj =

N∑
n=1

anϕf = Pa, (14)

where a is a set of a priori unknown amplitudes. Given
that fj = Djuj ,

Dj (ϵx, ω) = PQ−1. (15)

Note that only N eigensolutions are taken into account,
corresponding to outgoing waves propagating or decay-
ing in the local +y-direction of the wall. For the junc-
tion beam, a similar procedure is followed to determine
Djun, exploiting the one-dimensional spatial periodicity
along the x-axis. Solving equation (12) for the interface
displacements u allows to determine the power related to
each outgoing wavetype t in receiver wall j by decompo-
sition of the wall edge displacements uj within the full set
of interface displacements u as in equations (13) and (14).
The corresponding transmitted power per subsystem is
given by

Wmn (ϵx, ϵy) :=
1

2
Re

{
fTmnu

∗
mn

}
. (16)

The definition of incident wave power Winc (ϵx, ϵy) is
analogous. The transmission coefficients τmn (ϵx, ϵy) re-
quired in equation (10) are defined as

τmn (ϵx, ϵy) :=
Wmn (ϵx, ϵy)

Winc (ϵx, ϵy)
. (17)

Finally, the measurement formula for the vibration reduc-
tion index Kij between connected walls i and j following
ISO 12354-1 [9] is given by

Kij =

∑
s,t D

st
vz,ij +

∑
s,t D

ts
vz,ji

2
+ 10log

lij√
aeq,iaeq,j

,

(18)
where lij is the junction length, aeq,i and aeq,j the equiv-
alent absorption lengths of the walls and Dst

vz,ij the trans-
verse velocity level differences between the subsystems,
defined as

Dst
vz,ij := 10log

< v2mz >

< v2nz >
= 10log

Emzmj

Enzmi
, (19)

where < v2mz > denotes the surface-averaged squared ve-
locity of subsystem m in the local z-direction, Emz is the

subsystem energy for the local z-components and mi and
mj are the total masses of wall i and j, respectively. At
resonance, the subsystem energy is given by

Em =
1

4
|am|2 ϕH

m

(
K+ ω2

mM
)
ϕm, (20)

for an amplitude am such that um = amϕm. Equation (3)
is solved for the total band-averaged subsystem energies
per subsystem Em. The transverse subsystem energy Emz

can be computed by only taking the z-components of ϕm

into account. Both Emz (ϵx, ϵy) and Em (ϵx, ϵy) are cal-
culated with equation (20) for each phase constant combi-
nation, after which their values are band-averaged in the
same way as the input power. The subsystem energies re-
sulting from equation (3) are then multiplied by the ratio
Emz/Em per frequency band for each subsystem. In this
way, all contributions to the transverse wave motion and
therefore, the sound radiation, are taken into account in
equation (18) for Kij .

3. RESULTS AND DISCUSSION
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Figure 4. Configuration of the junction with screw
positions.

The prediction model is validated with laboratory
measurements of the vibration reduction index Kij for
a CLT X-junction consisting of 4 walls [11, 12]. Each
wall is a 3-ply cross-laminated timber panel with a layer
stacking of [0 π/2 0] relative to the global x−axis. The
material properties of a single timber layer of strength
class C24 are summarized in Table 1. Each layer has
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Figure 5. Rotationally stiff X-RAD connector [10].

Table 1. Mechanical properties of timber of strength
class C24 [13].
ρ [kg/m3] Ex [MPa] Ey [MPa] Gxy [MPa] νyx [-]

450 11 000 367 690 0.014

an assumed internal loss factor of 0.02. The structural
wall connections are obtained either by screws or more
rotationally stiff connectors, displayed in Figure 5.
Figure 4 illustrates the junction configuration including
the screw positions.

The vibration reduction indices are predicted with the
pFEM model detailed in the previous section, where the
panels are modelled with 8-node solid volume elements,
with each timber layer modelled separately. Due to the
homogeneity of the CLT in the lateral directions of each
wall, the unit cell can be taken arbitrarily small to reduce
computation time. The junction beam is also considered
as a CLT volume with a lateral dimensions corresponding
to the thicknesses of the connected walls. In this exam-
ple, the screws or the other connector are not modelled
explicitly, but in this prediction framework this is a fu-
ture possibility. Additionally, predictions with an analyt-
ical wave approach model for thin homogeneous plates,
directly connected along a massless line connection [1].
This requires the mechanical properties for an homoge-
neous plate equivalent to the CLT panel. They are deter-
mined with the modified gamma method [14], imposing
static equivalence between the transverse bending stiff-
ness of the separate layers and an equivalent single-layer

Table 2. Mechanical properties for an equivalent
single-layer CLT panel.
ρ [kg/m3] Ex [MPa] Ey [MPa] Gxy [MPa] νyx [-]

450 7 533 768 690 0.149

panel, summarized in Table 2. For both models, equiv-
alent absorption lengths aeq,j were determined from the
experimentally determined structural reverberation times
Ts,j :

aeq,j =
2.2π2Sj

Ts,jc0
√

f/fref
, (21)

where c0 = 343m/s, fref = 1000Hz and Sj the surface
area of wall j. As another reference for comparison, the
empirical Kij formulae from Annex F of ISO 12354-1 [9]
for rigid CLT junctions were applied for the transmission
paths as follows

K12 = 18.8 + 3.3log

(
f

fk

)
, (22)

K13 = 23 + 3.3log

(
f

fk

)
, (23)

K24 = 10− 3.3log

(
f

fk

)
+ 10M, (24)

where fk = 500Hz and M = log (m”⊥,j/m”j) for
surface masses m”j and m”⊥,j for wall j and the
wall perpendicular to it. Figures 6 up to 7 display the
predicted values alongside the measured values for the
corner transmission paths, the coplanar transmission
path and the continuous coplanar transmission path.
Prediction results are illustrated by black lines; coloured
lines indicate experimental values, with red lines for the
rotationally stiff connector in Figure 5 and blue lines for
the screwed junction in Figure 4.

While the global frequency trend established by the
empirical formulae from the international standard is
more or less correct with the exception of path 2 − 4,
they are a clear oversimplification of the actual Kij as the
material and geometric parameters and connection type
are not taken into account, leading to deviations of over
5 dB in most 1/3 octave bands.

Both prediction models showcase a correct frequency
trend with generally closer correspondence to Kij for ei-
ther experimental configuration than the empirical formu-
lae. As noted in [1], the analytical prediction model typ-
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Figure 6. Vibration reduction index for the corner
transmission paths in the CLT X-junction.

Figure 7. Vibration reduction index for the inter-
rupted coplanar transmission path in the CLT X-
junction.

Figure 8. Vibration reduction index for the unin-
terrupted coplanar transmission path in the CLT X-
junction.

ically offers a lower limit for Kij due to the assumption
of a rotationally stiff line connection. Therefore, it cor-
responds most closely to the results for stiffer connection
types such as the X-RAD and the screwed junction for
transmission path 1-4 which, unlike path 1-2, has a direct
screw connection. Notably, the predictions are less ac-
curate in the high-frequency range, where the thin plate
assumption is typically invalid due to the small wave-
lengths compared to the wall thickness. As a result, the
high-frequency Kij increase is underestimated for each
transmission path. Due to the inclusion of thickness ef-
fects, the new pFEM prediction model performs better in
the high-frequency range. In general, the predicted Kij

values are several dB higher than the analytical model.
One potential reason for this is the layered finite element
modelling of the CLT walls, while homogenized single-
layer values are used for the thin plate model which are
not necessarily fully equivalent. Additionally, the junc-
tion itself has a mass and volume unlike the line connec-
tion in the analytical model, which could lead to a globally
less stiff connection. While the thin plate model corre-
sponds more closely to the stiffly connected transmission
paths such as corner path 1-4 for the screws, the oppo-
site holds for the pFEM model with the exception of the
high-frequency range. Most notably, K24 across contin-
uous coplanar transmission path 2-4 is better represented
by the thin plate model, although the pFEM predictions
are still relatively accurate. Note that the pFEM prediction
results can be improved by explicitly including the screws
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or X-RAD connector in the finite element model. Simi-
larly, it is possible to implement flexible connectors (e.g.
resilient pads) in future work, which allows for much de-
sign freedom and detail when modelling various building
junctions. In general, the difference between the pFEM
Kij predictions and the experimental values lie beneath
5 dB for most 1/3 octave bands, with especially good cor-
respondence to Kij for connections with lower rotational
stiffness. For example, the pFEM predictions of K12 dif-
fer less than 2 dB from the experimental results for the
screw connection up to 1000 Hz.

4. CONCLUSIONS

The presented work introduces a prediction model for the
vibration reduction index Kij across CLT junctions with
spatial periodicity along the junction direction, construct-
ing finite element models for a repeated unit cell and ap-
plying Bloch analysis. The prediction model is validated
with rigid X-junctions consisting of 3-ply CLT walls, con-
nected by screws or more rotationally stiff modular con-
nectors. The predicted values are quite accurate with dif-
ferences with experimental results beneath 5 dB in most
1/3 octave bands and even lower for less rigid connections.
Due to the large modelling freedom in this framework, it
is possible to further improve the predictions by including
resilient or stiff elements (e.g. resilient pads and screws,
respectively) in future work.
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