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ABSTRACT

This paper explores the application of U-net-based pre-
dictors for compressing acoustic signals characterized
by sound pressure and three-axis accelerations. These
signals, generated in various geophysical and engineer-
ing applications, require efficient compression methods
to address the challenges of high data volumes while
preserving critical information. U-net, a deep learning
model with an encoder-decoder structure and skip connec-
tions, demonstrates its potential for effectively compress-
ing such data by capturing complex spatial and temporal
patterns inherent in acoustic signals. The study evaluates
the U-net’s performance on data containing sound pres-
sure and three-axis accelerations, focusing on maintaining
data integrity essential for accurate analysis and interpre-
tation. It integrates trace removal with U-net-based inter-
polation, fixed-point representation, and Discrete Wavelet
Transform into a comprehensive compression framework.
Performance metrics, including compression ratio, recon-
struction error, and structural similarity index , are used
alongside qualitative expert evaluations to assess the ap-
proach.The results aim to establish the U-net model as a
robust solution for compressing multidimensional acous-
tic signals, reducing storage and transmission costs while
ensuring high fidelity for advanced analysis and decision-
making.
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1. INTRODUCTION

Seismic data is an invaluable resource in the exploration
and production of hydrocarbons, providing essential in-
sights into subsurface geology and enabling informed
decision-making for resource extraction. The increasing
scale of seismic surveys, however, brings with it a sig-
nificant challenge: the vast volumes of data generated can
overwhelm traditional data storage, transmission, and pro-
cessing systems. The sheer magnitude of seismic datasets,
combined with the complexity of their structures and in-
herent noise, presents a unique set of difficulties for geo-
physicists and engineers. As such, effective seismic data
compression methods are paramount to improving the ef-
ficiency of these processes, reducing the costs associated
with data storage and transmission, and enhancing the
overall workflow in geophysical analysis.

Compression techniques for seismic data typically
fall into two categories: lossy and lossless methods. Lossy
compression algorithms achieve higher compression ra-
tios by approximating the data and sacrificing some fi-
delity, which may result in the loss of subtle but poten-
tially crucial geological features. On the other hand, loss-
less methods retain the full accuracy of the original data
but often with lower compression rates. Both approaches
present trade-offs between compression efficiency and
data integrity, underscoring the need for a method that bal-
ances these factors while maintaining the high standards
required in seismic interpretation. Recent developments
in machine learning, particularly deep learning models,
have opened up new possibilities for improving the ef-
ficiency and effectiveness of seismic data compression.
These models are capable of learning complex represen-
tations of data, enabling them to generate compressed for-
mats that preserve essential features while achieving high
compression ratios [1,2].
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Among the deep learning models, U-net has gained
significant attention due to its impressive performance in
image and signal processing tasks. Originally designed
for biomedical image segmentation, the U-net architec-
ture is based on an encoder-decoder structure with skip
connections. This unique architecture allows the model
to capture both local and global features in the data, en-
abling it to learn complex mappings between input and
output even in highly structured data environments. The
success of U-net in image segmentation and other fields
has prompted its exploration in diverse areas such as med-
ical imaging, remote sensing, and seismic data process-
ing. In the context of seismic data, which is typically
represented as multidimensional arrays with intricate pat-
terns and varying levels of noise, U-net’s ability to ex-
tract meaningful features from noisy, high-dimensional
data makes it an ideal candidate for seismic data compres-
sion [3,4].

Moreover, seismic data inherently exhibits high spa-
tial correlation, particularly along the temporal or spa-
tial dimensions of seismic traces. This spatial correla-
tion means that adjacent seismic traces often carry redun-
dant information, making trace removal a highly effective
strategy for compression. The U-net architecture, with its
encoder-decoder structure and skip connections, is partic-
ularly well-suited to this task. By learning the spatial rela-
tionships between adjacent traces, U-net can effectively
reconstruct missing or removed traces, maintaining the
fidelity of the data while reducing its size. This makes
U-net a compelling approach for trace removal and inter-
polation in seismic data compression, leveraging the high
spatial correlation present in the data to minimize loss and
maximize compression efficiency [35, 6].

This paper presents an experimental design aimed
at evaluating the effectiveness of U-net-based models in
compressing seismic data, with a particular focus on seis-
mic data from the Petrobras Data in the Jubarte Basin. The
research seeks to demonstrate the ability of the U-net ar-
chitecture to achieve high compression ratios while pre-
serving the integrity of the seismic data, which is crucial
for accurate geological and geophysical interpretations.
The study contributes to the existing body of knowledge
in seismic data processing by investigating a novel appli-
cation of deep learning techniques, specifically U-net, in
the compression of geophysical data.

The contributions of this paper are multifaceted. First,
we propose the novel application of U-net for seismic
data compression, leveraging its encoder-decoder struc-
ture with skip connections to learn efficient representa-

tions of seismic data that balance high compression ratios
with the retention of critical features necessary for accu-
rate interpretation. Second, we demonstrate the effective-
ness of U-net for trace removal and interpolation by tak-
ing advantage of the high spatial correlation inherent in
seismic data. Third, we present a comprehensive experi-
mental framework for evaluating U-net’s performance in
seismic data compression. The methodology includes de-
tailed steps for dataset preparation, model training, and
validation, ensuring that the model is rigorously tested and
its generalization capabilities are thoroughly assessed. Fi-
nally, we evaluate the performance of the U-net model
using metrics such as compression ratio, reconstruction
error, and domain-specific accuracy in seismic interpre-
tation, providing insights into the potential of U-net for
efficient seismic data handling [7].

The primary goal of this experiment is to evaluate
the effectiveness of U-net architecture-based predictors
(interpolators) for compressing seismic data, with a spe-
cific focus on active seismic data collected at the seafloor
via Ocean Bottom Cables positioned in the Jubarte Basin,
Brazil. This study aims to investigate whether U-net can
successfully compress such seismic data while preserving
essential features necessary for accurate geological and
geophysical analysis.

The expected outcomes of this study include the fol-
lowing: determining the efficiency of U-net-based predic-
tors in compressing seismic data; assessing the general-
ization capability of the model by comparing performance
on training and validation datasets; and providing insights
into potential improvements or alternative approaches for
seismic data compression.

This comprehensive study aims to contribute to the
ongoing development of seismic data compression tech-
niques and demonstrate the applicability of deep learning
models in this critical area of geophysical data processing.

2. EXPERIMENTAL SETUP

The experimental setup is pivotal in validating the use
of machine learning models, particularly the U-net ar-
chitecture, in seismic data prediction and compression.
This section provides a comprehensive description of the
methodos employed to prepare the datasets, define the U-
net model architecture, to conduct the training procedure,
and to evaluate the model’s performance. The primary ob-
jective of this study is to investigate the potential of the
U-net model for interpolating active seismic data taken
from the Jubarte Basin, Brazil. By focusing on improv-
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ing both seismic data compression and prediction accu-
racy, the study aims to contribute to advancements in geo-
logical and geophysical research, where high-fidelity seis-
mic data is crucial for subsurface exploration and resource
management.

2.1 Data Preparation

The success of machine learning models relies heavily on
the quality and distribution of the datasets used for train-
ing and validation. In this study, seismic data extracted
from the Jubarte Basin serve as the core foundation for
model development. These data undergo preprocessing
and are subsequently partitioned into two primary subsets:
the training dataset and the validation dataset.

Training Dataset: The training dataset, denoted as
Dirrain, 18 sourced from a specific area within the Jubarte
Basin. The dataset includes active seismic traces that cap-
ture a wide array of geological features, reflecting the di-
versity of the subsurface conditions in the region. The
seismic data are multivariate, incorporating sensor read-
ings from various sources and configurations. This diver-
sity in the training data allows the model to learn a broad
set of features and provides a solid foundation for training
the model.

Validation Dataset: The validation dataset, repre-
sented as Dy,, is extracted from a geographically distinct
zone within the Jubarte Basin. This spatial separation en-
sures that the validation data are independent of the train-
ing data, which helps in minimizing spatial bias and pro-
motes a more generalizable model. The validation dataset
is critical for evaluating the model’s performance on un-
seen data, simulating real-world conditions where seismic
data from new locations will be processed.

2.2 U-Net Model Architecture

The U-net architecture is chosen for its proven effective-
ness in a variety of image-to-image tasks, including med-
ical image segmentation, where it has demonstrated supe-
rior performance. Given the complexity and noise charac-
teristics inherent in seismic data, U-net’s encoder-decoder
structure with skip connections is likely to be well-suited
for seismic data interpolation and compression.

The U-net architecture uses an encoder-decoder struc-
ture, where the encoder progressively downsamples the
input data to capture high-level features, while the decoder
works in reverse to reconstruct the data’s spatial resolu-
tion. The skip connections that link corresponding lay-
ers of the encoder and decoder allow the model to retain
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fine-grained details at different scales. The output of the
model, Y, is predicted based on the input seismic data X
as follows:

Y = U-net(X; 0)

wherein X represents the input seismic data, © are
the model parameters, and Y is the predicted output. This
architecture is well-suited for seismic data as it excels at
recovering fine details and contextual information despite
the presence of noise or data irregularities.

2.3 Data Preprocessing

Prior to feeding the seismic data into the U-net model,
several preprocessing steps are applied to standardize the
data and enhance the model’s convergence. The first step
involves standardizing the seismic data X, ensuring that
the input data has uniform characteristics. Standardization
is crucial in helping the model learn more effectively, as
it eliminates discrepancies in amplitude and offset across
different seismic traces.

In addition to standardization, data augmentation
techniques are employed to artificially expand the training
dataset. Augmentation techniques such as random rota-
tions, translations, and noise addition are applied to Diin
to simulate various real-world scenarios that may occur
during seismic data acquisition. This augmentation en-
sures that the model is exposed to a diverse set of data,
making it more robust and better equipped to handle un-
seen data during the training process.

2.4 Training Procedure

The training procedure is a critical aspect of the experi-
mental setup and involves optimizing the U-net model’s
parameters to minimize the reconstruction error. The
training dataset Dy, 1S divided into two subsets: one used
for training the model and the other used for validation. A
common partitioning strategy, such as an 80-20 split, is
used to ensure that the model is evaluated at regular inter-
vals throughout the training process.

The model is trained using a loss function, such as
Mean Squared Error (MSE), which quantifies the differ-
ence between the predicted seismic data Y and the ground
truth Y. The optimization process aims to minimize the
following loss function:

N
~ 1 ~
LYY) =5 D IYi-Yif?
i=1

11™* Convention of the European Acoustics Association
Milaga, Spain * 23" — 26" June 2025 *

SOCIEDAD ESPAROLA

SEA DE ACUSTICA



FORUM ACUSTICUM
ails EURONOISE

where NN is the number of samples, Y; represents the
ground truth, and Y; is the predicted seismic data. The
optimization is carried out using an appropriate optimizer,
such as the Adam optimizer, with a specified learning rate
schedule. The parameters of the model © are updated it-
eratively to minimize the loss function, yielding the opti-
mized model:

O" = arg ngn L(Y,U-net(X; 9))

During training, early stopping is implemented to
prevent overfitting. The model is also saved at regu-
lar intervals using checkpointing to ensure that the best-
performing model, in terms of validation loss, is retained.

2.5 Validation and Performance Evaluation

Once the model has been trained, it is evaluated on an
independent validation dataset, D,,;, which is geographi-
cally independent from the training data. The validation
dataset provides an unbiased estimate of the model’s per-
formance on new, unseen data. The evaluation focuses on
key performance metrics, such as compression ratio, re-
construction error, and structural similarity.

Compression Ratio (CR): The compression ratio
(CR) is a primary metric used to assess the model’s abil-
ity to reduce data size while preserving key features of
the seismic data. This ratio is calculated as the ratio of
the original data size Sy, to the compressed data size
Scompresseds after applying the U-net model. Mathemati-
cally, the compression ratio is defined as:

S orig

S compressed

CR =

A higher compression ratio indicates that the model is
more efficient in compressing the seismic data, reducing
both storage requirements and transmission costs. How-
ever, it is essential to balance compression with the preser-
vation of essential seismic features to maintain the in-
tegrity of the data.

Reconstruction Error: The reconstruction error is
typically calculated using Mean Squared Error (MSE),
which provides a quantitative measure of how well the
model reconstructs missing or noisy seismic traces. MSE
is defined as:
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where Y; represents the ground truth seismic data, Y;
is the predicted seismic data, and N is the number of sam-
ples in the dataset. A lower MSE indicates that the model
is better at preserving the important features of the seismic
data and is more accurate in its reconstruction.

Structural Similarity Index (SSIM): In addition to
MSE, the Structural Similarity Index (SSIM) is used to
evaluate the perceptual quality of the reconstructed seis-
mic data. SSIM compares the structural similarity be-
tween the ground truth and the reconstructed data, taking
into account luminance, contrast, and structural informa-
tion. The SSIM index, SSIM(Y, V), is defined as:

(2uypy +C1) (20y¢ + Co)

M i 00) (% 27+ 1)

where: - puy and py are the mean intensities of the
ground truth and predicted data, respectively, - o5 and o
are the variances of the ground truth and predicted data,
respectively, - o,y is the covariance between the ground
truth and predicted data, - C; and C are small constants
to avoid division by zero.

The SSIM score ranges from -1 to 1, where 1 indi-
cates perfect structural similarity between the ground truth
and the reconstructed data, while a value closer to 0 in-
dicates significant structural differences. A higher SSIM
value signifies that the model maintains important spatial
structures and patterns in the seismic data, making it more
useful for geological interpretation.

Overall Performance Evaluation: The overall per-
formance of the model is determined by considering a
combination of the above metrics. A good model should
achieve a high compression ratio, low reconstruction error
(MSE), and high structural similarity (SSIM), while also
satisfying the qualitative criteria set by domain experts.
The balance between these factors is crucial to ensure that
the model can effectively compress seismic data without
sacrificing important geological and geophysical informa-
tion.

By evaluating the model using both objective and sub-
jective criteria, the experiment aims to provide a com-
prehensive understanding of the U-net model’s ability to
compress and reconstruct seismic data effectively.

2.6 Proposed Data Compression Methodology

The proposed data compression methodology consists of
a sequence of processing stages aimed at minimizing the
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storage and transmission costs associated with seismic
data, while preserving the essential information required
for subsequent analysis. This framework incorporates the
following components:

* Trace Decimation and U-Net-Based Interpola-
tion: Seismic datasets typically exhibit redun-
dancy due to the spatial correlation among adja-
cent traces. To exploit this redundancy, a subset
of traces is deliberately removed. A U-Net model,
characterized by its encoder-decoder architecture
and skip connections, is then employed to recon-
struct the missing traces. This structure effectively
captures both local and global signal features, en-
suring high-fidelity reconstruction despite partial
data omission.

Fixed-Point Representation: Upon interpolation,
the seismic data—originally in floating-point for-
mat—is converted to fixed-point representation.
This quantization process reduces memory usage
by limiting numerical precision, making it partic-
ularly advantageous for deployment in resource-
constrained environments. Despite the reduction in
precision, this step maintains adequate accuracy for
seismic analysis tasks.

Three-Dimensional Discrete Wavelet Transform
(3D DWT): The reconstructed dataset is further
compressed using a 3D Haar wavelet transform
with five decomposition levels. This process de-
composes the data into hierarchical frequency sub-
bands, enabling the isolation of significant signal
features while discarding less informative compo-
nents. The resulting multi-resolution representa-
tion is conducive to efficient and compact data en-
coding.

Entropy Encoding: In the final stage, entropy
encoding is applied to the quantized wavelet co-
efficients. By assigning shorter binary codes to
more frequent patterns and longer codes to rare
ones, methods such as Huffman or arithmetic cod-
ing achieve additional data compression. This step
ensures a compact representation while preserving
critical features necessary for interpretation.

Together, these stages form a robust and flexible com-
pression pipeline that effectively balances storage effi-
ciency and data integrity.
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2.7 Experimental Results

Two compression configurations were evaluated to assess
the performance of the proposed approach. Performance
metrics included the compression ratio, mean squared
error (MSE), and structural similarity index (SSIM),
with frequency-band-specific analysis to better understand
compression fidelity.

Configuration 1: With 3D DWT.The processing
pipeline for this configuration includes Decimation 2:1,
3D DWT, Fixed-Point Conversion, and Entropy Encod-
ing. It achieved a compression ratio of 3.80. In terms
of overall performance, the Mean Squared Error (MSE)
was 0.1606, and the Structural Similarity Index Measure
(SSIM) was 0.9697. When broken down by frequency
band, the results were as follows: for 0-20 Hz, MSE
= 0.00078 and SSIM = 0.6756; for 20-80 Hz, MSE =
0.00158 and SSIM = 0.8841; for 80-150 Hz, MSE =
0.00333 and SSIM = 0.9348; and for 150-250 Hz, MSE =
0.0352 and SSIM = 0.9779. The wavelet-based configu-
ration preserved key signal characteristics, particularly in
the mid and high-frequency ranges, with minimal visual
distortion. Detailed results across signal components can
be seen in Figures 1-4.

Configuration 2: Without 3D DWT.This alternative
pipeline consisted of Decimation 2:1, Fixed-Point Conver-
sion, and Entropy Encoding, omitting the 3D DWT stage.
It resulted in a lower compression ratio of 2.19. However,
overall performance was slightly improved, with MSE =
0.1597 and SSIM = 0.9708. Frequency-band analysis re-
vealed the following: for 0-20 Hz, MSE = 0.00078 and
SSIM = 0.6792; for 20-80 Hz, MSE = 0.00156 and SSIM
= 0.8936; for 80-150 Hz, MSE = 0.00327 and SSIM =
0.9412; and for 150-250 Hz, MSE = 0.0350 and SSIM
= 0.9786. Although the compression ratio was reduced,
the reconstruction fidelity—particularly SSIM—showed
slight improvement. Visual inspections, as seen in Fig-
ures 5-8, confirm minimal degradation in signal quality,
indicating that this simpler pipeline may be a viable op-
tion when computational efficiency is a priority.

These experimental results underscore the flexibility
of the proposed compression framework. Depending on
application requirements, one may prioritize compression
ratio or computational simplicity without significant com-
promise in signal quality.
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Figure 1. Compression results for sound pressure
signal using decimation, 3D wavelet, float2fixed, and

entropy encoding.
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Figure 2. Compression results for vertical acceler-
ation using decimation, 3D wavelet, float2fixed, and

entropy encoding.
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Figure 3. Compression results for crossline acceler-
ation using decimation, 3D wavelet, float2fixed, and

entropy encoding.
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Figure 4. Compression results for inline accelera-
tion using decimation, 3D wavelet, float2fixed, and

entropy encoding.
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Figure 5. Compression results for sound pressure
signal using decimation, float2fixed, and entropy en-
coding.
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Figure 6. Compression results for vertical acceler-
ation using decimation, float2fixed, and entropy en-
coding.
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Figure 7. Compression results for crossline acceler-
ation using decimation, float2fixed, and entropy en-

coding.
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Figure 8. Compression results for inline acceleration
using decimation, float2fixed, and entropy encoding.
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3. CONCLUSION

U-net effectively reconstructs missing traces based on the
spatial patterns and dependencies present in the data. This
ability to perform high-quality trace interpolation is crit-
ical to reducing data size without sacrificing essential
seismic information. By exploiting the U-net’s encoder-
decoder architecture and skip connections, the proposed
framework accurately recovers missing traces while main-
taining structural coherence in the data, thus enabling ag-
gressive decimation without compromising interpretabil-
ity.

A key contribution of the proposed compression ap-
proach lies in its ability to balance reconstruction qual-
ity with compression efficiency. This balance is achieved
through the integration of multiple complementary tech-
niques: fixed-point representation, three-dimensional dis-
crete wavelet transform, and entropy encoding. Fixed-
point representation reduces storage requirements by lim-
iting numerical precision, while maintaining sufficient ac-
curacy for seismic analysis. The 3D DWT enables multi-
scale analysis and compression by isolating salient fea-
tures in the data, and entropy encoding efficiently captures
redundancy in the transformed signal.

Empirical evaluations demonstrate that the full com-
pression pipeline achieves a compression ratio of up to
3.80, while preserving high fidelity in the reconstructed
signals. Notably, the structural similarity index (SSIM)
remains above 0.96 across the full bandwidth, with further
improvements observed at higher frequency bands. This
indicates that essential seismic features are retained, mak-
ing the compressed data suitable for further processing
and interpretation. Additionally, an alternative configura-
tion without the 3D wavelet transform yields a lower com-
pression ratio of 2.19, but achieves slightly better SSIM,
highlighting the inherent trade-off between data compact-
ness and reconstruction quality.

These findings emphasize the flexibility of the pro-
posed method. Users may adjust individual components
of the pipeline depending on the specific demands of the
application—whether prioritizing maximum compression
for transmission and storage efficiency, or favoring high-
fidelity reconstruction for detailed seismic analysis. The
modular nature of the approach ensures it can be tai-
lored to various operational constraints and performance
requirements.

In conclusion, the proposed multi-stage compression
framework offers a robust, scalable, and adaptable solu-
tion for seismic data reduction. By achieving an effec-
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tive compromise between compression ratio and recon-
struction quality, it supports both efficient data manage-
ment and high-resolution interpretation, making it suitable
for applications ranging from real-time field acquisition to
long-term archival storage.
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