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ABSTRACT

The perceived sound of percussion instruments is sig-
nificantly influenced by Viscoelastic Damping (VD), a
mechanism whereby damped energy is temporarily stored
and released back into the system, modifying the fre-
quency spectrum. Performers harness this influence by
choosing different materials and damping additives to
shape the sound of their instruments. However, this pro-
cess is still not fully understood. To address this, we
apply physics-informed machine learning within a psy-
choacoustically grounded framework to investigate how
changes in VD parameters influence the perceived sound
of musical membranes. By analyzing a physics-informed
dataset, we track spectral centroid differences and spec-
tral flux across time and frequency ranges. Results show
that the perceptual influence of VD strongly depends on
where along the frequency spectrum the damping occurs,
particularly in relation to the fundamental frequency. A
temporal drift of the affected spectral region toward lower
frequencies was also observed. Self-organizing maps
(SOMs), initialized with physically informed features,
were used to explore these complex, high-dimensional re-
lationships. This method offers new insights into how spe-
cific damping conditions shape perceived sound and pro-
vides a foundation for more detailed analyses using alter-
native time—frequency representations in future research.
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1. INTRODUCTION

The sound of musical instruments is highly influenced
by the physical properties of the materials with which
they are constructed. For percussion instruments, mem-
branes are typically made from materials like leather and
polymers. The internal damping of these materials is
largely determined by their viscoelastic properties, lead-
ing to what is known as Viscoelastic Damping (VD). VD
is characterized by the interrelation between stress, strain
and time; the present stress is the result of a finite history
of previous strains [6]. Given that in viscoelastic materi-
als there is a phase difference between stress and strain,
the present stress is damped by the accumulated strain. If
by the time the present stress is completely damped there
is still energy stored in the history of strains, this energy
is released back into the system, starting the cycle again.
This is known as the memory effect and leads to a highly
nonlinear relation between the parameters of VD and the
resulting frequency spectrum [3].

Despite its complex behavior, musicians actively
make use of VD either by exploring the diverse sonic pos-
sibilities that different materials offer (e.g., when select-
ing a membrane material), or by intentionally using VD
to alter the instrument’s original sound [2, 17]. Although
this practice is widespread, little is known about how VD
influences the perceived characteristics of sound. Specifi-
cally, how do modifications in VD parameters lead to par-
ticular changes in the perceived sound characteristics.

To investigate the relationship between perception
and musical acoustics, different music information re-
trieval algorithms have been developed to analyze the
frequency and temporal characteristics of musical instru-
ment signals during the onset of the sound [4, 15]. More-
over, the development of such features, as well as the
advent of data-driven methods have propelled the use of
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machine learning and physical modeling in psychoacous-
tics [5, 14, 16]. Still, many of these approaches primarily
target genre or instrument classification and transcription.
With regard to damping in drums, an analysis of the influ-
ence of drumhead damping patterns in the perception of
the sound using convolutional neural networks and phys-
ical modeling is presented in [1]. Nonetheless, mapping
perceptible changes in the sound of a musical membrane
to variations within the VD parameter space remains chal-
lenging. This is due to a lack of data reflecting consistent
parameter changes in VD, as well as the need for tools ca-
pable of navigating a broad parameter space while flexibly
and accurately analyzing transient dynamics from a psy-
choacoustic perspective. To address this, the authors intro-
duced a method in [9], employing physics-informed ma-
chine learning to investigate the relationship between sys-
tematic variations in VD and the resulting frequency spec-
tra, thereby revealing key characteristics of VD’s physical
behavior.

Still, a psychoacoustic analysis implies additional
challenges. On the one hand, it requires flexible tools for
analyzing the transient phase of percussive sounds, which
is characterized by its high intricacy [11]—this being the
time window during which VD primarily operates, as will
be discussed in the next section. On the other hand, it de-
mands a better understanding of which time and frequency
features the auditory system extracts and integrates into
perceptual categories such as timbre or pitch. Indeed,
the fact that VD is embraced by musicians suggests that
the auditory system is capable of detecting and extract-
ing patterns from its complex relationships and behaviors.
Still, this latter question remains under active investiga-
tion. Therefore, the present study is based on an anal-
ysis framework developed in previous work [10], which
is based on findings from the existing literature related
to important temporal cues for the perception of musical
sounds—also outlined in the following section. However,
a detailed analysis of the auditory cues underlying sound
perception, lies beyond the scope of this work.

Accordingly, the aim of this study is twofold: (a) to
employ physics-informed machine learning, grounded in
a psychoacoustically relevant analysis framework, to iden-
tify underlying patterns and relationships between VD
and measured features, in order to (b) investigate which
changes in the frequency spectrum caused by VD modify
the perceived characteristics of the sound—specifically,
when, where, and how VD produces these modifications.
Correspondingly, this article is structured as follows: Sec-
tion 2 describes the methods, i.e. the analysis framework,
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physics-informed dataset data pipeline and experimental
design. Sections 3 and 4 present the results and their in-
terpretation, while Section 5 summarizes the conclusions
of the study.

2. METHOD

2.1 Physics- and Psychoacoustics-Based Analysis
Framework

Despite the highly nonlinear relation between the para-
metric modifications and the resulting frequency spectra,
the musical application of VD points towards the ability
of the brain to extract patterns from among these complex
physical components. To understand this process, both the
physical dynamics of VD and the brain’s temporal cues
for perceiving musical sounds must be considered. To this
end, an analysis framework addressing this has been pre-
sented in previous research [10] and is summarized below.

Key physical characteristics of VD in musical mem-
branes, identified in [3, 9], include: (1) the memory effect
causes viscoelastically damped frequencies to decay non-
exponentially, with a nonlinear amplitude behavior start-
ing around 40-50 ms after an initial constant decrease; (2)
modifications to the model parameters lead to nonlinear
amplitude fluctuations in neighboring frequencies, with
the width of the affected region yet to be determined; (3)
VD influences sound most significantly during the first
120 ms, although this temporal interval may vary with fre-
quency; (4) a noticeable increase in spectral fluctuation
occurs around 25 ms [10]; (5) the FDTD model requires a
minimum number of periods of the damped frequency for
the damping to develop completely.

Concerning the perception of musical sounds, previ-
ous studies have highlighted relevant integration times for
non-percussive and percussive-harmonic sounds [12, 15].
A time window of approximately 10 ms reflects the audi-
tory system’s state of inertia, as it requires around 10 ms to
establish frequency filter widths on the basilar membrane.
Auditory changes occurring above this threshold affect the
envelope of the sound, while changes below it influence
timbre perception [12]. The interval between 10 ms and
50ms is closely associated with pitch perception; once
the frequency filters are established, their sensitivity plays
and important role [12]. For frequencies below 500 Hz,
differences as small as 1.8 Hz can be perceived, whereas
above this threshold, the detection limit increases with fre-
quency [18]. Changes during this time window also shape
timbral characteristics. A broader window of 100-150 ms
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represents the upper bound beyond which sensitivity to
frequency fluctuations remains relatively constant [12]. If
such fluctuations persist up to 250 ms, the pitch percept
tends to weaken, and the sound is perceived as more noise-
like.

Although the influence of VD unfolds continuously
over time, defining specific time points that are both phys-
ically and perceptually relevant serves as a starting point
for understanding how VD affects the acoustic features
upon which the auditory system forms perceived charac-
teristics of a sound. These temporal cues therefore consti-
tute the analytical framework of this study and are sum-
marized in Table 1.

Table 1: Analysis framework.

Time (ms)  Description

10 Filter formation in the basilar membrane. Timbre and
envelope perception

25 Increase in spectral flux

50 Non-linearities in amplitude of viscoelastically
damped frequencies begin. Pitch and timbre percep-
tion. Sensitivity to frequency variations

100 Perception of harmonicity - noisiness

120 Influence of VD decreases

2.2 Physics-Informed Dataset

The behavior of viscoelastic damping can be systemati-
cally controlled and modified through four parameters de-
fined in a Finite-Difference Time-Domain (FDTD) model
of a viscoelastically damped membrane developed by the
second author in [3] (see Table 2). By simulating a cir-
cular membrane with a tension of 2284 Pa, a density of
300 kg/mg, a thickness of 3 mm, a radius of 10cm, and
fixed boundary conditions (usm = 0), and varying only
the parameter space from Table 2, a physics-informed
dataset was generated in [9]. For the present study, a sub-
set of 220 time series was extracted from this dataset (see
Table 3). Each sample has a duration of 500 ms and a
sampling rate of 96 kHz. The selection of viscoelastically
damped frequencies—hereafter referred to as VD ,.cq—is
constrained by the FDTD model, which requires integer
multiples of periodicity to maintain numerical stability.
Furthermore, when R{E(s)} = 0, no viscoelastic damp-
ing is applied; this case is referred to as the *no-damping*
condition.

Table 2: Parameters of the FDTD.

Parameter  Description

VD freq Viscoelastically damped frequency

T Integration time. Length of memory effect
R{E(s)} Damping coefficient

o Rate of decay

Table 3: Parameter space of the dataset.

Parameter Fixed Min. Max. Increase
Value Value Value
VD yeq (H2) 700,
6400
T (ms) 10
R{E(s)} 0% 0.003 0.0003
¥ 1/100 1/10 1/10

*R{E(s)} = 0 implies no VD (no-damping case).

2.3 Psychoacosutic Features
2.3.1 Spectral Centroid Differences

The spectral centroid has been shown to be strongly re-
lated to the sensation of brightness in a sound [13]. In
accordance with the analysis framework described in Sec-
tion 2.1, changes in spectral centroid caused by VD at dis-
crete time points are investigated by calculating the dif-
ference between the centroid values of a data sample and
those of the no-damping case at the same time points. Pre-
vious studies have found that the frequency range along
which the spectral centroid varies can change consider-
ably across different time points [10]. Therefore, the cal-
culated differences are normalized to facilitate compari-
son across time. As a result, the centroid differences are
calculated as:

Gi(t) = Cerl?)
"~ CDpaz(t) — ODpin(t)’

CD;(t) (D

where C;(t) and Cit(t) denote the spectral centroids of
sample ¢ and the no-damping case, respectively, calculated
at the discrete time point ¢. If CDyax (t) = C' Dpin(t), then
CD;(t) = 0. The results are visualized as a heat map fol-
lowing the approach proposed in [10], with damping co-
efficients along the x-axis, decay rates along the y-axis,
and centroid values mapped to color. This visualization
enables a comprehensive overview of how changes in the
parameter space of VD affect the spectral centroid at dis-
crete time points.
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2.3.2 Spectral Flux per Mel Band

Building on the approaches proposed in [11] and [4] to
evaluate spectral dissimilarities in a logarithmically fil-
tered Mel spectrogram between discrete time frames ¢ and
t — w, a measure of spectral dissimilarity based on the
decibel scale and preserves values per Mel band was in-
troduced in [10] and is calculated as:

SF(t,m) = Xapan(t,m) — Xapsu(t —p,m), (2
where Xgp s denotes the decibel-filtered Mel spectro-
gram, t the discrete time point, m the Mel band index,
and © = 1. Quarter-tone Mel bands were employed in
the present study. The objective of this approach is to in-
vestigate how and where VD affects the frequency spec-
trum, enabling the localization of spectral regions where
VD-induced changes occur. This, in turn, provides insight
into how the spectral centroid is affected and which fre-
quency ranges are most impacted by the energy introduced
through the memory effect.

2.4 Self-Organizing Maps (SOM)

Self-Organizing Maps (SOM) transform non-linear statis-
tical relationships in high-dimensional data into geometric
relations on a 2D n x n grid [8]. The dimensionality of
each neuron in the SOM matches that of the feature vec-
tors extracted from the dataset. Both neurons and data
samples are normalized before training. During training,
the Euclidean distance between each sample and neuron
is computed to determine the Best Matching Unit (BMU).
The BMU’s weights and those of its neighboring neurons
are updated iteratively using a Gaussian neighborhood
function. This process continues for P iterations, refin-
ing the SOM structure. Cluster assessment is performed
using a U-Matrix, with values ranging from O (complete
similarity) to 1 (max. distance).

2.5 Data Pipeline and Experiments

Figure 1 depicts the data pipeline of the proposed method.
For the frequency-domain transformation, a Short-Time
Fourier Transform (STFT) was applied using a Bartlett
window with a window size of 85.3 ms and a hop length
of 1ms. Since the highest simulated frequencies in
the FDTD model reach approximately 15kHz, only fre-
quency bins up to this value were considered for the calcu-
lation of psychoacoustic features under each VDyeq con-
dition.
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At this stage, the pipeline branches into two pro-
cesses. On one hand, the spectral centroid is calculated
from the magnitude coefficients of the STFT frequency
bins. Centroid differences at the discrete time points de-
fined in the analysis framework are then computed and an-
alyzed with respect to changes in the VD parameter space
(Experiment 1). On the other hand, a decibel-scaled Mel
spectrogram with quarter-tone Mel bands is computed,
and spectral flux per Mel band is calculated, also at the
time points ¢ defined in the analysis framework.

Subsequently, the dissimilarity coefficients obtained
from the spectral flux are segmented into three frequency
ranges: (1) one octave below, (2) one octave around,
and (3) one octave above VDgeq. For each range, a
peak-picking algorithm is applied using minimum width
and distance constraints to retain relevant information.
The spectral dissimilarities corresponding to the extracted
peaks are then isolated, normalized, and incorporated into
the feature vector. Principal Component Analysis (PCA)
is used to initialize the SOM’s weights, and one SOM is
trained per frequency range at each time point. Note that
each SOM involves three stages of dimensionality reduc-
tion: frequency range selection, peak-picking, and PCA
for initialization. The results are then analyzed with re-
spect to both the VD parameters and the centroid differ-
ences (Experiment 2).

Each SOM is configured with n 20 neurons, a
Gaussian neighborhood radius o = 1.5, an initial learn-
ing rate n(¢) = 0.5, and P = 1000 iterations. For vi-
sualization, the centroid difference coefficients and the
parameter-space annotations of the FDTD dataset are used
as metadata: the inner color of each data point repre-
sents the damping coefficient R{ E'(s)} (darker = stronger
damping), the outer color indicates the centroid difference
(darker = higher difference), and the shape size encodes
the rate of decay ~ (larger = slower decay). The U-Matrix
employs a black-to-white scale, where black denotes com-
plete similarity and white indicates maximum dissimilar-
ity. In this context, the term physics-informed refers to the
principle of observational bias in physics-informed learn-
ing, where observational data inherently reflect the phys-
ical laws governing the system and thus serve to embed
these laws into the machine learning model [7].

Both the analysis of centroid differences and the seg-
mentation of the frequency spectrum into distinct ranges
are key steps in the proposed method (see Fig. 1, rounded
purple rectangles), as they directly address the central
research question posed in the introduction—namely,
where, when, and how VD influences the perceived char-
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acteristics of a sound. Results are presented in the follow-
ing section.
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Figure 1: Overview of the data pipeline. An STFT with a Bartlett win-
dow (85.3 ms size, 1 ms hop) is applied. The pipeline branches into two
processes: (1) spectral centroid, leading to centroid difference analysis
(Experiment 1) and (2) computation of spectral flux per quarter-tone Mel
band. Flux dissimilarities are segmented into frequency ranges relative
0 VDfreqs followed by peak picking, normalization, PCA initialization,
and SOM training. Analysis is conducted in relation to VD parameters
and spectral centroid differences (Experiment 2)

3. RESULTS
3.1 Experiment 1 - Centroid Differences

Figure 2 shows the analyses for the centroid differences
for each VD4 across the four time points defined in the
analysis framework. For the 700 Hz case, at ¢ =10 and 25
ms the centroid difference increases linearly with higher
damping and slower decay, while at £ = 50 and 100 ms the
difference continues to grow with increasing damping but
focuses towards 1/20 < v < 1/70. Moreover, at t = 50
ms some configurations of the parameter space of VD lead
to a lower spectral centroid than that of the no-damping
case (see Fig. 2 top row third column left to right, three
first columns within the heat map).

In the 6400 Hz case, results show that at ¢ = 10 and 25
ms the stronger the damping and the faster the decay the
lower the spectral centroid. This trend persists at ¢ = 50

ms, but the decrease is no longer linear throughout—for
instance, the centroid decreases less at medium damping
(0.09 < R{E(s)} < 0.18) than at higher damping values
(> 0.21). Att =100 ms, changes in the centroid become
highly nonlinear; while medium damping values produce
the greatest differences, this index varies with almost ev-
ery decay rate. Since in both damped frequencies the 10
ms and 25 ms cases behave similarly, the 10 ms time point
is discarded for the SOM analysis presented below.

10 ms 25ms 50 ms 100 ms
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Figure 2: Centroid difference analysis for VD ¢,.., = 700 and 6400
Hz. Each column, from left to right, represents one of the four time
points defined in the analysis framework, increasing sequentially. Within
each heat map, the damping coefficient increases left to right and the rate
of decay decreases top to bottom. The darker the color, the higher the
centroid difference. For the 700 Hz case, at t = 10 and 25 ms, centroid
differences increase with higher damping and slower decay. At t = 50
and 100 ms, differences continue to rise but focus on damping values
between 1/20 < v < 1/70. Notably, some configurations at ¢ = 50
ms result in a lower spectral centroid than the no-damping case. For the
6400 Hz case, at t = 10 and 25 ms, stronger damping and faster decay
lead to lower spectral centroids. This trend becomes nonlinear at ¢t = 50
ms. At ¢ = 100 ms, centroid changes become highly nonlinear. Based
on these observations, the 10 ms time point is excluded from the SOM
analysis.

3.2 Experiment 2 - Physics-Informed Self-Organizing
Maps

Figure 3 shows the results for VD .., = 700 Hz. In the
octave below the VDy,..q (first row top to bottom), at ¢
= 25 ms data is distributed in three different regions fol-
lowing an increase in the damping coefficient. This dis-
tribution shows that an increase in both the damping coef-
ficient and, in a lesser degree, the rate of decay lead to a
higher centroid difference. At ¢ = 50 ms, centroid values
for low damping coefficients (R{E(s)} < 0.12) fall be-
low those of the no-damping case represented by a lighter
outer color, with the degree of reduction varying based
on the decay rate. Furthermore, the gradual transition
between clusters based on damping coefficients becomes
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more diffuse, particularly separating data with a fast rate
of decay. At ¢ = 100 ms the gradual transition becomes
even more fuzzy, still, centroid difference increases with
increasing damping coefficient. In all three time points
the clustering patterns of the SOM strongly match the cen-
troid difference patterns found in Experiment 1 (see Fig. 2
top row). In the octave around the VDy,.., (Fig. 3 second
row), at t = 25 ms the linear relation between the damping
coefficients and the centroid differences remains. More-
over, the regions created by the U-Matrix group data ac-
cording to their centroid difference values, although this
distribution breaks the gradual transition found in the oc-
tave below the VDy,..,. Small clusters based on damp-
ing coefficient are visible, but not clearly formed. At ¢ =
50 ms, the overall data distribution aligns with the corre-
sponding centroid differences heat map (see Fig. 2 cen-
ter map). The U-Matrix groups data according to similar
centroid difference values, clearly separating the two data
samples with the highest difference. At £ = 100 ms no
pattern is found. In the octave above VDy,.,, the pre-
viously observed clustering pattern related to the damp-
ing coefficient does not emerge at any of the three time
points. However, small regions associated with centroid
difference values are formed by the U-Matrix, particularly
at t = 50 ms, where areas corresponding to low centroid
differences (top left) and high centroid differences (top
right) become noticeable. No distinct pattern is observed
at ¢t = 100 ms.

For the VDy,.., = 6400 Hz results are shown in Fig-
ure 4. Att =25 ms, a gradual transition from low to high
damping coefficients is displayed by the clustering pat-
tern across all frequency ranges, which matches the trends
found in Experiment 1 (see Fig. 2 bottom row). However,
the octave above the damped frequency displays a clus-
tering pattern that spans across both principal components
of the SOM extensively, while the clustering from the oc-
tave below focuses only on one part of the map (bottom
right), suggesting that its variance is mostly explained by
only one of the principal components. Concerning the oc-
tave around the damped frequency, although it also co-
incides with the heat map, the SOM allocates some data
points outside the overall pattern (see Fig. 4, second row,
first column, top right), resulting in a decrease in how ac-
curately the SOM matches the heat map. At ¢ = 50 ms
the octave below shows a general cluster distribution that
matches the changes in centroid seen on the heat maps,
while the octaves around and above cluster data mostly
based on the damping coefficients with no pattern regard-
ing the centroid, although the intra-cluster distance in-
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Figure 3: Physics-Informed SOM for VD,.., = 700 Hz. Each row
corresponds to a frequency range—one octave below (top), around (mid-
dle), and above (bottom) VD f;..,—and each column to a time point (¢
=25, 50, 100 ms). The U-Matrix displays local dissimilarities between
neurons (lighter = more dissimilar). Outer color indicates spectral cen-
troid difference (darker = higher difference), using the same color scale
as in Fig. 2. Inner color shows the damping coefficient R{ E(s)} (redder
= higher; gray = no damping). Point size reflects decay rate v (larger =
slower decay). In the octave below, a clear relationship emerges between
damping coefficient, decay rate, and centroid difference—most evident
at t = 25 and 50 ms—mirroring the patterns in Fig. 2. At¢ =100 ms, pat-
terns become more diffuse but the trend persists. In the octave around,
data is grouped according to centroid differences, especially at ¢ = 50
ms, though clustering is less consistent than in the lower octave. At ¢ =
100 ms, no clear pattern emerges. In the octave above, no clustering by
damping coefficient is observed, though at ¢ = 50 ms, regions of low and
high centroid difference are weakly distinguished.

creases with lower rate of decay. This fuzzy clustering
is also observed at ¢ = 100 ms in the octave below the
damped frequency.

4. DISCUSSION

Results suggest that how VD influences sound perception
largely depends on the proximity of the viscoelastically
damped frequency to the fundamental frequency. This
proximity has consequences in the frequency domain that
translate to the time domain and ultimately to the percep-
tion of the sound. In the frequency domain, when the
damped frequency is close to the fundamental—as in the
700 Hz case—the influenced frequency region includes
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Figure 4: Physics-Informed SOM for VD ,.., = 6400 Hz. Visualiza-
tion parameters (color and size coding) are consistent with those used
in Fig. 3 for comparability. At ¢ = 25 ms, clustering reflects a grad-
ual increase in damping coefficient across all frequency ranges, aligning
with centroid difference heat maps (Fig. 2). The lower octave shows
compact clustering driven by the second principal component, while the
upper octave spans both components. In the middle octave, some out-
liers reduce alignment with the heat map. At ¢ = 50 ms, clustering in the
lower octave matches trends observed in centroid differences, whereas
middle and upper octaves group mainly by damping coefficient, with
fuzzier patterns and greater intra-cluster distance for lower decay rates.
At t = 100 ms, only the lower octave shows weak clustering; patterns in
the higher ranges become increasingly ambiguous.

eigenmodes close to the fundamental frequency. Now,
since lower eigenmodes carry more energy than higher
ones, the memory effect stores and injects more energy
in this frequency region than in a higher one. However,
this is not a linear process due to the way the damping co-
efficient, which acts as both energy supplier and damper,
and the rate of decay, which administrates the speed with
which the stored energy is inserted back into the system,
work together, specially when both have a middle to high
value: the higher the damping coefficient, the more en-
ergy is available, but also the stronger this new injected
energy is damped, on the other hand, if the stored energy
decays slowly during the integration time of the memory
effect, energy decays nonlinearly in the long run. Accord-
ing to the analysis framework, how long this decay lasts
decides wether its the timbre, the pitch or the harmonic-
ity/roughness of the sound what is influenced by the VD.

In the 700 Hz case, results show that the spectral dissim-
ilarities caused by VD may persist for 100 ms or more,
affecting both the perception of pitch and the sensation
of harmonicity. This phenomenon is observed in musi-
cal instruments such as the pat wain, where VD enhances
pitch perception by influencing the lower modes [2]. Con-
versely, when the damped frequency is farther from the
fundamental, as in the 6400 Hz case, the effect remains
perceivable until approximately 50 ms, as shown by the
clustering patterns found until this time point, sufficient to
influence the timbre but unlikely to impact pitch percep-
tion or harmonicity.

Results also suggest that the size of the frequency
region influenced by VD decreases over time, gradually
shifting towards the region below the damped frequency.
Although this size is still frequency dependent because of
the different energy levels present in different parts of the
spectrum as discussed above, this hypothesis is based on
the absence of overall clustering patterns found in higher
frequency ranges at longer time points as well as on the
continuous decrease in spectral centroid found in the cen-
troid analysis of 6400 Hz case. With regard to the cluster-
ing patterns, the clustering of data based on the damping
coefficient aligns with the fact that, despite the nonlinear
behavior, the damping coefficient is the driving parameter
of VD [9].

In relation to the method, the proposed features (cen-
troid differences and spectral flux per Mel band) offer a
flexible tool for transient analysis in percussion instru-
mens. Together, they provide a framework for examin-
ing the impact of VD on perceived sound characteristics
using psychoacoustically relevant metrics. Specifically,
decibels measure the loudness of dissimilarities, deter-
mining whether they should be perceptible; quarter-tone
Mel bands capture frequency changes that remain percep-
tible depending on the frequency range; and the spectral
centroid serves as a well-established psychoacoustic met-
ric for comparison. Furthermore, focusing on time in-
tervals that are relevant to both the perception of musi-
cal instrument sounds and the physical evolution of VD
provides insight into the research questions posed in the
introduction—namely, how VD influences the perception
of sounds produced by musical membranes, how the fre-
quency spectrum evolves over time, and the psychoacous-
tic implications of the observed patterns. Additionally,
each preprocessing step contributes to reduce the dimen-
sionality of the feature vector based on psychoacoustics
characteristics of the data, yielding clear results while pre-
serving essential information.
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5. CONCLUSSION

A method for analyzing the influence of viscoelastic
damping on the perceived sound of musical membranes
has been presented. This approach is grounded in the
physical characteristics of viscoelastic damping and as
well as in temporal cues relevant in the perception of
musical sounds. The influence of viscoelastic damp-
ing was found to depend largely on the location along
the frequency spectrum where damping occurs, specif-
ically in relation to the distance from the fundamental
frequency. A decrease in the size of the frequency re-
gion affected by viscoelastic damping was also found,
with the region gradually shifting towards frequencies be-
low the initially damped area over time. Further stud-
ies are needed to investigate additional parts of the spec-
trum beyond those addressed in the present work, as well
as to examine scenarios involving simultaneous damp-
ing across multiple frequency regions. Also, future work
should incorporate alternative time—frequency representa-
tions with higher frequency resolution—such as wavelet
transforms—allowing for a more detailed analysis of both
the extent and development of the affected regions. Fi-
nally, the results demonstrate that physics-informed self-
organizing maps offer a powerful tool for analyzing vis-
coelastic damping given the complexity and high dimen-
sionality of its parameter space.
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