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ABSTRACT

Locally resonant metamaterials (LRMs) have recently
emerged as a promising solution which can combine
lightweight design with effective noise and vibration con-
trol. These LRMs, typically consisting of a host structure
with sub-wavelength added resonators, are often manu-
factured using additive manufacturing, which is unsuit-
able for mass production. Moreover, the manufacturing
process can significantly affect the performance of LRMs,
leading to differences between their intended design and
actual results. Injection molding (IM) has been recently
explored as an alternative that is suitable for mass manu-
facturing of LRMs though it still may affect performance.
This study focuses on how IM process parameters such as
injection and packing pressure, mold and melt tempera-
ture, cooling and packing time, and injection speed influ-
ence the vibration attenuation in LRMs by investigating
their impact on the effective modal parameters of the res-
onator and on the predicted stop band. A framework is
proposed which iteratively calculates these objectives and
uses single and multi-objective Bayesian approaches to
determine its upper and lower bounds with respect to vari-
ation in the process parameters. These process parameters
are found to have a significant impact on the vibroacous-
tic behavior of the LRMs, which may also be leveraged
further in view of broadband vibration attenuation.
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1. INTRODUCTION

Industry has a clear trend toward lightweight designs
mainly due to economic and ecological reasons; however,
traditional noise and vibration mitigation strategies typi-
cally rely on adding mass or volume, which leads to heavy
and bulky solutions. This not only increases emissions
during transport but also contradicts the trend towards
lightweight design. In contrast, LRMs offer a lightweight
and targeted approach to addressing noise and vibration
issues.
In literature, LRMs have been manufactured using addi-
tive manufacturing [1–3], which has advantages like rapid
prototyping but is not suitable for mass production. For
metals, manufacturing techniques such as punching and
bending [4], milling [5], and waterjet cutting [6] are uti-
lized. Additionally, laser cutting [7] and thermoform-
ing [8] are other alternatives. Some recent studies [9, 10]
also investigated injection molding (IM) for LRM produc-
tion, which is one of the most common techniques for
mass manufacturing plastics. Manufacturing variability
is inherent due to real-world engineering conditions [11],
which may affect robustness.
In a previous study, it was shown that incorporating
IM simulations during the design of an injection-molded
metamaterial can improve the predicted performance [10].
It is also well known that the machine process variables in
the IM process significantly impact product quality, par-
ticularly in terms of warpage and shrinkage deformations
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[12], as well as part weight [13]. In particular, process pa-
rameters influence warpage, shrinkage, and material vari-
ability. In this study, we propose an approach to evalu-
ate the potential influence of operational parameter ranges
by combining a numerical prediction workflow [10] for
the as-produced metamaterial performance with an inter-
val uncertainty quantification approach.
In what follows, first in Sec. 2 a brief description of the
metamaterial design is given. Sec. 3 outlines the ap-
proaches used to calculate the performance metrics and
bounds. Sec. 4 introduces the model and presents the re-
sults. Finally, Sec. 5 discusses the main findings and gives
the future perspectives.

2. THE METAMATERIAL DESIGN

An LRM plate is investigated, which consists of a 50 mm
square aluminum (aluminum 6061) plate with a 1.5 mm
thickness as the unit cell host structure and periodically
added dual-cantilever polypropylene (PP) resonators. The
resonator C [10] is chosen for analysis using the same geo-
metric parameters employed in the study, with a first com-
bined bending eigenfrequency tuned nominally around
1154 Hz.

3. METHODOLOGY

In this section, the numerical performance prediction flow
is explained, the performance metrics to be used in this
study are introduced, and approaches to find the perfor-
mance bounds are briefly discussed.

3.1 Injection Molding Simulations

The machine process parameters to be varied are injection
and packing pressure, mold and melt temperature, cool-
ing and packing time, and injection speed. For the spe-
cific parameters, filling, packing, and warpage processes
are simulated with MOLDEX3D 2023 using a boundary
layer mesh (BLM) of the part. Then, this BLM mesh is
exported, including the material cards that may differ in
density across the elements in the mesh.
Two approaches have been studied for performance pre-
dictions: Approach 1 for modal parameter estimation and
Approach 2 for stop-band predictions. These two ap-
proaches are summarized in Fig. 1.

Run filling, packing
and warpage
simulations

Deformed mesh
of the resonator

Calculate
dispersion curves
with applying B-F

boundary
conditions

M, K

Approach 1 Approach 2

Machine Process Parameters
injection and packing pressure, 

packing and cooling time, 
injection speed, mold and 
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Merge the resonator
with host structure

Calculate the
resonance frequency

of the fixed-foot
resonator

Figure 1: The flowchart of the performance predic-
tion calculations for modal parameters (Approach 1)
and stop-band predictions (Approach 2).

3.2 Approach 1: Modal Parameter Estimation

Two key modal parameters for LRM design are chosen
as performance metrics: the resonator’s eigenfrequency
(fres) and its modal effective mass (meff ). The eigen-
frequency of the resonator directly affects the stop-band
center. On the other hand, as the meff of the resonator
increases, larger stop-band widths can be achieved [14].
Hence, it is crucial to know how these metrics vary if the
performance of LRMs is to be assessed.
These metrics will be computed for the resonator with
clamped boundary conditions on its foot elements. The
nodes corresponding to the resonator foot bottom are au-
tomatically selected and fixed for the deformed resonator
mesh with variable density information exported from the
injection molding simulations. Then, the fres and meff

are calculated by solving the corresponding eigenvalue
problem. The automatization of this resonator perfor-
mance prediction, Approach 1, was implemented using
NX open scripts created in Python.
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3.3 Approach 2: Stop-band Predictions

Ultimately, to evaluate the performance of the LRMs,
meff and fres may not provide the full story. Therefore,
Approach 2 is employed for the stop-band predictions.
First, the deformed resonator is merged with the host
structure using conformal meshes by projecting foot el-
ements of the resonator to the unit cell of the plate host
structure. Automation for this task is again done using an
NX-open script created in Python. Then, applying Bloch-
Floquet boundary conditions to the boundaries of the unit
cell, the dispersion curves of the infinite periodic struc-
ture are calculated along the irreducible Brillouin con-
tour (IBC). A reduced unit cell model technique known as
Generalized Bloch Mode Synthesis (GBMS) [15] is used
to save computational time. Finally, stop-band character-
istics (SBcenter and SBwidth) are extracted using the re-
sulting dispersion curves. For a more in-depth explana-
tion of the stop-band calculation procedure, the reader is
referred to [16].
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Figure 2: Overview of the time taken for (a) Ap-
proach 1, (b) Approach 2.

The steps in Sec. 3.1 and Sec. 3.2 for Approach 1, and
Sec. 3.1 and Sec. 3.3 for Approach 2, are sequentially
connected to formulate the objective (black-box) function
that is to be iterated throughout the optimization step.

3.4 Calculating the Performance Bounds

Recently, Van Belle et al. [17] used interval descriptions
of the uncertain resonator parameters to investigate the
interval description of the performance metrics. A simi-
lar approach is applied here, but this time, instead of the
resonator design parameters, the defined seven machine
process parameters of IM are used as the bounded input
parameters, which would lead to bounds to be found on
the performance metrics. This has the advantage of not
requiring knowledge of input distributions, allowing one
to rely on ranges, tolerances, common sense, or physical
constraints; however, the disadvantage is that this method
results in only bounds on the performance metrics as out-
put. Nevertheless, this method offers a useful first approx-
imation of how significantly the process parameters influ-
ence the performance of LRMs. The objective function
for this problem is defined as the calculation of the mini-
mum and maximum values of the performance parameters
(minimum and maximum of Approaches 1 and 2) accord-
ing to the uncertain input interval.
The computation costs for one full evaluation using Ap-
proach 1 and Approach 2 are shown in Fig. 2. Due to
these computational costs, performing a large number of
evaluations for the 7-dimensional parameter space would
rapidly become time-consuming. A sampling-based ap-
proach, such as quasi-random sampling, typically requires
many samples, leading to numerous full simulations. Ad-
ditionally, it may fail to effectively identify the perfor-
mance bounds, as it may not cover the entire input space.
On the other hand, given the small number of parameters,
a similar surrogate modeling technique from the afore-
mentioned study, based on Gaussian processes (GP) and
Bayesian optimization (BO), can be leveraged, as it offers
an efficient framework for propagating interval-uncertain
parameters when there is limited number of uncertain pa-
rameters while effectively decreasing the number of sim-
ulations to be run.
The methodology of this combined BO and GP approach
can be summarized as follows [18]: For a training set,
based on a limited number of full simulations, a GP model
of the objective function is created. This GP model acts
as a hypersurface that approximates the objective function
across the entire parameter space. Using this GP model,
an acquisition function (AF) can be efficiently minimized
to find the likely optimum, which is the potential min-
imum of the objective function. Depending on the AF
used, the likely optimum might be based on local GP
mean, uncertainty, or confidence bounds. After the most
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promising parameter combination is identified with this
AF, a new full simulation is run at that parameter com-
bination. This new data point is then added to the train-
ing set, and the GP model is updated accordingly. The
process then reiterates, with the updated GP model po-
tentially suggesting even better optimals, until a stopping
criterion is met, which is the maximum number of evalu-
ations in this case.

3.4.1 Single Objective Bayesian Approach

For Approach 1, the bounds on the resulting performance
metrics at the resonator level, fres and meff can be com-
puted by the following four optimization problems:

meff,LB = min{meff (p) | pmin ≤ p ≤ pmax}
meff,UB = max{meff (p) | pmin ≤ p ≤ pmax}
fres,LB = min{fres(p) | pmin ≤ p ≤ pmax}
fres,UB = max{fres(p) | pmin ≤ p ≤ pmax}

(1)

where pmin ≤ p ≤ pmax denotes a vector inequality, i.e.,
(pmin)i ≤ pi ≤ (pmax)i for every i = 1, 2, . . . , 7 defined
for the input space for process parameters.

Single-objective BO with GP is applied separately to each
objective function to determine the bounds for each modal
performance parameter. The acquisition function is se-
lected as the lower confidence bound. This is imple-
mented using the bayesopt function in MATLAB, and a
bounding box is created for the model performance met-
rics, which demarks the bounded region in the meff -fres
space. An initial training set of 27 full simulations is run,
with the corresponding 27 parameter combinations gen-
erated through the Halton sequence using the MATLAB
function haltonset. The stopping criterion is set at a total
of 108 model evaluations for each corner of the bounding
box.

3.4.2 Multi Objective Bayesian Approach

Instead of calculating the bounding box, the bounding en-
velope can be calculated if multiobjective optimization is
used to calculate the Pareto optimal. Assuming a convex
bounding envelope, the fres and meff space is divided
into four quadrants, and the Pareto front for each of these
quadrants is sought by the following optimization prob-

lems:

fQ1 = min{−meff (p)
fres(p)

| pmin ≤ p ≤ pmax}

fQ2 = min{−meff (p)
−fres(p)

| pmin ≤ p ≤ pmax}

fQ3 = min{meff (p)
−fres(p)

| pmin ≤ p ≤ pmax}

fQ4 = min{meff (p)
fres(p)

| pmin ≤ p ≤ pmax}

(2)

For this, a multiobjective Bayesian algorithm called
TSEMO [19] is used. The stopping criteria is set to a total
of 120 model evaluations per quarter, with a different set
of 27 initial random data points generated through Latin
hypercube sampling (LHS) for each quarter.

4. CASE STUDY

A BLM with 5 boundary layers with 1 mm node seed
is used, resulting in 33949 elements. After the injec-
tion molding simulations, the mesh with variable mate-
rial cards is exported using the dedicated finite element
export option in MOLDEX3D. Similar to [10], density is
reduced so that a minimum of 30 different material cards
are exported to reduce computational time. The mesh of
the resonator is given in Fig. 3.

Figure 3: The resonator mesh

The machine process parameter ranges to be examined are
listed in Tab. 1.

4.1 Resonator Performance Bounds

A prestudy is conducted using a random Halton dataset
and an orthogonal Taguchi array with 14 levels. The total
number of model evaluations is set to 196 for the Halton

2434



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

Table 1: Machine process parameter ranges

Parameter Low Bound High Bound
Injection pressure [MPa] 100 180
Packing pressure [MPa] 100 170
Packing time [s] 1 20
Cooling time [s] 1 20
Injection speed [cm3/s] 10 40
Mold temperature [◦C] 40 70
Melt temperature [◦C] 220 270
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Figure 4: The bounding box calculated by single
objective Bayesian optimization, together with 197
different data points calculated by Taguchi array and
Halton Sequence.

dataset, based on the corresponding Taguchi array with 7
levels.
Fig. 4 gives the overview of single objective optimization
and sampling results. The relationship between the res-
onator’s eigenfrequency and modal effective mass appears
to be quite linear, based on sampling. Finding the separate
individual bounds shows that the samples are all within
these bounds. However, the bounding box, which is now
necessarily a rectangle, loses that clear trend. Thus, al-

though interesting and promising, the multiobjective ap-
proach could give more insights.
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Figure 5: The bounding envelope calculated by
multi-objective Bayesian optimization.

Fig. 5 gives an overview of the multi-objective optimiza-
tion results. In comparison with Fig. 4, it shows that only
a few samples are in the bottom-right corner, while most
are clustered in the middle to top-left regions. This sug-
gests that the parameter range leading to the bottom-right
region is potentially narrow or scattered, making it harder
to capture. While the BO algorithm performs well in the
middle and top-left, refining the acquisition function, ker-
nel, or objective function may help improve results in the
bottom-right.

4.2 Stop-band Performance Bounds

A Taguchi sampling-based approach is done on the stop-
band performance to present an initial impression in this
paper. Fig. 6 shows an overview of the stop-band predic-
tions. As is well-known from metamaterial design, the
SBcenter is highly correlated with fres, which is also seen
on Fig. 6, while the SBwidth depends on the (effective)
mass of the resonator. Moreover, a broader stop-band
with increasing frequency is typically expected. How-
ever, in this case, the increasing frequency corresponds
to, and may even be caused by, a reduced resonator ef-
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Figure 6: (a) Approach 2 metrics calculated with the Taguchi sample (b) combined resonator (Approach 1) and
stop band (Approach 2) metrics plotted together.

fective mass. In Fig. 6, the stop-band width slightly de-
creases (yet remains almost constant), suggesting that, at
the LRM level, both of these effects may, to some extent,
counterbalance each other for this example.

5. CONCLUSIONS

In this paper, two approaches for assessing the IM vari-
ability are proposed for LRMs. These approaches itera-
tively calculate the LRM performance, either at the res-
onator level or at the unit cell level, to investigate the in-
fluence of manufacturing variability effects of IM.
The machine operation parameters of the IM process are
shown to have a clear effect on the vibroacoustic perfor-
mance of the LRMs and the targeted frequency range of
the resonator. For the given case study, with the variation
in process parameters shown in Tab. 1, an approximately
3% variation in frequency and 6% variation in effective
mass of the resonator can be observed from Fig. 5. This
variation could be utilized further for broadband attenua-
tion.
Although the bounding box indicates bounds on individ-
ual performance metrics well, trends that may exist be-
tween dependent performance metrics are lost. Using
a Pareto multi-objective BO optimization showed great

potential in more accurately capturing the performance
bounds in LRMs.
Further investigation is required for more definitive con-
clusions, as the results for Approach 1 need more analysis,
and the results for Approach 2 are still very preliminary
and indicative. However, this framework shows promis-
ing potential for investigating manufacturing variability.
In future work,

• a qualitative study will be conducted on each pa-
rameter to assess the contribution and importance
of individual machine parameters versus their com-
bined impact.

• the analysis of resonator metrics will be further ex-
panded, including stiffness, to explain frequency
variation better.

• the scope will be extended to include material prop-
erty variation besides purely manufacturing pro-
cess settings.
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