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ABSTRACT

Nonlinear dynamical systems exhibit various transient be-
haviors, whose understanding is required to fully appre-
hend how the system responds to sollicitations. This work
focuses on multistable systems, where several stable so-
lutions coexist for a given value of the system’s parame-
ters. In these settings, transients condition which solution
actually appears during time integration. Then, a compre-
hensive description of the system’s behavior entails map-
ping out the infinite possibilities of variations of the sys-
tem’s parameters with respect to time. This is impractical
for models whose phase space is of high dimension, or in
limited timescales such as practical activities for students.
This work proposes real-time demonstrators of dynami-
cal systems as a way to still investigate these phenom-
ena. The construction of such demonstrators is detailed,
including a display outlining the zones of stability of the
solutions, and control inputs mimicking a musical instru-
ment (such as a MIDI controller). We show how these
elements coupled with audio and visual feedback enables
users to quickly gauge a large variety of transient behav-
iors, for academic proofs of concept or pedagogical activ-
ities. A demonstrator for a Van der Pol toy model and one
for a woodwind model used for a lab in a master’s degree
are used as examples.
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1 INTRODUCTION
It is very rarely possible to exhaustively predict the be-
havior of a nonlinear dynamical systems. Therefore, a lot
of work in the dynamical systems community is descrip-
tive: one observes, documents and explains the various
behaviors that the system displays in its different configu-
rations [1]. This leads to graphical representations such as
bifurcation diagrams that represent behavior as a function
of one parameter, or cartographies when two or three pa-
rameters are taken into account. This work presents two
real-time construction of bifurcation diagrams. In a ped-
agogical context, the real-time audio and graphical rep-
resentation tool allows impactful and flexible demonstra-
tions, in which the students and the professor can decide
to investigate a specific point and do so immediately. The
audio feedback is especially interesting for music-related
curriculums, where students want to interpreted dynami-
cal system behaviors in terms relevant to music as often as
possible.

2 A TOY OSCILLATOR ILLUSTRATES
DIRECT, INVERSE AND DYNAMICAL

HOPF BIFURCATIONS
A fifth order Van der Pol model [2], close to the normal
form of a Bautin bifurcation [3], displays a Hopf bifurca-
tion [4] that can be either direct or inverse. Its toy model
nature makes it easy to write with a single equation

ẍ+ (µ+ σ(ẋ2 + x2) + ν(ẋ2 + x2)2)ẋ+ x = 0 (1)

Its solutions as well as the locus of its bifurcations are
both completely described analytically. This good a priori
knowledge of the system’s steady states means the demon-
stration can focus on transient aspects such as hysteresis
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Figure 1. Snapshot from the demonstration video
linked at https://youtu.be/a0S7l7Hjl1s.

and dynamical bifurcations. Figure 1 links to a video cap-
ture of such a demonstration. The full demonstrator is
available online [5].

Negative values of σ lead to an inverse Hopf bifurca-
tion at µ = 0, which is followed by a saddle-node bifur-
cation [6]. In the region between these two bifurcations,
the system is multistable. Therefore, the system displays
a hysteresis cycle (0:00 timestamp) wherein the existing
stable solution (constant or periodic) is maintained un-
til the parameter leave the multistability region. When
demonstrating this phenomenon, another feature is imme-
diately apparent : the oscillations start and stop brutally.
For music-oriented students, this observation is very in-
teresting as it means that self-oscillating instruments that
have an inverse Hopf bifurcation will likely be difficult to
play at a pianissimo nuance. To the contrary, the Hopf
bifurcation is direct for positive σ values. The user can
experience that a fine adjustment of parameter µ enables
arbitrarily low amplitude oscillations (0:23 timestamp).

Dynamical bifurcations are a phenomenon whereby
the system’s parameter cross a bifurcation point, but the
effect of that bifurcation is only felt some time after the
crossing [7]. For a Hopf bifurcation, this can mean that
the oscillations only appear after a certain delay after µ
crosses 0. This delay can be rather long, especially when
the system is allowed to converge very close to the equi-
librium. When the system is near the equilibrium and it
becomes unstable, the distance between it and the posi-
tion of the system is amplified exponentially. If this dis-
tance is very small, the time needed for it to become big
enough for oscillations to be heard can be long. In the
case of our real-time Van der Pol oscillator, 0:52 times-
tamp showcases a long bifurcation delay (of about 1 s).
In a musical context, this duration is not negligible at all

Figure 2. Bifurcation diagram: theoretical static so-
lution amplitudes in blue, and time-integration tra-
jectories in red for two increases in parameter µ from
−0.5 to 0.4: first without added noise (green arrow)
and then with added white noise (pink arrow).

(half a bar at 120 bpm). Then, a small white noise of
standard deviation 10−5 is added to the variables of the
system at the 1:04 timestamp. By preventing the system
to approach the equilibrium too much, this modification
greatly shortens the bifurcation delay. Figure 2 compares
the two trajectories : compared to a short bifurcation de-
lay, the long bifurcation delay also entails that oscillations
appear when µ is larger and thus with a greater amplitude
– which translates to a more sudden attack.

This demonstration shows the importance of the na-
ture of the bifurcation in a musical context, as well as the
more subtle phenomenon that is bifurcation delay.

3 A CLARINET MODEL SHOWS
SIMPLE AND COMPLEX

MULTISTABLE BEHAVIOR, AS WELL
AS CHAOTIC REGIMES

A more applicative example, used in a lab for a master’s
degree, puts the student with a real-time integration of a
woodwind model, whose modal parameters can be fixed
by the user. The two variable control parameters are the

2860



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

Figure 3. Snapshot from the demonstration video
linked at https://youtu.be/D8AUCYr-XXg.

pressure in the mouth and the opening of the reed at rest.
Although it is more involved than the previous toy model,
this woodwind model writes rather simply as

ṗ1 = s1p1 + C1u
ṗ2 = s2p2 + C2u
ṗ3 = s3p3 + C3u
p = 2ℜ(p1 + p2 + p3)

u = ζmax(p− γ + 1, 0)sign(γ − p)
√
|γ − p|

.

(2)

where p1, p2 and p3 are complex modal pressures asso-
ciated with the three modes whose complex residues and
poles are Ci and si, and ζ and γ are reed opening and
blowing pressure dimensionless parameters [8].

Figure 3 shows the time integration results for this
model, when the user manipulates sliders to control the
parameters of the system.

The video first showcases the apparition of oscilla-
tions through direct Hopf bifurcations when increasing the
blowing pressure γ (0:00 timestamp). This is explained as
the system only producing sound if the musician blows
into it sufficiently hard. Another Hopf bifurcation with
respect to the reed opening parameter ζ (1:25 timestamp)
is interpreted as the clarinet only producing sound if the
reed is open enough at rest. A large multistability zone
is explored through a hysteresis cycle at timestamp 0:35
timestamp. Then, the system’s ability to produce chaos
for a large reed opening is showcased though intermittent
regimes (1:55 and 2:35 timestamps). A real-time sound
synthesis model enables direct comments of the produced
sounds. This parameter region also displays subharmonic
regimes (2:21 timestamp). This subharmonic regime pro-
duces a note that is unexpected when looking at the res-
onances of the instrument, as it is lower than the lowest

resonance frequency. Then (3:20 timestamp), it is shown
that through chaos the system can transition from the first
register (regime associated with the first resonance) to the
second register (regime associated with the second reso-
nance). These two registers are actually multistable for a
large portion of the parameter space : when the second
register is obtained it can then be easily maintained.
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